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& e Split Triangles — Full Quad

One triangle is divided in three quads, 20 lines of code, problem solved 7
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A quad ¢ and its the four internal angles v, k=1,2,3,4. We define
the quality (¢) of ¢ as:

2 s
(q)max(lﬂm}gx(bakb,()) (3)
Greedy quad-dominant algorithm (Frey & Borouchaki, Adaptive
triangular—quadrilateral mesh generation, IJINME, 1998).

Rectangular domain of size 1 x 3 and a mesh size field defined by

h(z,y) = 0.1 + 0.08sin(3x) cos(6y).
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2h(z,y) — Match — Split.
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A mesh (in black) and its graph (in cyan and red). The set of graph
edges colored in red forms a perfect matching.
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G st Perfect Matching

In 1965, Edmonds ( Edmonds, Jack. Paths, trees, and flowers. Can. J.
Math., 1965) invented the Blossom algorithm that solves the problem of
optimum perfect matching in polynomial time. A straightforward
implementation of Edmonds’s algorithm requires O(#V?E) operations.

Since then, the worst-case complexity of the Blossom algorithm has been
steadily improving. The current best known result is

OF#V(#E +log#V))

Gmsh use the Blossom IV code of Cook and Rohe !, which has been
considered for several years as the fastest available

LComputer code available at http://www2.isye.gatech.edu/~wcook/blossom4/.
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& e Perfect Matching

Try in Gmsh...

90



w * LIEGE ] . .
& wwsi  Existence of Perfect Matchings ®UCtouvain

ng = 2(n, — 1) — np.

An even nr. of triangles requires an even nr. of points on the boundary.

Even if n; is even, there is in general no guarantee that even one single
perfect matching exists in a given graph.

Tutte's theorem : A graph G = (V, E) has no perfect matching if and
only if there is a set S C V whose removal results in more odd-sized
components than the cardinality ng of S, i.e., the number of elements in
S (Pemmaraju S. and Skiena S, Computational Discrete Mathematics’,
2003).
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G et Planar Graphs

2D meshes are planar graphs. Gmsh only generates meshes in the
parameter plane.

There exists an efficient algorithm (i.e., in polynomial time) that counts
perfect matchings in a planar graph.

Cubic graphs, also called trivalent graphs, are graphs for which every
node has exactly 3 adjacent nodes. Every cubic graph has at least one
perfect matching (Oum S., Perfect Matchings in Claw-free Cubic
Graphs). It can be proven that the number of perfect matchings in a
cubic graph grows exponentially with #V.

On closed surfaces, every triangular mesh has a perfect matching!
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JFR et al. A frontal Delaunay quad mesh generator using the L°° norm,
[JNME, 2010.

2

o~ a
A 1 2

4

Left : The Voronoi cell of each vertex is an hexagon of area a?v/3/2

Filling R? with equilateral triangles requires thus 2/1/3 times more
vertices (i.e. about 15% more) than filling the same space with right

triangles.

B UCLouvain
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& Gmsh's second attempt: delquad

Gmsh'’s surface mesher is a delaunay-frontal algorithm. Largely inspired
by Rebay, S. (1993). Efficient unstructured mesh generation by means of
Delaunay triangulation and Bowyer-Watson algorithm. Journal of
computational physics, 106(1), 125-138.

Combine the robustness of Bowyer-Watson and triangle quality control of
frontal algorithms.

Extension to surface meshing and the devil is in the details. One of
Gmsh'’s oldest algorithms.

An example speaks louder than a long speech.

I'll have to hack Gmsh to the bone.
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“  Gmsh’s second attempt: delquad

Gmsh'’s frontal delaunay algorithm tries its best to make equilateral
triangles.

A front edge e separates triangles that are “done” and other ones that
are “not done”.

A new point is added on the orthogonal bissector of e to eventually
create an equilateral triangle.

It is possible to very slightly modify the frontal algorithm to create right
triangles.
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& et Triangulation in the L>*-norm

The L*°-norm distance

[x2 — %1 l[x2 — x1(, = max (|z2 — 21/, [y2 — v1]) -

= lim
p*}OO

Unit cirlces.

s

Ll

The 2-norm is the only norm that is rotationally invariant.
We thus use a cross field to define a local frame at point x.
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& et Triangulation in the L>*-norm

In the L norm, the following mesh is made of equilateral triangles only.

a

4

It is possible to use the same frontal-delaunay algorithm by computing
orthogonal bisserctors in the L°°-norm.
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The perpendicular bisector, or bisector of the segment delimited by the
points X1 = (—xp, —Yp) and xo = (xp, yp) is by definition the set of
points x = (z,y) equidistant to x; and Xa.

It is the union of the intersections of circles centered at x; and x5 and
having the same radius.

L=y+(yo—1)) =2
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G st Circumcenter in the L>®-norm
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A right triangle. Perpendicular bisectors of the three segments are
coloured in yellow (edge x1x3), blue (edge x2x3) and cyan (edge x;x3).

Points x_, x2 and x? are three circumcenters that correspond to the
three circumsquares Ct, C? and C3.

Circumcenter and circumsquare are unique when the points are in general
position.
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e The new point should not be placed beyond the center x. of the circumsquare of
the active triangle (red triangle), as this would create a triangle with a small
edge XpX4.

e The new point should not be placed below the intersection x; of the bisector £
and the circumsquare C; of the resolved triangle (x1,X2,%3). Inserting a point
inside C; would make the resolved triangle invalid by means of the Delaunay
criterion.

o If & (xm) = ||x3 — x2||0o, then the optimal point is x,, = Xc. It corresponds to
the largest triangle T;(xe, X2, x3) that verifies Roo (T5,0) = &' (xm).
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We use standard Bowyer-Watson to connect the points i.e. we do
Delaunay in the 2-norm.

Yet, it has been observed experimentally that, in the case of finite
element meshes with decent point distribution properties, the Delaunay
kernel in the standard L?-norm and the Delaunay kernel in the L®-norm
give similar triangulations.
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Baudouin, T. C., Remacle, J. F., Marchandise, E., Henrotte, F., &
Geuzaine, C. (2014). A frontal approach to hex-dominant mesh
generation. Advanced Modeling and Simulation in Engineering Sciences,
1, 1-30.

110



v

LIEGE

université

Gmsh'’s third (& final) attempt: pack

Algorithm 1 Frontal point insertion algorithm.

Input: Initial triangulation 7
cross field
mesh size field function A(x)
Output: Array of points P
1: Place boundary points in a queue
2: while queue is not empty do
3 pop the first point p; out of the top of the queue
& interpolate f and h at this point
5: for 2N, directions do
6 Compute point p;; by intersecting 75 with a circle
7 Find set of neighboring points Py
5 for py € Py do
o if [|pi; — psll > ah(pi;) then

10: add p;; in P
1 push py; in the back of the quene
12: else

13: delete pi;

14: end if

15: end for

16: end for

17: end while

W UCLouvain
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Fig. 1:

Improving pack: quadqgs

The quasi-structured quad meshing pipeline applied on the model M8 [24] (111 CAD
corners, 169 curves, 60 faces). The cross field and its associated conformal scaling is
computed on an initial triangulation (a). The size map (b) combines the cross field scaling
and is adapted to the small CAD features. The initial unstructured all-quadrilateral mesh
(c) is computed with a frontal approach, and contains 3429/54982 irregular vertices.
After cavity remeshing, the final quasi-structured mesh (d) contains 606 /56743 irregular
vertices. 78 of them match the cross field singularities (a) and the others allow the mesh
size transitions (b).

W UCLouvain
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Improving pack: quadqgs

(a) (b) (c) ()

Fig. 6: Growing a cavity around one vertex of index —1 (in pink). Convex corners are in blue and
concave corners are in green. The remeshed cavity (d) has one irregular vertex instead
of eleven.
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Improving pack: quadgs
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Fig. 9: Quasi-structured quad mesh (261.5k vertices, 261.6k quads) of the Block model (533
faces and 1584 curves). The average SICN quality is 0.87 and the minimum is 0.11. The
initial unstructured quad mesh was generated in 58 seconds and the quasi-structured
improvement took 33 seconds, both with 4 CPU cores on a laptop. The number of
irregular vertices was reduced from 14.4k to 3.6k.

B UCLouvain
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Frontal approach

e Create a 3D frame/size field

e Generate points on surfaces & on volumes using the same approach
e Tetrahedralize the points (+ recover features)

e Subdivide tetrahedra into hexahedra

e Create a all-hex mesh?

gmsh Kolben.stp -clmin .3 -clmax .3 -hybrid -3 -nt 8
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‘Subdividing a hexahedron into tetrahedra

Bounds on the number of tetrahedra:
Ny —Ne +nyp—ny =1
We have n, = 8§,
Ne = Nje + Npe With 1pe = 1246 = 18,

ny =n;r +npr with nyr =2=12
4dng = 2n;5 +npyp —  nyp = 2ny — 6.

All together (H. Edelsbrunner et al, Tetrahedrizing point sets in three
dimensions, Journal of Symbolic Computation 10 (1990) 335-347)

8-%16—18+(2nt—6)+12—nt:1 = Ny =N + 5.

Since there are at most n;, = (g) — npe = 10 interior edges, we have the

bounds
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Pellerin, J., Verhetsel, K., & Remacle, J. F. (2018). There are 174
Subdivisions of the Hexahedron into Tetrahedra. ACM Transactions on
Graphics (TOG), 37(6), 1-9.

A triangulation of the 2-sphere can be constructed from the triangulation
of a 2-ball by building a cone.

N,
The inverse transformation, the removal of one point v of the sphere

triangulation as well as all triangles incident to v, permits to obtain the
triangulation of a ball.

The 3-sphere is defined as the 3-dimensional boundary of a 4-dimensional
ball. There are 1296 triangulations of the 3-sphere with 9 points

(Altshuler et al, The classification of simplicial 3-spheres with nine
vertices into polytopes and nonpolytopes. Discrete Mathematics 31, 2
(1980), 115-124.)
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Figure 5: The six types of tetrahedrizations of the 3-cube and their dual complex representation.

7

Mo W

Figure 6: The four types of tetrahedrizations of an almost perfect cube into 7 tetrahedra proposed by [6] and their dual complex representation.

Patterns 7_A and 7_B are differentiated by the edges linking vertices corresponding to tetrahedra that have a facet on the same hexahedron facet.
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Nine triangulations of the 3-ball with eight vertices can be built from

each of the 1296 triangulations byremoving one of thevertices
v;,0=1,...,9 and its link, i.e. all tetrahedra incident to v;.

The triangulation of the boundary of a hexahedron has 8 vertices and 18
edges. Among these, 12 are fixed and there are 2 possibilities to place
the remaining 6 diagonals of the quadrilateral facets. We have then

26 = 64 possible triangulations. These triangulations can be classified
into 7 equivalence classes, i.e. there are 7 triangulations of the
hexahedron boundary up to isomorphism.

2 triangulations

4 triangulations
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The hexahedron has 174 combinatorial triangulations up to isomorphism
that do not contain any boundary tetrahedra.

Among those 174 combinatorial triangulations, the 171 triangulations
that admit an oriented matroid have a realization. The other ones cannot
be realized.
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Fig. 13. The four realizable triangulations with 15 tetrahedra and with
points in convex position. The hexahedra are valid, their Jacobian i strictly
positive.

174 Subdivisions

Table 4. Number of triangulations patterns per number of tetrahedra

counted in the Delaunay triangulations of random point sets.

W UCLouvain

#vertices 5 6 7 8 9 10 11 12 13 14 15 Total
3000 1527 1316 4 0 0 0 0 51
10,000 1 5 57 13 19 10 2 0 0 0 62
20000 1 557 13 19 15 2 0 0 0 67
100000 1 5 5 7 13 20 24 5 0 0 0 80
500000 1 5 5 7 13 20 28 12 1 0 0 92
1,000,000 1 5 5 7 13 20 30 14 0 0 0 95
2,000000 1 5 57 13 20 30 15 4 1 0 101
5000000 1 5 5 7 13 20 30 16 4 1 0 102
10,000,000 1 5 5 7 13 20 31 16 6 1 0 105

Table 3. Number of triangulations patterns per number of tetrahedra

counted in the available input data of [Pellerin et al. 2018].

Model #vert. 5 6 7 8 9 10 11 12 13 14 15 Total
Cube 12715210 0 0 0 0 0 0 9
Fusee 11975 1557 13 9 4 0 0 0 0 44
CShaft 23245 1557 1317 6 0 0 0 0 54
Fusee_1 71947 1557 7 1.0 0 0 0 0 26
Caliper 130572 1557 7 1 0 0 0 0 0 26
CShaft2 140985 1557 8 0 1 0 0 0 0 27
Fusee 2 161888 1557 7 1 0 0 0 0 0 26
FT47b 221,780 1 557 8 2 0 0 0 0 0 28
FT47 370401 1557 7 2 0 0 0 0 0 27
Fusee 3 501021 1557 8 4 0 0 0 0 0 30
Los1 583561 1557 7 2 0 0 0 0 0 27
Knuckle 3,058481 1 557 8 2 0 0 0 0 0 28
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Pellerin, J., Johnen, A., & Remacle, J. F. (2017). Identifying
combinations of tetrahedra into hexahedra: a vertex based strategy.
Procedia engineering, 203, 2-13.

1. A set of mesh vertices V is initially sampled in the domain.

2. A tetrahedral mesh T is built by connecting V, e.g. using a
Delaunay kernel like.

3. A set H of potential that can be constructed by combining some of
T is created.

4. A maximal subset H. C H of compatible is determined. It has been
shown that this stage can be formally written as a maximal clique
problem.

5. The , T”, that are not combined into are combined into prisms,
pyramids, or remain unchanged in the final hex-dominant mesh.
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Combining

a. Triangulation b Perfect-matching . Best quality quadrangulation
Figure 1: Combining pairs of triangles into quadrilaterals may not lead to the best quadrilateral mesh.

h

a
(1) b 2)® b

Figure 2: Two potential hexahedra that are not identified by existing combination methods. (1) A decomposition with an interior vertex v. (2) A
decomposition into eight tetrahedra. This is a counter example to the claim of [7] that there is no decomposition into more than 7 interior tetrahedra.

W UCLouvain
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Eight vertices of the tetrahedral mesh T define a potential hexahedron if
(1) the twelve hexahedron edges are edges of T' and if (2) the six
quadrilateral hexahedron faces can be formed by merging two triangular
facets of T.

This starting point is quite general and allows to automatically detect
potential hexahedra without having to define a priori decomposition
patterns into tetrahedra.

a® a 3 a ?
h hd 79
g
?
e[ B et SEPf e p f e 4 ¥t
E e c e %
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al ) al b a a

b
lel
Figure 9: Vertex based search algorithm to build one hexahedron. Starting from one vertex a, the 7 other vertices are added one after another

searching for vertices that are that are adjacent through edges of the tetrahedral mesh. Tests on the existence of triangulations of faces ensure the
existence of the hexahedron boundary. Tests on the quality of 2D face angles and 3D hexahedron angles help the quick discard of bad hexahedra.
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Maximal independent set

In graph theory, an independent set is a set of vertices in a graph, no two
of which are adjacent.

Create a graph — nodes at the potential hexes and an edge exist between
two hexes if they share a tet.

The optimization problem of finding a maximum independent set is a
strongly NP-hard problem (in 2D, Blossom is polynomiall!).

Greedy algorithm: choose the best hex h, remove all hexes that are
connected to h i.e. that share a tet with h, choose the best remaining
hex and so on.
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Hex-dominant

Los1 583,561 vertices
484,095 hexes
326,976 tets

Caliper 130,572 vertices
85,727 hexes
153,040 tets

Crankshaft2 140,985 vertices
103,856 hexes.
134,140 tets

Figure 10: Hexahedral dominant meshes generated by greedy selection of the best quality hexahedra among those identified by our algorithm
(white: hexahedra, red: tetrahedra). All potential hexahedra are identified in typically less than a minute, the greedy selection runs in a few
seconds.

gmsh Losl.stp -clmin 1.5 -clmax 1.5 -hybrid -3 -nt

B UCLouvain
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Verhetsel, K., Pellerin, J., & Remacle, J. F. (2019). A 44-element mesh

of Schneiders’ pyramid Bounding the difficulty of hex-meshing problems.
Computer Aided Design.

@G

Fig. 1: Left: Schneiders’ pyramid. Right: The octogonal spindle.

R 05 4

Scaled jacoblan

Fig. 2: Comparison of our 44-clement mesh of Schneiders’ pyramid (lefy) with the
smallest known 36-clement solution (right). Both admit two planar symmetrics.
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Erickson J. (2014). Efficiently hex-meshing things with topology.
Discrete & Computational Geometry 52, 3 (2014), 427-449.

Verhetsel, K., Pellerin, J., & Remacle, J. F. (2019). Finding
hexahedrizations for small quadrangulations of the sphere. ACM
Transactions on Graphics (TOG), 38(4), 1-13.

Fig 10, ypes of buffer cubes used to mesh arbitrary domains in the algorithm of Erickson [2014] (top) 37 hexahedra to mesh the
20-quadrangle cell;(bottom) 40 hexahedra to mesh the LG toth the original cubes (shown on the left).

Any ball-shaped domain bounded by n quadrangles can be meshed with
no more than 78n hexahedra. This papier gives bounds that are very

significantly lowers the previous upper bound of 5396n.
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