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Split Triangles – Full Quad

One triangle is divided in three quads, 20 lines of code, problem solved ?
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Matching
A quad q and its the four internal angles –k, k = 1, 2, 3, 4. We define
the quality (q) of q as:

(q) = max
3

1 ≠ 2
fi

max
k

1---
fi

2 ≠ –k

---
2

, 0
4

. (3)

Greedy quad-dominant algorithm (Frey & Borouchaki, Adaptive

triangular–quadrilateral mesh generation, IJNME, 1998).
Rectangular domain of size 1 ◊ 3 and a mesh size field defined by

h(x, y) = 0.1 + 0.08 sin(3x) cos(6y).
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Full Quad

2h(x, y) – Match – Split.

87



Perfect Matching

eij

ti

tj

A mesh (in black) and its graph (in cyan and red). The set of graph
edges colored in red forms a perfect matching.
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Perfect Matching

In 1965, Edmonds ( Edmonds, Jack. Paths, trees, and flowers. Can. J.
Math., 1965) invented the Blossom algorithm that solves the problem of
optimum perfect matching in polynomial time. A straightforward
implementation of Edmonds’s algorithm requires O(#V

2
E) operations.

Since then, the worst-case complexity of the Blossom algorithm has been
steadily improving. The current best known result is

O(#V (#E + log #V ))

Gmsh use the Blossom IV code of Cook and Rohe 1, which has been
considered for several years as the fastest available

1Computer code available at http://www2.isye.gatech.edu/˜wcook/blossom4/.
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Perfect Matching

Try in Gmsh...
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Existence of Perfect Matchings

nt = 2(nv ≠ 1) ≠ nh.

An even nr. of triangles requires an even nr. of points on the boundary.

Even if nt is even, there is in general no guarantee that even one single

perfect matching exists in a given graph.

Tutte’s theorem : A graph G = (V, E) has no perfect matching if and
only if there is a set S ™ V whose removal results in more odd-sized
components than the cardinality nS of S, i.e., the number of elements in
S (Pemmaraju S. and Skiena S, Computational Discrete Mathematics’,
2003).
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Planar Graphs

2D meshes are planar graphs. Gmsh only generates meshes in the
parameter plane.

There exists an e�cient algorithm (i.e., in polynomial time) that counts
perfect matchings in a planar graph.

Cubic graphs, also called trivalent graphs, are graphs for which every
node has exactly 3 adjacent nodes. Every cubic graph has at least one
perfect matching (Oum S., Perfect Matchings in Claw-free Cubic

Graphs). It can be proven that the number of perfect matchings in a
cubic graph grows exponentially with #V .

On closed surfaces, every triangular mesh has a perfect matching!
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Extra Edges

Initial Raw Blossom Vertex Topological Final
triangulation application smoothing optimization mesh
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Great Barrier Reef
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Gmsh’s second attempt: delquad

JFR et al. A frontal Delaunay quad mesh generator using the L
Œ

norm,
IJNME, 2010.

1

a

2

4

a
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3

Left : The Voronoi cell of each vertex is an hexagon of area a
2Ô

3/2

Filling R
2 with equilateral triangles requires thus 2/

Ô
3 times more

vertices (i.e. about 15% more) than filling the same space with right
triangles.
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Gmsh’s second attempt: delquad

Gmsh’s surface mesher is a delaunay-frontal algorithm. Largely inspired
by Rebay, S. (1993). E�cient unstructured mesh generation by means of

Delaunay triangulation and Bowyer-Watson algorithm. Journal of
computational physics, 106(1), 125-138.

Combine the robustness of Bowyer-Watson and triangle quality control of
frontal algorithms.

Extension to surface meshing and the devil is in the details. One of
Gmsh’s oldest algorithms.

An example speaks louder than a long speech.

I’ll have to hack Gmsh to the bone.
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Gmsh’s second attempt: delquad

Gmsh’s frontal delaunay algorithm tries its best to make equilateral
triangles.

A front edge e separates triangles that are “done” and other ones that
are “not done”.

A new point is added on the orthogonal bissector of e to eventually
create an equilateral triangle.

It is possible to very slightly modify the frontal algorithm to create right
triangles.
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Triangulation in the LŒ
-norm

The L
Œ-norm distance

Îx2 ≠ x1ÎŒ = lim
pæŒ

Îx2 ≠ x1Îp = max (|x2 ≠ x1|, |y2 ≠ y1|) .

Unit cirlces.

L1

y

x

L1

L2

The 2-norm is the only norm that is rotationally invariant.

We thus use a cross field to define a local frame at point x.
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Triangulation in the LŒ
-norm

In the L
Œ norm, the following mesh is made of equilateral triangles only.

4

a

1 2

3

It is possible to use the same frontal-delaunay algorithm by computing
orthogonal bisserctors in the L

Œ-norm.

99



Bisectors in the LŒ
-norm

The perpendicular bisector, or bisector of the segment delimited by the
points x1 = (≠xp, ≠yp) and x2 = (xp, yp) is by definition the set of
points x = (x, y) equidistant to x1 and x2.

It is the union of the intersections of circles centered at x1 and x2 and
having the same radius.
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Bisectors in the LŒ
-norm
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Circumcenter in the LŒ
-norm
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Circumcenters in the LŒ
-norm

A right triangle. Perpendicular bisectors of the three segments are
coloured in yellow (edge x1x3), blue (edge x2x3) and cyan (edge x1x2).

Points x1
c , x2

c and x3
c are three circumcenters that correspond to the

three circumsquares C
1, C

2 and C
3.

Circumcenter and circumsquare are unique when the points are in general
position.
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Delquad
• The new point should not be placed beyond the center xc of the circumsquare of

the active triangle (red triangle), as this would create a triangle with a small

edge xnx4.

• The new point should not be placed below the intersection xl of the bisector L
and the circumsquare Cl of the resolved triangle (x1, x2, x3). Inserting a point

inside Cl would make the resolved triangle invalid by means of the Delaunay

criterion.

• If ”Õ(xm) = Îx3 ≠ x2ÎŒ, then the optimal point is xn = xe. It corresponds to

the largest triangle Ti(xe, x2, x3) that verifies RŒ(Ti, ◊) = ”Õ(xm).
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Delquad
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Delquad
We use standard Bowyer-Watson to connect the points i.e. we do
Delaunay in the 2-norm.

Yet, it has been observed experimentally that, in the case of finite
element meshes with decent point distribution properties, the Delaunay
kernel in the standard L

2-norm and the Delaunay kernel in the L
Œ-norm

give similar triangulations.
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Delquad
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Delquad
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Delquad
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Gmsh’s third (& final) attempt: pack

Baudouin, T. C., Remacle, J. F., Marchandise, E., Henrotte, F., &
Geuzaine, C. (2014). A frontal approach to hex-dominant mesh

generation. Advanced Modeling and Simulation in Engineering Sciences,
1, 1-30.
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Gmsh’s third (& final) attempt: pack

pi

pi j

ni di j

Ci
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Gmsh’s third (& final) attempt: pack
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Gmsh’s third (& final) attempt: pack
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Gmsh’s third (& final) attempt: pack
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Gmsh’s third (& final) attempt: pack
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Improving pack: quadqs
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Improving pack: quadqs
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Improving pack: quadqs
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Improving pack: quadqs
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Improving pack: quadqs
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Improving pack: quadqs
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Improving pack: quadqs

122



Unstructured Hex Meshing

Jean-François Remacle1 and Christophe Geuzaine2

1 Université catholique de Louvain (UCLouvain)
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Frontal approach

• Create a 3D frame/size field
• Generate points on surfaces & on volumes using the same approach
• Tetrahedralize the points (+ recover features)
• Subdivide tetrahedra into hexahedra
• Create a all-hex mesh?

gmsh Kolben.stp -clmin .3 -clmax .3 -hybrid -3 -nt 8

124



Subdividing a hexahedron into tetrahedra

Bounds on the number of tetrahedra:

nv ≠ ne + nf ≠ nt = 1

We have nv = 8,

ne = nie + nbe with nbe = 12 + 6 = 18,

nf = nif + nbf with nbf = 2 = 12
4nt = 2nif + nbf æ nif = 2nt ≠ 6.

All together (H. Edelsbrunner et al, Tetrahedrizing point sets in three

dimensions, Journal of Symbolic Computation 10 (1990) 335–347)

8 ≠ nie ≠ 18 + (2nt ≠ 6) + 12 ≠ nt = 1 æ nt = nie + 5.

Since there are at most nie =
!8

2
"

≠ nbe = 10 interior edges, we have the
bounds

5 Æ nt Æ 15.
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174 Subdivisions

Pellerin, J., Verhetsel, K., & Remacle, J. F. (2018). There are 174

Subdivisions of the Hexahedron into Tetrahedra. ACM Transactions on
Graphics (TOG), 37(6), 1-9.
A triangulation of the 2-sphere can be constructed from the triangulation
of a 2-ball by building a cone.

The inverse transformation, the removal of one point v of the sphere
triangulation as well as all triangles incident to v, permits to obtain the
triangulation of a ball.
The 3-sphere is defined as the 3-dimensional boundary of a 4-dimensional
ball. There are 1296 triangulations of the 3-sphere with 9 points
(Altshuler et al, The classification of simplicial 3-spheres with nine

vertices into polytopes and nonpolytopes. Discrete Mathematics 31, 2
(1980), 115–124.)
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174 Subdivisions
Nine triangulations of the 3-ball with eight vertices can be built from
each of the 1296 triangulations byremoving one of thevertices
vi, i = 1, . . . , 9 and its link, i.e. all tetrahedra incident to vi.
The triangulation of the boundary of a hexahedron has 8 vertices and 18
edges. Among these, 12 are fixed and there are 2 possibilities to place
the remaining 6 diagonals of the quadrilateral facets. We have then
26 = 64 possible triangulations. These triangulations can be classified
into 7 equivalence classes, i.e. there are 7 triangulations of the
hexahedron boundary up to isomorphism.
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174 Subdivisions

The hexahedron has 174 combinatorial triangulations up to isomorphism
that do not contain any boundary tetrahedra.

Among those 174 combinatorial triangulations, the 171 triangulations
that admit an oriented matroid have a realization. The other ones cannot
be realized.
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174 Subdivisions
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Combining

Pellerin, J., Johnen, A., & Remacle, J. F. (2017). Identifying

combinations of tetrahedra into hexahedra: a vertex based strategy.

Procedia engineering, 203, 2-13.
1. A set of mesh vertices V is initially sampled in the domain.
2. A tetrahedral mesh T is built by connecting V , e.g. using a

Delaunay kernel like.
3. A set H of potential that can be constructed by combining some of

T is created.
4. A maximal subset Hc µ H of compatible is determined. It has been

shown that this stage can be formally written as a maximal clique
problem.

5. The , T
Õ, that are not combined into are combined into prisms,

pyramids, or remain unchanged in the final hex-dominant mesh.
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Combining
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Combining

Eight vertices of the tetrahedral mesh T define a potential hexahedron if
(1) the twelve hexahedron edges are edges of T and if (2) the six
quadrilateral hexahedron faces can be formed by merging two triangular
facets of T .
This starting point is quite general and allows to automatically detect
potential hexahedra without having to define a priori decomposition
patterns into tetrahedra.
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Maximal independent set

In graph theory, an independent set is a set of vertices in a graph, no two
of which are adjacent.

Create a graph – nodes at the potential hexes and an edge exist between
two hexes if they share a tet.

The optimization problem of finding a maximum independent set is a
strongly NP-hard problem (in 2D, Blossom is polynomial!).

Greedy algorithm: choose the best hex h, remove all hexes that are
connected to h i.e. that share a tet with h, choose the best remaining
hex and so on.
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Hex-dominant

gmsh Los1.stp -clmin 1.5 -clmax 1.5 -hybrid -3 -nt 8
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Full Hex?
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Full Hex?
Verhetsel, K., Pellerin, J., & Remacle, J. F. (2019). A 44-element mesh

of Schneiders’ pyramid Bounding the di�culty of hex-meshing problems.

Computer Aided Design.
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Full Hex?
Erickson J. (2014). E�ciently hex-meshing things with topology.

Discrete & Computational Geometry 52, 3 (2014), 427–449.
Verhetsel, K., Pellerin, J., & Remacle, J. F. (2019). Finding

hexahedrizations for small quadrangulations of the sphere. ACM
Transactions on Graphics (TOG), 38(4), 1-13.

Any ball-shaped domain bounded by n quadrangles can be meshed with
no more than 78n hexahedra. This papier gives bounds that are very
significantly lowers the previous upper bound of 5396n.
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