
An Introduction to Point Cloud Processing
Computational Geometry (LMECA2170)

Point Clouds are the simplest kind of geometric data

P = {p1, ..., pN} ⊂ Rd d = 2 or 3

https://github.com/potree/potree

1 / 66

https://github.com/potree/potree

Point Cloud Acquisition

Retz (Austria) Lidar scanners

2 / 66

Our final goal: Surface reconstruction
From point clouds... ... to surface meshes

3 / 66

Our final goal: Surface reconstruction

From point clouds... ... to surface meshes

3 / 66

Requirements

Delaunay triangulation Efficient k-nearest neighbors search

... and basic linear algebra (matrices and eigenvalues)

4 / 66

Software Environment
Python using:

numpy and scipy
mouette1 for data loading and geometry utilities
polyscope2 for visualization

DEMO

1https://gcoiffier.github.io/mouette/
2https://polyscope.run/py/

5 / 66

https://gcoiffier.github.io/mouette/
https://polyscope.run/py/

Software Environment
Python using:

numpy and scipy
mouette1 for data loading and geometry utilities
polyscope2 for visualization

DEMO
1https://gcoiffier.github.io/mouette/
2https://polyscope.run/py/

5 / 66

https://gcoiffier.github.io/mouette/
https://polyscope.run/py/

Part 1: The Point Cloud Processing Toolbox

1 Nearest Neighbors and the k-NN graph

2 Estimating Normals
Best fitting hyperplane
Consistent Orientation

3 Estimating Density

4 Clustering and Primitive Fitting
The RANSAC Algorithm

Nearest Neighbors and the k-NN graph

The k-nn graph: Finding structure through locality

Definition
A graph G = (P,E) where:

P = {p1, ..., pN} are the N points of the cloud
Oriented edge pi → pj ∈ E ⇔ pj is among the k nearest points of pi

6 / 66

The k-nn graph: Finding structure through locality

Definition
A graph G = (P,E) where:

P = {p1, ..., pN} are the N points of the cloud
Oriented edge pi → pj ∈ E ⇔ pj is among the k nearest points of pi

6 / 66

The k-nn graph: Finding structure through locality

Definition
A graph G = (P,E) where:

P = {p1, ..., pN} are the N points of the cloud
Oriented edge pi → pj ∈ E ⇔ pj is among the k nearest points of pi

Properties of the k-NN graph
The graph is k-regular
The graph is sparse: |E| = kN = Θ(N)

6 / 66

The k-nn graph: Finding structure through locality

Definition
A graph G = (P,E) where:

P = {p1, ..., pN} are the N points of the cloud
Oriented edge pi → pj ∈ E ⇔ pj is among the k nearest points of pi

Properties of the k-NN graph
The graph is k-regular
The graph is sparse: |E| = kN = Θ(N)

DEMO

6 / 66

The k-nn graph: Finding structure through locality

Representation

Adjacency list L ∈ NN×3

Li,j = index of the j-th nearest
neighbor of point pi.

Adjacency matrix A ∈ RN×N

Ai,j =

1 if j is among the k

nearest neighbors of pi
0 otherwise

Can be weighted (replace 1 by d(pi, pj))

Variants
Unoriented: Consider edge (i, j) if pj is among the k nearest points of pi or vice-versa (Not

k-regular anymore!)
Weighted: Add to edge (i, j) a weight wi,j ∈ R. Typically, wi,j = d(pi, pj)

7 / 66

The k-nn graph: Finding structure through locality

Representation

Adjacency list L ∈ NN×3

Li,j = index of the j-th nearest
neighbor of point pi.

Adjacency matrix A ∈ RN×N

Ai,j =

1 if j is among the k

nearest neighbors of pi
0 otherwise

Can be weighted (replace 1 by d(pi, pj))

Variants
Unoriented: Consider edge (i, j) if pj is among the k nearest points of pi or vice-versa (Not

k-regular anymore!)
Weighted: Add to edge (i, j) a weight wi,j ∈ R. Typically, wi,j = d(pi, pj)

7 / 66

Estimating Normals

Estimating normals

The normal vector is the orthogonal vector of the tangent plane at point pi
↪→ Find the plane that best interpolates the points locally.

DEMO

8 / 66

Best fitting hyperplane
A hyperplane (line in 2D, plane in 3D) Π is completely defined by a normal unitary vector
−→n ∈ Rd and any point q ∈ Rd by the following implicit equation:

Π =
{
p ∈ Rd | (p− q).−→n = 0

}
The distance to plane Π is given by d(p,Π) = |(p− q).−→n |

Problem formulation
Given points p1, ..., pN ∈ Rd, find the plane Π(−→n , q) that minimizes the sum of square
distances to each point:

min−→n ,q
E(pi,

−→n , q) s.t. ||−→n || = 1 where E =

N∑
i=1

((pi − q).−→n)2

9 / 66

Best fitting hyperplane

A hyperplane (line in 2D, plane in 3D) Π is completely defined by a normal unitary vector
−→n ∈ Rd and any point q ∈ Rd by the following implicit equation:

Π =
{
p ∈ Rd | (p− q).−→n = 0

}
The distance to plane Π is given by d(p,Π) = |(p− q).−→n |

Problem formulation
Given points p1, ..., pN ∈ Rd, find the plane Π(−→n , q) that minimizes the sum of square
distances to each point:

min−→n ,q
E(pi,

−→n , q) s.t. ||−→n || = 1 where E =

N∑
i=1

((pi − q).−→n)2

9 / 66

Best fitting plane resolution 1: Finding the origin point

Let c = 1
N

∑N
i=1 pi be the centroid of the point cloud.

The best fitting plane goes through c. As a consequence, we can reduce the
search to planes of the form Π(−→n , c).

Proof. Compute:

∂E

∂q
= −2

∑
i

((pi − q).n)n = −2

(
(
∑
i

pi − q).n

)
n = −2N [(c− q).n] n

and since ||n|| = 1, solving for ∂E
∂q = 0 implies that (c− q).n = 0 which means that c belongs

to the plane.

Principal Axes and Best-Fit Planes, with Applications, Brown, 1976
10 / 66

Best fitting plane resolution 2: Finding the best normal vector

Matrix Notation
Define the scatter matrix M :

M =

p1 − c
p2 − c

...
pN − c

 ∈ RN×d

and the covariance matrix K:

K = MTM ∈ Rd×d

Reformulation
The problem of finding the best
fitting plane can be written as:

min
n∈Rd

||Mn||2 s.t. ||n|| = 1

or

min
n∈Rd

nTKn s.t. nTn = 1

The function E is minimized when n is a (unitary) eigenvector associated
with the smallest eigenvalue of K.

11 / 66

The function E is minimized when n is a (unitary) eigenvector associated
with the smallest eigenvalue of K.

Proof. K is symetric positive definite. Let 0 < λ1 < λ2 < ... < λd be its eigenvalues.
We can write: K = UTΛU with UTU = I and Λ = diag(λ1, ..., λd).
Since U is invertible, if we write y = Un, we have:

min
n

nTKn = min
y

yTΛy = min
y

∑
i

λiy
2
i ⩾

∑
i

λ1y
2
i = λ1||y||2.

Since U is orthogonal, ||y|| = ||n|| = 1 so the minimum of nTKn is ⩾ λ1. But this value is
achieved for y = (1, 0, ..., 0). In that case, n = UT y is the first column of U , i.e. an
eigenvector associated to λ1.

12 / 66

Algorithm for finding the best fitting plane

Best-fitting plane

input: points {p1, ..., pN} ⊂ Rd

1 Compute the scatter matrix M = (pi − c) ∈ RN×d

2 Compute the correlation matrix K = MTM ∈ Rd×d

3 Compute the eigen decomposition (λ1, e1), (λ2, e2), (λ3, e3) of K (λ1 ⩾ λ2 ⩾ λ3)

return e1

Best-fitting plane (variant)

A mathematically equivalent formulation (saves the multiplication MTM):
1 Compute the scatter matrix M = (pi − c) ∈ RN×d

2 Compute the SVD of MT : MT = UΣV T

return the first line of U

13 / 66

Algorithm for finding the best fitting plane

Best-fitting plane

input: points {p1, ..., pN} ⊂ Rd

1 Compute the scatter matrix M = (pi − c) ∈ RN×d

2 Compute the correlation matrix K = MTM ∈ Rd×d

3 Compute the eigen decomposition (λ1, e1), (λ2, e2), (λ3, e3) of K (λ1 ⩾ λ2 ⩾ λ3)

return e1

Best-fitting plane (variant)

A mathematically equivalent formulation (saves the multiplication MTM):
1 Compute the scatter matrix M = (pi − c) ∈ RN×d

2 Compute the SVD of MT : MT = UΣV T

return the first line of U

13 / 66

Digression: The Principal Component Analysis

Singular values of M = UΣV T and lines of U give us the directions where
the dataset varies the most/the less.

DEMO

14 / 66

Back to normal estimation

Normal estimation algorithm
For each point pi in the point cloud:

Compute q1, ...qk the k nearest neighbors of pi in P .
Find the best fitting plane Π through {pi, q1, ..., qk}
The normal at pi is the normal of the best fitting plane.

DEMO

15 / 66

Digression: Curvature Estimation and Edge Detection

Let λ1 ⩽ λ2 ⩽ λ3 be the eigenvalues of the
correlation matrix K.

η =
λ1

λ1 + λ2 + λ3

is a good indicator of how much the considered
points deviate from a perfect plane.

Efficient Simplification of Point-Sampled Surfaces, Pauly et al., 2002
16 / 66

Digression: Curvature Estimation and Edge Detection

Crease Detection

ηcrease =
max{λ2 − λ1, |λ3 − λ2 − λ1|}

λ3

Edge Detection

ηedge =
|λ3 − 2λ2|

λ3

Corner detection

ηedge =
λ3 − λ1

λ3

Feature Extraction from Point Clouds, Gumhold et al., n.d.
17 / 66

Consistent Orientation

The best fitting plane only provides the normal’s direction but not orientation.
Finding a globally consistent orientation is NP-complete.
↪→ Approximation via propagation to neighbors

Consistent Normal Orientation
1 Compute the unoriented k-NN graph G = (P,E).
2 Compute a minimal spanning tree of G with weights wij = 1− |ni � nj |
3 Set an arbitrary root r and traverse the spanning tree.

For each edge (i, j) where i is the parent of j:
if −ni � nj > ni � nj then set ni = −ni

DEMO

Surface Reconstruction from Unorganized Points, Hoppe et al., 1992
18 / 66

Consistent Orientation

Faulty normal orientation
(raw hyperplane fitting)

Consistent (outward) normal orientation

19 / 66

Minimal Spanning Tree
Let G = (V,E) be a connected graph with weights wij ∈ R on edge (i, j).
A Minimal Spanning Tree T = (V,E′) is a subgraph of G such that:

T is connected (there exists a path of edges between every vertex)
E′ ⊂ E such that

∑
(i,j)∈E′ wij is minimal

Minimal Spanning Tree on surface meshes with Euclidean distance as edge weights

Kruskal’s algorithm
Input: A graph G = (V,E)
Output: A minimal spanning tree T of G

T = ∅ set of sedges
For each edge (a, b) ∈ E in increasing weight order:

If a and b were not already connecting by the tree T a:
Add edge (a, b) to T

aFast with a Union-Find data structure (https://fr.wikipedia.org/wiki/Union-find)

20 / 66

https://fr.wikipedia.org/wiki/Union-find

Minimal Spanning Tree
Let G = (V,E) be a connected graph with weights wij ∈ R on edge (i, j).
A Minimal Spanning Tree T = (V,E′) is a subgraph of G such that:

T is connected (there exists a path of edges between every vertex)
E′ ⊂ E such that

∑
(i,j)∈E′ wij is minimal

Kruskal’s algorithm
Input: A graph G = (V,E)
Output: A minimal spanning tree T of G

T = ∅ set of sedges
For each edge (a, b) ∈ E in increasing weight order:

If a and b were not already connecting by the tree T a:
Add edge (a, b) to T

aFast with a Union-Find data structure (https://fr.wikipedia.org/wiki/Union-find)

20 / 66

https://fr.wikipedia.org/wiki/Union-find

Estimating Density

Local lengths
Distance to the closest neighbor
Distance to the n-th neighbor
Mean of distances to the k nearest
neighbors
etc.

Local areas
1 Consider the k nearest neighbors of a point

p (or points at a distance < r from p)
2 Project all points onto the tangent plane

of p (⊥ to −→n p)
3 Compute the 2d Delaunay triangulation
4 Return the sum of areas of the Delaunay

triangles

DEMO

Fast Winding Numbers for Soups and Clouds, Barill et al., 2018
21 / 66

Local lengths
Distance to the closest neighbor
Distance to the n-th neighbor
Mean of distances to the k nearest
neighbors
etc.

Local areas
1 Consider the k nearest neighbors of a point

p (or points at a distance < r from p)
2 Project all points onto the tangent plane

of p (⊥ to −→n p)
3 Compute the 2d Delaunay triangulation
4 Return the sum of areas of the Delaunay

triangles

DEMO

Fast Winding Numbers for Soups and Clouds, Barill et al., 2018
21 / 66

Outlier removal

Observation
Density of outlier points is usually lower than
density of inliers.

Simple outlier detection
Input: points P = {p1, ..., pN}
Remove points whose local area is > η

DEMO

22 / 66

Clustering and Primitive Fitting

How to fit a plane in the presence of many outliers?

23 / 66

How to fit a plane in the presence of many outliers?

23 / 66

How to fit a plane in the presence of many outliers?

23 / 66

How to fit a plane in the presence of many outliers?

23 / 66

General Idea: Sample and reject random candidates

RANSAC Algorithm (RANdom SAmple Consensus)
Input: points P = {p1, ..., pN}
Parameters: sample size K, minimal cluster size S, inlier threshold τ
Iterate:

Sample K planes (triplets of points in P)
For each plane i, compute its set Pi of inliers (points in P at distance < τ)
Find the plane i0 with the most inliers.
If |Pi0 | ⩾ S:

Add the plane to the found primitives
Remove the points Pi0 from the samplable points (P ← P\Pi)

24 / 66

Executing the RANSAC algorithm on a 2D example

25 / 66

Executing the RANSAC algorithm on a 2D example

25 / 66

Executing the RANSAC algorithm on a 2D example

25 / 66

Executing the RANSAC algorithm on a 2D example

25 / 66

Executing the RANSAC algorithm on a 2D example

25 / 66

Executing the RANSAC algorithm on a 2D example

25 / 66

Executing the RANSAC algorithm on a 2D example

25 / 66

Executing the RANSAC algorithm on a 2D example

25 / 66

Executing the RANSAC algorithm on a 2D example

25 / 66

Executing the RANSAC algorithm on a 2D example

25 / 66

Executing the RANSAC algorithm on a 2D example

25 / 66

Executing the RANSAC algorithm on a 2D example

25 / 66

Executing the RANSAC algorithm on a 2D example

25 / 66

Executing the RANSAC algorithm on a 2D example

25 / 66

Executing the RANSAC algorithm on a 2D example

25 / 66

Executing the RANSAC algorithm on a 2D example

25 / 66

Executing the RANSAC algorithm on a 2D example

25 / 66

Executing the RANSAC algorithm on a 2D example

25 / 66

Improvements

Locality bias
Planes have more chance to be a valid
primitive if all three points are "close"
together. ↪→ Sample first point and two
others among its nearest neighbors

Consider normals
A point is an inlier if small distance and its
normal aligns (dot product with plane’s
normal > δ)

Consider connected components
When computing inliers, only consider points
in the largest connected component of the
k-NN graph

Other primitives
Also works when sampling spheres (4 points),
cylinders, cones, etc...

Efficient RANSAC for Point-Cloud Shape Detection, Schnabel et al., 2007
26 / 66

Presentation of the Project

Finding plane primitives in aerial LIDAR point clouds

DEMO

27 / 66

Input Data: List of (x, y, z) coordinates in a text file

28 / 66

Features to implement in python (baseline)
K-nearest neighbors
Normal estimation
RANSAC with some heuristics
Delaunay triangulation of the primitives

... and lots of possible improvements

Evaluation
An oral evaluation with us where you show us a demo (and we ask you questions!)

29 / 66

Features to implement in python (baseline)
K-nearest neighbors
Normal estimation
RANSAC with some heuristics
Delaunay triangulation of the primitives

... and lots of possible improvements

Evaluation
An oral evaluation with us where you show us a demo (and we ask you questions!)

29 / 66

https://www.youtube.com/watch?v=X0vC3slzDmc

30 / 66

https://www.youtube.com/watch?v=X0vC3slzDmc

Part 2: Surface Reconstruction

5 Reconstruction algorithms based on Delaunay triangulations
α-shapes
Ball Pivoting
CRUST
Implicit Representations of Geometry

6 Reconstruction algorithm based on implicit representations
Poisson Surface Reconstruction
Generalized Winding Number

From point cloud to surface meshes

https://doc.cgal.org/Manual/3.5/doc_html/cgal_manual/Surface_reconstruction_points_3/Chapter_main.html

31 / 66

https://doc.cgal.org/Manual/3.5/doc_html/cgal_manual/Surface_reconstruction_points_3/Chapter_main.html

Reconstruction algorithms based on Delaunay
triangulations

How to choose k in the k-NN graph?

Observation
The edges/faces that we want in the reconstruction are in the k-NN graph

for some k large enough.

DEMO

A naive reconstruction algorithm (2D)
Keep edges of the 2-NN graph of P = {p1, ..., pN}

32 / 66

How to choose k in the k-NN graph?

Observation
The edges/faces that we want in the reconstruction are in the k-NN graph

for some k large enough.

DEMO

A naive reconstruction algorithm (2D)
Keep edges of the 2-NN graph of P = {p1, ..., pN}

32 / 66

What about Delaunay?

Observation
The edges/faces that we want in the reconstruction are edges/faces of the

Delaunay triangulation/tetrahedrization.

DEMO

A (slightly less) naive reconstruction algorithm
1 Compute the Delaunay Triangulation of P = {p1, ..., pN}
2 Keep edges with length < L

33 / 66

What about Delaunay?

Observation
The edges/faces that we want in the reconstruction are edges/faces of the

Delaunay triangulation/tetrahedrization.

DEMO

A (slightly less) naive reconstruction algorithm
1 Compute the Delaunay Triangulation of P = {p1, ..., pN}
2 Keep edges with length < L

33 / 66

α-shapes

The intuition
Given points P = {p1, ..., pN} ∈ Rd, remove all possible spheres of radius α that does not
contain any point.

34 / 66

The intuition
Given points P = {p1, ..., pN} ∈ Rd, remove all possible spheres of radius α that does not
contain any point.

34 / 66

The intuition
Given points P = {p1, ..., pN} ∈ Rd, remove all possible spheres of radius α that does not
contain any point.

34 / 66

The intuition
Given points P = {p1, ..., pN} ∈ Rd, remove all possible spheres of radius α that does not
contain any point.

34 / 66

The intuition
Given points P = {p1, ..., pN} ∈ Rd, remove all possible spheres of radius α that does not
contain any point.

34 / 66

The intuition
Given points P = {p1, ..., pN} ∈ Rd, remove all possible spheres of radius α that does not
contain any point.

34 / 66

α-hull

The α-hull of P is what’s left when we have removed all
possible empty circles of radius α

When α→ 0, we get only P

When α→∞, we get the convex-hull of P

On the Shape of a Set of Points in the Plane, Edelsbrunner et al., 1983
35 / 66

α-hull

The α-hull of P is what’s left when we have removed all
possible empty circles of radius α

When α→ 0, we get only P

When α→∞, we get the convex-hull of P

On the Shape of a Set of Points in the Plane, Edelsbrunner et al., 1983
35 / 66

α-hull

The α-hull of P is what’s left when we have removed all
possible empty circles of radius α

When α→ 0, we get only P

When α→∞, we get the convex-hull of P

On the Shape of a Set of Points in the Plane, Edelsbrunner et al., 1983
35 / 66

α-shape

A point p ∈ P is an α-exposed if there
exists an empty circle of radius α such
that p is on its boundary.

An edge (p1, p2) is α-exposed if there
exists an empty circle of radius α such
that both points are on its boundary.

The α-shape is the straight line graph
made of all α-exposed edges between two
points of P .

On the Shape of a Set of Points in the Plane, Edelsbrunner et al., 1983
Three-dimensional alpha shapes, Edelsbrunner and Mücke, 1994

36 / 66

α-shape

A point p ∈ P is an α-exposed if there
exists an empty circle of radius α such
that p is on its boundary.

An edge (p1, p2) is α-exposed if there
exists an empty circle of radius α such
that both points are on its boundary.

The α-shape is the straight line graph
made of all α-exposed edges between two
points of P .

On the Shape of a Set of Points in the Plane, Edelsbrunner et al., 1983
Three-dimensional alpha shapes, Edelsbrunner and Mücke, 1994

36 / 66

α-shape

https://graphics.stanford.edu/courses/cs268-11-spring/handouts/AlphaShapes/as_fisher.pdf
37 / 66

https://graphics.stanford.edu/courses/cs268-11-spring/handouts/AlphaShapes/as_fisher.pdf

Properties of α-shapes

Theorem
For any α, the α-shape of P is a subgraph of the Delaunay triangulation of P .

Let p and q be two α-exposed points. There exists a circle of radius α not containing any point
r ∈ P such that p and q are on its boundary. Let c be the center of this circle. Clearly,
d(p, c) = d(q, c) ⩽ d(r, c) for any r ∈ P\{p, q}. This means that c is in both the Voronoi cells
V or(p) and V or(q), which means that those cells are touching. In other words, p and q are
neighbors in the (dual) Delaunay triangulation.

Consequence
There exists only a finite number of different α-shapes of P when α goes from 0 to ∞.

38 / 66

Properties of α-shapes

Theorem
For any α, the α-shape of P is a subgraph of the Delaunay triangulation of P .

Let p and q be two α-exposed points. There exists a circle of radius α not containing any point
r ∈ P such that p and q are on its boundary. Let c be the center of this circle. Clearly,
d(p, c) = d(q, c) ⩽ d(r, c) for any r ∈ P\{p, q}. This means that c is in both the Voronoi cells
V or(p) and V or(q), which means that those cells are touching. In other words, p and q are
neighbors in the (dual) Delaunay triangulation.

Consequence
There exists only a finite number of different α-shapes of P when α goes from 0 to ∞.

38 / 66

Properties of α-shapes

Theorem
For any α, the α-shape of P is a subgraph of the Delaunay triangulation of P .

Let p and q be two α-exposed points. There exists a circle of radius α not containing any point
r ∈ P such that p and q are on its boundary. Let c be the center of this circle. Clearly,
d(p, c) = d(q, c) ⩽ d(r, c) for any r ∈ P\{p, q}. This means that c is in both the Voronoi cells
V or(p) and V or(q), which means that those cells are touching. In other words, p and q are
neighbors in the (dual) Delaunay triangulation.

Consequence
There exists only a finite number of different α-shapes of P when α goes from 0 to ∞.

38 / 66

Computing α-shapes: the α-complex
https://demonstrations.wolfram.com/AlphaComplexAndUnionOfGrowingDisks/

Which Delaunay triangle belong inside the α-shape?
Let S be a simplex (segment, triangle, tetrahedra,...). Let its circumsphere be centered at µS

with radius σS .
S is in the α-complex if:

S is on the boundary of a simplex S′ of the α-complex, or
σS < α and the sphere centered in µS of radius σS is empty

39 / 66

https://demonstrations.wolfram.com/AlphaComplexAndUnionOfGrowingDisks/

Computing α-shapes: the α-complex

The α-shape is the boundary of the α-complex

Edelsbrunner’s algorithm
Input: points P = {p1, ..., pN}

1 Compute the Delaunay triangulation D = (V,E, T) of P
2 Determine the set Cα of triangles T inside the α-shape
3 Return the outside boundary of Cα

DEMO

Three-dimensional alpha shapes, Edelsbrunner and Mücke, 1994
40 / 66

Computing α-shapes: the α-complex

The α-shape is the boundary of the α-complex

Edelsbrunner’s algorithm
Input: points P = {p1, ..., pN}

1 Compute the Delaunay triangulation D = (V,E, T) of P
2 Determine the set Cα of triangles T inside the α-shape
3 Return the outside boundary of Cα

DEMO

Three-dimensional alpha shapes, Edelsbrunner and Mücke, 1994
40 / 66

Three-dimensional alpha shapes, Edelsbrunner and Mücke, 1994
41 / 66

Three-dimensional alpha shapes, Edelsbrunner and Mücke, 1994
41 / 66

Ball Pivoting

2D example

42 / 66

2D example

42 / 66

2D example

42 / 66

2D example

42 / 66

2D example

42 / 66

2D example

42 / 66

2D example

42 / 66

2D example

42 / 66

2D example

42 / 66

2D example

42 / 66

2D example

42 / 66

2D example

42 / 66

2D example

42 / 66

2D example

42 / 66

Ball Pivoting

Algorithm in 2D
Consider a ball of radius α.
Find an α-exposed edge e = (p0, p1). Add edge e to reconstructed edges.
Set p = p1 as the pivot.
Iterate:

Pivot the ball around point p until another unvisited point q is touched
If no point q can be reached, stop.
Otherwise, add (p, q) as a reconstructed edge. Set p as the new pivot.

It generalizes naturally to surfaces in 3D (pivot around an edge), though
normals are needed to repair some bad cases

The Ball-Pivoting Algorithm for Surface Reconstruction, Bernardini et al., 1999
43 / 66

Ball Pivoting

Algorithm in 2D
Consider a ball of radius α.
Find an α-exposed edge e = (p0, p1). Add edge e to reconstructed edges.
Set p = p1 as the pivot.
Iterate:

Pivot the ball around point p until another unvisited point q is touched
If no point q can be reached, stop.
Otherwise, add (p, q) as a reconstructed edge. Set p as the new pivot.

It generalizes naturally to surfaces in 3D (pivot around an edge), though
normals are needed to repair some bad cases

The Ball-Pivoting Algorithm for Surface Reconstruction, Bernardini et al., 1999
43 / 66

Properties

Every edge found by the BPA with radius α is α-exposed

44 / 66

Properties

Suppose the existence of an underlying manifold M from which the points are sampled. If:
The intersection of any ball of radius α with M is a topological disk and
Any ball of radius α centered on M contains at least one point

then the reconstructed surface is manifold with the correct topology.

44 / 66

Algorithmic perspective

Computing the next intersected point
Let p be the current pivot, r be the previous
pivot and c being the center of the α-ball.

Query the unvisited neighbors q1, ..., qk of
p at distance < 2α

Compute the centers c1, ..., ck of the
touching spheres for each of them
Sort c1, ...ck by increasing order of
oriented angle w.r.t. c around p.
Select the minimum ci0 as the new ball
position and qi0 as the new pivot

45 / 66

Algorithmic perspective

Computing the next intersected point
Let p be the current pivot, r be the previous
pivot and c being the center of the α-ball.

Query the unvisited neighbors q1, ..., qk of
p at distance < 2α

Compute the centers c1, ..., ck of the
touching spheres for each of them
Sort c1, ...ck by increasing order of
oriented angle w.r.t. c around p.
Select the minimum ci0 as the new ball
position and qi0 as the new pivot

45 / 66

Algorithmic perspective

Computing the next intersected point
Let p be the current pivot, r be the previous
pivot and c being the center of the α-ball.

Query the unvisited neighbors q1, ..., qk of
p at distance < 2α

Compute the centers c1, ..., ck of the
touching spheres for each of them
Sort c1, ...ck by increasing order of
oriented angle w.r.t. c around p.
Select the minimum ci0 as the new ball
position and qi0 as the new pivot

45 / 66

Algorithmic perspective

Computing the next intersected point
Let p be the current pivot, r be the previous
pivot and c being the center of the α-ball.

Query the unvisited neighbors q1, ..., qk of
p at distance < 2α

Compute the centers c1, ..., ck of the
touching spheres for each of them
Sort c1, ...ck by increasing order of
oriented angle w.r.t. c around p.
Select the minimum ci0 as the new ball
position and qi0 as the new pivot

45 / 66

Algorithmic perspective

Computing the next intersected point
Let p be the current pivot, r be the previous
pivot and c being the center of the α-ball.

Query the unvisited neighbors q1, ..., qk of
p at distance < 2α

Compute the centers c1, ..., ck of the
touching spheres for each of them
Sort c1, ...ck by increasing order of
oriented angle w.r.t. c around p.
Select the minimum ci0 as the new ball
position and qi0 as the new pivot

45 / 66

Algorithmic perspective

Computing the next intersected point
Let p be the current pivot, r be the previous
pivot and c being the center of the α-ball.

Query the unvisited neighbors q1, ..., qk of
p at distance < 2α

Compute the centers c1, ..., ck of the
touching spheres for each of them
Sort c1, ...ck by increasing order of
oriented angle w.r.t. c around p.
Select the minimum ci0 as the new ball
position and qi0 as the new pivot

45 / 66

Algorithmic perspective

Computing the next intersected point
Let p be the current pivot, r be the previous
pivot and c being the center of the α-ball.

Query the unvisited neighbors q1, ..., qk of
p at distance < 2α

Compute the centers c1, ..., ck of the
touching spheres for each of them
Sort c1, ...ck by increasing order of
oriented angle w.r.t. c around p.
Select the minimum ci0 as the new ball
position and qi0 as the new pivot

45 / 66

Algorithmic perspective

Computing the next intersected point
Let p be the current pivot, r be the previous
pivot and c being the center of the α-ball.

Query the unvisited neighbors q1, ..., qk of
p at distance < 2α

Compute the centers c1, ..., ck of the
touching spheres for each of them
Sort c1, ...ck by increasing order of
oriented angle w.r.t. c around p.
Select the minimum ci0 as the new ball
position and qi0 as the new pivot

45 / 66

Algorithmic perspective

Computing the next intersected point
Let p be the current pivot, r be the previous
pivot and c being the center of the α-ball.

Query the unvisited neighbors q1, ..., qk of
p at distance < 2α

Compute the centers c1, ..., ck of the
touching spheres for each of them
Sort c1, ...ck by increasing order of
oriented angle w.r.t. c around p.
Select the minimum ci0 as the new ball
position and qi0 as the new pivot

45 / 66

Algorithmic perspective

Computing the next intersected point
Let p be the current pivot, r be the previous
pivot and c being the center of the α-ball.

Query the unvisited neighbors q1, ..., qk of
p at distance < 2α

Compute the centers c1, ..., ck of the
touching spheres for each of them
Sort c1, ...ck by increasing order of
oriented angle w.r.t. c around p.
Select the minimum ci0 as the new ball
position and qi0 as the new pivot

45 / 66

Algorithmic perspective

Computing the next intersected point
Let p be the current pivot, r be the previous
pivot and c being the center of the α-ball.

Query the unvisited neighbors q1, ..., qk of
p at distance < 2α

Compute the centers c1, ..., ck of the
touching spheres for each of them
Sort c1, ...ck by increasing order of
oriented angle w.r.t. c around p.
Select the minimum ci0 as the new ball
position and qi0 as the new pivot

45 / 66

Algorithmic perspective

Computing the next intersected point
Let p be the current pivot, r be the previous
pivot and c being the center of the α-ball.

Query the unvisited neighbors q1, ..., qk of
p at distance < 2α

Compute the centers c1, ..., ck of the
touching spheres for each of them
Sort c1, ...ck by increasing order of
oriented angle w.r.t. c around p.
Select the minimum ci0 as the new ball
position and qi0 as the new pivot

45 / 66

Algorithmic perspective

Computing the next intersected point
Let p be the current pivot, r be the previous
pivot and c being the center of the α-ball.

Query the unvisited neighbors q1, ..., qk of
p at distance < 2α

Compute the centers c1, ..., ck of the
touching spheres for each of them
Sort c1, ...ck by increasing order of
oriented angle w.r.t. c around p.
Select the minimum ci0 as the new ball
position and qi0 as the new pivot

45 / 66

Algorithmic perspective

Computing the next intersected point
Let p be the current pivot, r be the previous
pivot and c being the center of the α-ball.

Query the unvisited neighbors q1, ..., qk of
p at distance < 2α

Compute the centers c1, ..., ck of the
touching spheres for each of them
Sort c1, ...ck by increasing order of
oriented angle w.r.t. c around p.
Select the minimum ci0 as the new ball
position and qi0 as the new pivot

45 / 66

The Ball-Pivoting Algorithm for Surface Reconstruction, Bernardini et al., 1999
46 / 66

CRUST

CRUST

Idea
Delaunay reconstruction but prevent edges from "crossing" inside the

domain

CRUST algorithm
Input: points P = {p1, ..., pN}

1 Compute the Voronoi diagram V of P .
2 Compute the Delaunay triangulation D of points P ∪ S where S are the vertices of the

Voronoi diagram V

3 Return edges of D that link two points of P

DEMO

A New Voronoi-based Surface Reconstruction Algorithm, Amenta et al., 1998
47 / 66

CRUST

Idea
Delaunay reconstruction but prevent edges from "crossing" inside the

domain

CRUST algorithm
Input: points P = {p1, ..., pN}

1 Compute the Voronoi diagram V of P .
2 Compute the Delaunay triangulation D of points P ∪ S where S are the vertices of the

Voronoi diagram V

3 Return edges of D that link two points of P

DEMO
A New Voronoi-based Surface Reconstruction Algorithm, Amenta et al., 1998

47 / 66

Reconstruction algorithm based on implicit
representations

Implicit Representations of Geometry

Implicit Representation of Geometry

Represent a compact object Ω ⊂ Rd as a level set of a continuous function:

Ω =
{
x ∈ Rd | f(x) ⩽ 0

}

48 / 66

Indicator Function

f(x) =

{
1 if x ∈ Ω
0 otherwise

Simplest possible function
Not differentiable...
Not always easy to compute

A variant: the sign function

y(x) = 1− 2f(x) =

{
−1 if x ∈ Ω
1 otherwise

49 / 66

Indicator Function

f(x) =

{
1 if x ∈ Ω
0 otherwise

Simplest possible function
Not differentiable...
Not always easy to compute

A variant: the sign function

y(x) = 1− 2f(x) =

{
−1 if x ∈ Ω
1 otherwise

49 / 66

Indicator Function

f(x) =

{
1 if x ∈ Ω
0 otherwise

Simplest possible function
Not differentiable...
Not always easy to compute

A variant: the sign function

y(x) = 1− 2f(x) =

{
−1 if x ∈ Ω
1 otherwise

49 / 66

Signed Distance Function

S(x) =

{
−d(x, ∂Ω) if x ∈ Ω
d(x, ∂Ω) otherwise

Eikonal equation
||∇S(x)|| = 1, ∀x ∈ Rd

S(x) = 0, ∀x ∈ ∂Ω
∇S(x) = nx, ∀x ∈ ∂Ω

50 / 66

Signed Distance Function

S(x) =

{
−d(x, ∂Ω) if x ∈ Ω
d(x, ∂Ω) otherwise

Eikonal equation
||∇S(x)|| = 1, ∀x ∈ Rd

S(x) = 0, ∀x ∈ ∂Ω
∇S(x) = nx, ∀x ∈ ∂Ω

50 / 66

Applications

Constructive Solid Geometry
[Ricci (1973)]

Closest Point Query
[Sharp and Jacobson (2022)]

Marching Cubes
[Lorensen and Cline (1987)]

Rendering
Snail shader by Inigo Quilez

Empty Sphere Query
[Hart (1995)]

Monte-Carlo Simulation
[Sawhney and Crane (2020)]

51 / 66

Constructive Solid Geometry

If Ωa ↔ Sa and Ωb ↔ Sb:
−Sa represents Ωa

min(Sa, Sb) represents Ωa ∩ Ωb

max(Sa, Sb) represents Ωa ∪ Ωb

min(Sa, Sb) is not a distance fielda

ahttps://iquilezles.org/articles/interiordistance/

52 / 66

https://iquilezles.org/articles/interiordistance/

Geometrical Queries

For x ∈ Rd and Ω↔ S:

p = x− S(x)∇S(x)

is the closest point from x on Ω

Approximated signed distance fields
This also works if |f(x)| < S(x) and

xn+1 = xn − f(xn)∇f(xn)

[Sharp and Jacobson (2022)]

53 / 66

Geometrical Queries

For x ∈ Rd and Ω↔ S:

p = x− S(x)∇S(x)

is the closest point from x on Ω

Approximated signed distance fields
This also works if |f(x)| < S(x) and

xn+1 = xn − f(xn)∇f(xn)
[Sharp and Jacobson (2022)]

53 / 66

From implicit functions to surface meshes: the Marching Cubes Algorithm

Sample your implicit function over a grid
For each cell, determine which points are
inside/outside
Mesh the cell according to a finite set of
templates
Possible improvements depending on the
value of the function at grid vertices

Marching Cubes: A High Resolution 3D Surface Construction Algorithm, Lorensen and Cline, 1987
54 / 66

Reconstruction algorithm based on implicit
representations

Poisson Surface Reconstruction

Poisson Surface Reconstruction: the setting
Input: points with normals

The idea
Consider that each normal −→np at point p is
the gradient ∇f of some implicit function
f

Integrate this gradient into the function f

Recover the surface via marching cubes

Poisson surface reconstruction, Kazhdan et al., 2006
55 / 66

Poisson Surface Reconstruction: Principle

https://slides.cgg.unibe.ch/GP20/06_Surface_Reconstruction.html

56 / 66

https://slides.cgg.unibe.ch/GP20/06_Surface_Reconstruction.html

Points p1, ...pN with normals −→n1, ...,
−→nN

Approximate a vector field v by v(pi) =
−→ni and v(x) = 0 otherwise.

Solve:
min
f

∫
Ω
||∇f(x)−−→n (x)||2dx

i.e.:

min
f

N∑
i=1

||∇f(pi)−−→ni ||2

Poisson Problem
Vector field v is not integrable in general.
We apply the divergence operator (Euler-Lagrange equation):

∇.∇f = ∆f = ∇.−→n

We recover a Poisson problem (of form ∆f = a)

57 / 66

Points p1, ...pN with normals −→n1, ...,
−→nN

Approximate a vector field v by v(pi) =
−→ni and v(x) = 0 otherwise.

Solve:
min
f

∫
Ω
||∇f(x)−−→n (x)||2dx

i.e.:

min
f

N∑
i=1

||∇f(pi)−−→ni ||2

Poisson Problem
Vector field v is not integrable in general.
We apply the divergence operator (Euler-Lagrange equation):

∇.∇f = ∆f = ∇.−→n

We recover a Poisson problem (of form ∆f = a)

57 / 66

Implementation: Solving the Poisson problem on an octree via FEM

1 Consider a dataset of points pi with normals ni

2 Setup an octree containing a single point per cell
3 Splat the samples (define a FEM basis)
4 Solve the Poisson problem and recover indicator

function
5 Recover the interface via marching cubes

58 / 66

Implementation: Solving the Poisson problem on an octree via FEM

1 Consider a dataset of points pi with normals ni

2 Setup an octree containing a single point per cell

3 Splat the samples (define a FEM basis)
4 Solve the Poisson problem and recover indicator

function
5 Recover the interface via marching cubes

58 / 66

Implementation: Solving the Poisson problem on an octree via FEM

1 Consider a dataset of points pi with normals ni

2 Setup an octree containing a single point per cell
3 Splat the samples (define a FEM basis)

4 Solve the Poisson problem and recover indicator
function

5 Recover the interface via marching cubes

58 / 66

Implementation: Solving the Poisson problem on an octree via FEM

1 Consider a dataset of points pi with normals ni

2 Setup an octree containing a single point per cell
3 Splat the samples (define a FEM basis)

4 Solve the Poisson problem and recover indicator
function

5 Recover the interface via marching cubes

58 / 66

Implementation: Solving the Poisson problem on an octree via FEM

1 Consider a dataset of points pi with normals ni

2 Setup an octree containing a single point per cell
3 Splat the samples (define a FEM basis)
4 Solve the Poisson problem and recover indicator

function

5 Recover the interface via marching cubes

58 / 66

Implementation: Solving the Poisson problem on an octree via FEM

1 Consider a dataset of points pi with normals ni

2 Setup an octree containing a single point per cell
3 Splat the samples (define a FEM basis)
4 Solve the Poisson problem and recover indicator

function
5 Recover the interface via marching cubes

58 / 66

Implementation: Solving the Poisson problem on an octree via FEM

1 Consider a dataset of points pi with normals ni

2 Setup an octree containing a single point per cell
3 Splat the samples (define a FEM basis)
4 Solve the Poisson problem and recover indicator

function
5 Recover the interface via marching cubes

DEMO

58 / 66

Result is a watertight manifold surface
Can also be implemented on a mesh instead of an octree

Needs consistently oriented normals
Implementation is not trivial on an octree

59 / 66

Generalized Winding Number

Winding Number: another possible implicit representation

https://nzfeng.github.io/research/WNoDS/PerspectivesOnWindingNumbers.pdf

60 / 66

https://nzfeng.github.io/research/WNoDS/PerspectivesOnWindingNumbers.pdf

Winding Number: another possible implicit representation

w(p) =
1

2π

∮
C
dθ w(p) =

1

2π

∑
i

θi

61 / 66

Computing Winding Number of Polylines

Let a = ci − p and b = ci+1 − p.

tan(θi) =
det(a, b)

a.b
=

axby − aybx
axbx + ayby

w(p) =
1

2π

∑
i

θi

62 / 66

Generalizing for imperfect geometries

Idea
Winding number is a sum of "solid angle" weighted by "area":

Generalized Winding Number
For points p1, ..., pN with normals ni and local areas ai, the generalized winding number at
point q is:

w(q) =
1

4π

∑
i

ai
(q − pi).ni

||q − pi||3

A good representation of the underlying surface of p1, ..., pN is the isovalue 1
2 of w.

https://observablehq.com/@rreusser/fast-generalized-winding-numbers-in-2d

Robust Inside-Outside Segmentation Using Generalized Winding Numbers, Jacobson et al., 2013
63 / 66

https://observablehq.com/@rreusser/fast-generalized-winding-numbers-in-2d

Generalizing for imperfect geometries

Idea
Winding number is a sum of "solid angle" weighted by "area":

Generalized Winding Number
For points p1, ..., pN with normals ni and local areas ai, the generalized winding number at
point q is:

w(q) =
1

4π

∑
i

ai
(q − pi).ni

||q − pi||3

A good representation of the underlying surface of p1, ..., pN is the isovalue 1
2 of w.

https://observablehq.com/@rreusser/fast-generalized-winding-numbers-in-2d

Robust Inside-Outside Segmentation Using Generalized Winding Numbers, Jacobson et al., 2013
63 / 66

https://observablehq.com/@rreusser/fast-generalized-winding-numbers-in-2d

Generalizing for imperfect geometries

Idea
Winding number is a sum of "solid angle" weighted by "area":

Generalized Winding Number
For points p1, ..., pN with normals ni and local areas ai, the generalized winding number at
point q is:

w(q) =
1

4π

∑
i

ai
(q − pi).ni

||q − pi||3

A good representation of the underlying surface of p1, ..., pN is the isovalue 1
2 of w.

https://observablehq.com/@rreusser/fast-generalized-winding-numbers-in-2d

Robust Inside-Outside Segmentation Using Generalized Winding Numbers, Jacobson et al., 2013
63 / 66

https://observablehq.com/@rreusser/fast-generalized-winding-numbers-in-2d

64 / 66

The generalized winding number corresponds to the electric potential of infinitely
many dipoles scattered on the surface ⇒ It’s a harmonic function (∆w = ρ)

https://nzfeng.github.io/research/WNoDS/PerspectivesOnWindingNumbers.pdf

65 / 66

https://nzfeng.github.io/research/WNoDS/PerspectivesOnWindingNumbers.pdf

Relation with Poisson Surface Reconstruction

The two methods are actually equivalent in theory!

Both solve a Laplace equation ∆f = a under constraint that f "jumps" from 0 to 1 at the
interface
Surface in Poisson is the discontinuity of the function. Surface of GWN is isovalue 1

2

Only the implementations differ. GWN does not need to splat the points ⇒ more precise
Both need normals, but GWN also needs an approximation of the density

Fast Winding Numbers for Soups and Clouds, Barill et al., 2018
66 / 66

References I

Brown, C. (1976). Principal Axes and Best-Fit Planes, with Applications.
Pauly, M., Gross, M., & Kobbelt, L. (2002). Efficient simplification of point-sampled surfaces.

IEEE Visualization, 2002. VIS 2002., 163–170.
https://doi.org/10.1109/VISUAL.2002.1183771

Gumhold, S., Wang, X., & MacLeod, R. (n.d.). Feature Extraction from Point Clouds.
Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., & Stuetzle, W. (1992). Surface

reconstruction from unorganized points. Proceedings of the 19th Annual Conference on
Computer Graphics and Interactive Techniques, 71–78.
https://doi.org/10.1145/133994.134011

Barill, G., Dickson, N. G., Schmidt, R., Levin, D. I. W., & Jacobson, A. (2018). Fast winding
numbers for soups and clouds. ACM Transactions on Graphics, 37(4), 1–12.
https://doi.org/10.1145/3197517.3201337

66 / 66

https://doi.org/10.1109/VISUAL.2002.1183771
https://doi.org/10.1145/133994.134011
https://doi.org/10.1145/3197517.3201337

References II
Schnabel, R., Wahl, R., & Klein, R. (2007). Efficient RANSAC for Point-Cloud Shape

Detection. Computer Graphics Forum, 26(2), 214–226.
https://doi.org/10.1111/j.1467-8659.2007.01016.x

Edelsbrunner, H., Kirkpatrick, D., & Seidel, R. (1983). On the shape of a set of points in the
plane. IEEE Transactions on Information Theory, 29(4), 551–559.
https://doi.org/10.1109/TIT.1983.1056714

Edelsbrunner, H., & Mücke, E. P. (1994). Three-dimensional alpha shapes. ACM Transactions
On Graphics (TOG), 13(1), 43–72.

Bernardini, F., Mittleman, J., Rushmeier, H., Silva, C., & Taubin, G. (1999). The ball-pivoting
algorithm for surface reconstruction. IEEE Transactions on Visualization and Computer
Graphics, 5(4), 349–359. https://doi.org/10.1109/2945.817351

Amenta, N., Bern, M., & Kamvysselis, M. (1998). A new Voronoi-based surface reconstruction
algorithm. Proceedings of the 25th Annual Conference on Computer Graphics and
Interactive Techniques - SIGGRAPH ’98, 415–421.
https://doi.org/10.1145/280814.280947

66 / 66

https://doi.org/10.1111/j.1467-8659.2007.01016.x
https://doi.org/10.1109/TIT.1983.1056714
https://doi.org/10.1109/2945.817351
https://doi.org/10.1145/280814.280947

References III
Ricci, A. (1973). A constructive geometry for computer graphics. The Computer Journal,

16(2), 157–160. https://doi.org/10.1093/comjnl/16.2.157
Sharp, N., & Jacobson, A. (2022). Spelunking the deep: Guaranteed queries on general neural

implicit surfaces via range analysis. ACM Transactions on Graphics, 41(4), 1–16.
https://doi.org/10.1145/3528223.3530155

Lorensen, W. E., & Cline, H. E. (1987). Marching cubes: A high resolution 3D surface
construction algorithm. ACM SIGGRAPH Computer Graphics, 21(4), 163–169.
https://doi.org/10.1145/37402.37422

Hart, J. (1995). Sphere Tracing: A Geometric Method for the Antialiased Ray Tracing of
Implicit Surfaces. The Visual Computer, 12. https://doi.org/10.1007/s003710050084

Sawhney, R., & Crane, K. (2020). Monte Carlo geometry processing: A grid-free approach to
PDE-based methods on volumetric domains. ACM Transactions on Graphics, 39(4),
123:123:1–123:123:18. https://doi.org/10.1145/3386569.3392374

Kazhdan, M., Bolitho, M., & Hoppe, H. (2006). Poisson surface reconstruction. Proceedings of
the fourth Eurographics symposium on Geometry processing, 7(4).

66 / 66

https://doi.org/10.1093/comjnl/16.2.157
https://doi.org/10.1145/3528223.3530155
https://doi.org/10.1145/37402.37422
https://doi.org/10.1007/s003710050084
https://doi.org/10.1145/3386569.3392374

References IV

Jacobson, A., Kavan, L., & Sorkine-Hornung, O. (2013). Robust inside-outside segmentation
using generalized winding numbers. ACM Transactions on Graphics, 32(4), 33:1–33:12.
https://doi.org/10.1145/2461912.2461916

66 / 66

https://doi.org/10.1145/2461912.2461916

	The Point Cloud Processing Toolbox
	Nearest Neighbors and the k-NN graph
	Estimating Normals
	Best fitting hyperplane
	Consistent Orientation

	Estimating Density
	Clustering and Primitive Fitting
	The RANSAC Algorithm

	Presentation of the Project

	Surface Reconstruction
	Reconstruction algorithms based on Delaunay triangulations
	-shapes
	Ball Pivoting
	CRUST
	Implicit Representations of Geometry

	Reconstruction algorithm based on implicit representations
	Poisson Surface Reconstruction
	Generalized Winding Number

	References

