An Introduction to Point Cloud Processing
Computational Geometry (LMECA2170)

Point Clouds are the simplest kind of geometric data

P={p,...pn}CR? d=2o0r3 J

https://github.com/potree/potree

https://github.com/potree/potree

Point Cloud Acquisition

Retz (Austria) Lidar scanners

2/66

Our final goal: Surface reconstruction
... to surface meshes

From point clouds...

£
W,

/]
/]
I
]
i
!
]
1
/]
i

Our final goal: Surface reconstruction

From point clouds... ... to surface meshes

Requirements

Efficient k-nearest neighbors search

Delaunay triangulation

. and basic linear algebra (matrices and eigenvalues)

4/66

Software Environment
Python using:
@ numpy and scipy
o mouette® for data loading and geometry utilities

e polyscope?® for visualization

POLYSCOPE ﬁ

Lhttps://gcoiffier.github.io/mouette/
2https://polyscope.run/py/

https://gcoiffier.github.io/mouette/
https://polyscope.run/py/

Software Environment
Python using:
@ numpy and scipy
o mouette® for data loading and geometry utilities

e polyscope?® for visualization

Lhttps://gcoiffier.github.io/mouette/
2https://polyscope.run/py/

https://gcoiffier.github.io/mouette/
https://polyscope.run/py/

Part 1: The Point Cloud Processing Toolbox

e Nearest Neighbors and the k-NN graph

9 Estimating Normals
@ Best fitting hyperplane
@ Consistent Orientation

9 Estimating Density

e Clustering and Primitive Fitting
@ The RANSAC Algorithm

Nearest Neighbors and the k-NN graph

The k-nn graph: Finding structure through locality

Definition
A graph G = (P, E) where:
e P={pi,...,pn} are the N points of the cloud
@ Oriented edge p; — p; € E < p; is among the k nearest points of p;

I T

The k-nn graph: Finding structure through locality

Definition
A graph G = (P, E) where:
e P={pi,...,pn} are the N points of the cloud
@ Oriented edge p; — p; € E < p; is among the k nearest points of p;

v

"

7/

T

<

6/66

The k-nn graph: Finding structure through locality

Definition
A graph G = (P, E) where:
o P={p1,...,pn} are the N points of the cloud
@ Oriented edge p; — p; € E < p; is among the k nearest points of p;

Properties of the k-NN graph
@ The graph is k-regular
@ The graph is sparse: |E| = kN = O(N)

6/66

The k-nn graph: Finding structure through locality

Definition
A graph G = (P, E)) where:
e P={pi,...,pn} are the N points of the cloud
@ Oriented edge p; — p; € E < pj; is among the k nearest points of p;

Properties of the k-NN graph
@ The graph is k-regular
@ The graph is sparse: |E| = kN = O(N)

“ DEMO ©

I T

The k-nn graph: Finding structure through locality

Representation

Adjacency list L € NV*3

L;; = index of the j-th nearest
neighbor of point p;.

Adjacency matrix A € RV*N

1 if j is among the k
Aij= nearest neighbors of p;

0 otherwise

Can be weighted (replace 1 by d(pi,p;))

7/66

The k-nn graph: Finding structure through locality

Representation

Adjacency matrix A € RV*N

Adjacency list L € NV*x3 1 if j is among the k

L;; = index of the j-th nearest Aij = nearest neighbors of p;

neighbor of point p;. 0 otherwise

Can be weighted (replace 1 by d(pi,p;))

Variants

Unoriented: Consider edge (i, j) if p; is among the k nearest points of p; or vice-versa (Not
k-regular anymore!)

Weighted: Add to edge (i, j) a weight w; ; € R. Typically, w; ; = d(p;, p;)

I 2y

Estimating Normals

Estimating normals

The normal vector is the orthogonal vector of the tangent plane at point p;
< Find the plane that best interpolates the points locally.

“ DEMO @

Best fitting hyperplane

A hyperplane (line in 2D, plane in 3D) II is completely defined by a normal unitary vector
€ R and any point ¢ € R? by the following implicit equation:

H={p€Rd | (p—q)ﬂ):(l}

The distance to plane II is given by d(p,1I) = |(p — ¢). 7|

=l

+ *p1

;|.
Q./' 3
+/
X

9/66

Best fitting hyperplane

A hyperplane (line in 2D, plane in 3D) II is completely defined by a normal unitary vector
7 € R? and any point ¢ € R? by the following implicit equation:

H={p€Rd | (p—q)-ﬁ>=0}

The distance to plane II is given by d(p,II) = |(p — ¢). 7|

Problem formulation

Given points p1, ...,pn € R?, find the plane H(W,q) that minimizes the sum of square
distances to each point:

N
min E(pi,7,q) st |[W||=1 where E= ((p;—q). 1)
q =1

I e

Best fitting plane resolution 1: Finding the origin point

Let c = % Zf\il p; be the centroid of the point cloud.

The best fitting plane goes through c. As a consequence, we can reduce the
search to planes of the form II(77, ¢). J

Proof. Compute:
oF
dq

= —22 ((pi —q)m)n=-2 ((sz - q)n) n=—-2N[(c—q)n]n

and since ||n|| = 1, solving for %—5 = 0 implies that (¢ — ¢).n = 0 which means that ¢ belongs

to the plane. Ol

Principal Axes and Best-Fit Planes, with Applications, Brown, 1976
B VR

Best fitting plane resolution 2: Finding the best normal vector

Matrix Notation
Define the scatter matrix M:

P1—c¢
M = p2—c E]RNXd
PN —C

and the covariance matrix K:

K = MTM ¢ R¥xd

v

Reformulation

The problem of finding the best
fitting plane can be written as:

min ||[Mn|? st |n||=1
neR?

or

min nTKn st. nTn=1

neRd

The function E is minimized when n is a (unitary) eigenvector associated
with the smallest eigenvalue of K.

J

11/66

The function E is minimized when n is a (unitary) eigenvector associated
with the smallest eigenvalue of K. J

Proof. K is symetric positive definite. Let 0 < A\; < A2 < ... < Ay be its eigenvalues.
We can write: K = UTAU with UTU = I and A = diag(\1, ..., Ag).
Since U is invertible, if we write y = Un, we have:

minn’ Kn = miny" Ay = myin}ij Ny > E;Aly? = Mllyll*.

Since U is orthogonal, ||y|| = ||n|| = 1 so the minimum of nT Kn is > \;. But this value is
achieved for y = (1,0, ...,0). In that case, n = Uy is the first column of U, i.e. an
eigenvector associated to Ap. O]

I Y

Algorithm for finding the best fitting plane

Best-fitting plane
input: points {py,...,pn} C R?
© Compute the scatter matrix M = (p; — ¢) € RV*d
@ Compute the correlation matrix K = MM e R4
© Compute the eigen decomposition (A1, e1), (A2, e2), (A3, e3) of K (A1 = Ag2 = A3)

return ey

D 13/66

Algorithm for finding the best fitting plane

Best-fitting plane
input: points {py,...,pn} C R?
© Compute the scatter matrix M = (p; — ¢) € RV*d
@ Compute the correlation matrix K = MTM € Réxd
© Compute the eigen decomposition (A1, e1), (A2, €2), (A3, e3) of K (A1 = Aa = A3)

return ey

Best-fitting plane (variant)

A mathematically equivalent formulation (saves the multiplication M7 M):
© Compute the scatter matrix M = (p; — ¢) € RV*d
@ Compute the SVD of MT: MT =UXVT

return the first line of U)

D 13/66

Digression: The Principal Component Analysis

Singular values of M = UXV7T and lines of U give us the directions where
the dataset varies the most/the less.

14 /66

Back to normal estimation

Normal estimation algorithm
For each point p; in the point cloud:
e Compute q1, ...qx the k nearest neighbors of p; in P.
e Find the best fitting plane II through {pi, q1, ..., qx }
@ The normal at p; is the normal of the best fitting plane.

“ DEMO @

15 /66

Digression: Curvature Estimation and Edge Detection

Let A\; < A2 < A3 be the eigenvalues of the
correlation matrix K.

- AL+ A2+ A3

is a good indicator of how much the considered
points deviate from a perfect plane.

n

Efficient Simplification of Point-Sampled Surfaces, Pauly et al., 2002

Digression: Curvature Estimation and Edge Detection

Crease Detection

max{Az — A1, |A3 — A2 — A1}

Tlcrease =

A3)
Edge Detection
o A3 — 2o
edge —
A3)
Corner detection
A3 — A\
Tledge =)\—3

4

Feature Extraction from Point Clouds, Gumhold et al., n.d.

a) b)

c) d)

Consistent Orientation

The best fitting plane only provides the normal’s direction but not orientation.
Finding a globally consistent orientation is NP-complete.
< Approximation via propagation to neighbors
Consistent Normal Orientation

© Compute the unoriented k-NN graph G = (P, E).

@ Compute a minimal spanning tree of G with weights w;; = 1 — |n; . n;|

© Set an arbitrary root r and traverse the spanning tree.

For each edge (7,) where i is the parent of j:
if —n; . g > N« My then set n; = —n;

“ DEMO @

Surface Reconstruction from Unorganized Points, Hoppe et al., 1992

18 /66

Consistent Orientation

Faulty normal orientation
(raw hyperplane fitting)

Consistent (outward) normal orientation

Minimal Spanning Tree

Let G = (V, E) be a connected graph with weights w;; € R on edge (i, j).
A Minimal Spanning Tree T'= (V, E’) is a subgraph of G such that:

e T is connected (there exists a path of edges between every vertex)

© E' C E such that 3, ;¢ py wij is minimal

Minimal Spanning Tree on surface meshes with Euclidean distance as edge weights

20/ 66

https://fr.wikipedia.org/wiki/Union-find

Minimal Spanning Tree
Let G = (V, E) be a connected graph with weights w;; € R on edge (i, j).
A Minimal Spanning Tree T'= (V, E’) is a subgraph of G such that:

e T is connected (there exists a path of edges between every vertex)
© E' C E such that 3, ;¢ py wij is minimal

Kruskal's algorithm
Input: A graph G = (V, E)
Output: A minimal spanning tree T of G
o T = o set of sedges
@ For each edge (a,b) € E in increasing weight order:
@ If a and b were not already connecting by the tree T2:
° Add edge (a,b) to T

2Fast with a Union-Find data structure (https://fr.wikipedia.org/wiki/Union-find)

D 2066

https://fr.wikipedia.org/wiki/Union-find

Estimating Density

Local areas

Local lengths © Consider the k nearest neighbors of a point
@ Distance to the closest neighbor p (or points at a distance < r from p)
e Distance to the n-th neighbor @ Project all points onto the tangent plane
@ Mean of distances to the k nearest of p (L to ﬁp)
neighbors © Compute the 2d Delaunay triangulation
@ etc.) @ Return the sum of areas of the Delaunay
triangles

Fast Winding Numbers for Soups and Clouds, Barill et al., 2018

D 21/66

Local areas

Local lengths © Consider the k nearest neighbors of a point

@ Distance to the closest neighbor p (or points at a distance < r from p)

e Distance to the n-th neighbor @ Project all points onto the tangent plane

@ Mean of distances to the k nearest of p (L to ﬁp)

neighbors © Compute the 2d Delaunay triangulation
@ etc.) @ Return the sum of areas of the Delaunay
triangles)
“ pemo *

Fast Winding Numbers for Soups and Clouds, Barill et al., 2018

D 21/66

Outlier removal

Observation

Density of outlier points is usually lower than
density of inliers.

Simple outlier detection

Input: points P = {p1,...,pn}
Remove points whose local area is > 7

“ DEMO @

Clustering and Primitive Fitting

How to fit a plane in the presence of many outliers?

23/66

How to fit a plane in the presence of many outliers?

°
°
o ©
° . °o®
° ®9 P
® o °
- — L
° °
° ° .
o ® ° ¢ °
P [)

D 23/66

How to fit a plane in the presence of many outliers?

o
O.‘
° \ ‘.‘.
o a’/' ‘s. ¢
o ¢ ..
. ‘\
".l' o ® ‘\ ‘
o ®

D 23/66

How to fit a plane in the presence of many outliers?

General Idea: Sample and reject random candidates

RANSAC Algorithm (RANdom SAmple Consensus)

Input: points P = {p1,...,pn}
Parameters: sample size K, minimal cluster size S, inlier threshold 7

Iterate:
e Sample K planes (triplets of points in P)
@ For each plane i, compute its set P; of inliers (points in P at distance < 7)
@ Find the plane iy with the most inliers.
o If |P| = S:
Add the plane to the found primitives
Remove the points P;, from the samplable points (P < P\P;)

D 24 /66

Executing the RANSAC algorithm on a 2D example

D 25 /66

Executing the RANSAC algorithm on a 2D example

D 25 /66

Executing the RANSAC algorithm on a 2D example

D 25 /66

Executing the RANSAC algorithm on a 2D example

D 25 /66

Executing the RANSAC algorithm on a 2D example

D 25 /66

Executing the RANSAC algorithm on a 2D example

25/ 66

Executing the RANSAC algorithm on a 2D example

25/ 66

Executing the RANSAC algorithm on a 2D example

D 25 /66

Executing the RANSAC algorithm on a 2D example

Executing the RANSAC algorithm on a 2D example

Executing the RANSAC algorithm on a 2D example

Executing the RANSAC algorithm on a 2D example

Executing the RANSAC algorithm on a 2D example

Executing the RANSAC algorithm on a 2D example

Executing the RANSAC algorithm on a 2D example

Executing the RANSAC algorithm on a 2D example

Executing the RANSAC algorithm on a 2D example

Executing the RANSAC algorithm on a 2D example

Improvements

Locality bias
Planes have more chance to be a valid Consider connected components
primitive if all three points are "close" When computing inliers, only consider points
together. — Sample first point and two in the largest connected component of the
others among its nearest neighbors) k-NN graph)
Consider normals Other primitives
A point is an inlier if small distance and its Also works when sampling spheres (4 points),
normal aligns (dot product with plane's cylinders, cones, etc...

V.
normal > §)

.

Efficient RANSAC for Point-Cloud Shape Detection, Schnabel et al., 2007

D 26 /66

Presentation of the Project

Finding plane primitives in aerial LIDAR point clouds

“ DEMO @

Input Data: List of (z,y, z) coordinates in a text file

Features to implement in python (baseline)
@ K-nearest neighbors
@ Normal estimation
@ RANSAC with some heuristics
°

Delaunay triangulation of the primitives

. and lots of possible improvements

D 29 /66

Features to implement in python (baseline)
@ K-nearest neighbors
@ Normal estimation
@ RANSAC with some heuristics
°

Delaunay triangulation of the primitives

. and lots of possible improvements

Evaluation
An oral evaluation with us where you show us a demo (and we ask you questions!) J

D 20 /66

LA FRANCE EN 3D : les coulisses d'une cartographie hors-norme

@ IGNcommunication w

https://www.youtube.com/watch?v=X0vC3slzDmc

https://www.youtube.com/watch?v=X0vC3slzDmc

Part 2: Surface Reconstruction

e Reconstruction algorithms based on Delaunay triangulations
@ «a-shapes
@ Ball Pivoting
@ CRUST
@ Implicit Representations of Geometry

e Reconstruction algorithm based on implicit representations
@ Poisson Surface Reconstruction
@ Generalized Winding Number

From point cloud to surface meshes

https://doc.cgal.org/Manual/3.5/doc__html/cgal _manual/Surface _reconstruction points_ 3/Chapter__main.html

https://doc.cgal.org/Manual/3.5/doc_html/cgal_manual/Surface_reconstruction_points_3/Chapter_main.html

Reconstruction algorithms based on Delaunay
triangulations

How to choose k in the k-NN graph?

Observation

The edges/faces that we want in the reconstruction are in the k-NN graph
for some k large enough.

“ DEMO @

D 32/66

How to choose k in the k-NN graph?

Observation
The edges/faces that we want in the reconstruction are in the k-NN graph
for some k large enough.
“ DEmo #
A naive reconstruction algorithm (2D)
Keep edges of the 2-NN graph of P = {p1,...,pn} J

D 32/66

What about Delaunay?

Observation

The edges/faces that we want in the reconstruction are edges/faces of the
Delaunay triangulation /tetrahedrization.

“ DEMO @

D 33/66

What about Delaunay?

Observation

The edges/faces that we want in the reconstruction are edges/faces of the
Delaunay triangulation /tetrahedrization.

“ DEMO @

A (slightly less) naive reconstruction algorithm

© Compute the Delaunay Triangulation of P = {p1,...,pn}
@ Keep edges with length < L

I e

a-shapes

The intuition

Given points P = {p1,...,pn} € R?, remove all possible spheres of radius o that does not

contain any point.

34/66

The intuition

Given points P = {p1,...,pn} € R?, remove all possible spheres of radius o that does not

contain any point.

34/66

The intuition

Given points P = {p1,...,pn} € R?, remove all possible spheres of radius o that does not

contain any point.

34/66

The intuition

Given points P = {p1,...,pn} € R?, remove all possible spheres of radius o that does not

contain any point.

34/66

The intuition

Given points P = {p1,...,pn} € R?, remove all possible spheres of radius o that does not

contain any point.

34/66

The intuition
Given points P = {p1,...,pn} € R?, remove all possible spheres of radius o that does not

contain any point.

34/66

a-hull

.:-' X The a-hull of P is what's left when we have removed all
o o’ possible empty circles of radius « J

On the Shape of a Set of Points in the Plane, Edelsbrunner et al., 1983

35/66

a-hull

-:: X The a-hull of P is what's left when we have removed all
oo *oe, possible empty circles of radius a J
.:. . .o::. When o — 0, we get only P J

35 /66

On the Shape of a Set of Points in the Plane, Edelsbrunner et al., 1983
D

a-hull

The

a-hull of P is what's left when we have removed all
possible empty circles of radius «

J

When a — 0, we get only P

When o — oo, we get the convex-hull of P

On the Shape of a Set of Points in the Plane, Edelsbrunner et al., 1983

35 /66

a-shape

A point p € P is an a-exposed if there
exists an empty circle of radius a such
that p is on its boundary.

An edge (p1,p2) is a-exposed if there
exists an empty circle of radius a such
that both points are on its boundary.

On the Shape of a Set of Points in the Plane, Edelsbrunner et al., 1983
Three-dimensional alpha shapes, Edelsbrunner and Miicke, 1994

EEEE— 9155

a-shape

A point p € P is an a-exposed if there
exists an empty circle of radius a such
that p is on its boundary.

The a-shape is the straight line graph
made of all a-exposed edges between two
points of P.

An edge (p1,p2) is a-exposed if there
exists an empty circle of radius a such
that both points are on its boundary.

On the Shape of a Set of Points in the Plane, Edelsbrunner et al., 1983
Three-dimensional alpha shapes, Edelsbrunner and Miicke, 1994
S 9155

a-shape

00°8 % 04(\\
O C OO% ,41.'

s)
¢ pd ° '.\'%\lg
| °q, :\A\
o .\

T

https://graphics.stanford.edu/courses/cs268-11-spring/handouts/AlphaShapes/as_ fisher.pdf

https://graphics.stanford.edu/courses/cs268-11-spring/handouts/AlphaShapes/as_fisher.pdf

Properties of a-shapes

Theorem
For any «, the a-shape of P is a subgraph of the Delaunay triangulation of P. J

Properties of a-shapes

Theorem

For any «, the a-shape of P is a subgraph of the Delaunay triangulation of P. J

Let p and ¢ be two a-exposed points. There exists a circle of radius a not containing any point
r € P such that p and ¢ are on its boundary. Let ¢ be the center of this circle. Clearly,

d(p,c) = d(g,c) < d(r,c) for any r € P\{p, ¢q}. This means that c is in both the Voronoi cells
Vor(p) and Vor(q), which means that those cells are touching. In other words, p and ¢ are
neighbors in the (dual) Delaunay triangulation.

D 38 /66

Properties of a-shapes

Theorem
For any «, the a-shape of P is a subgraph of the Delaunay triangulation of P. J

Let p and ¢ be two a-exposed points. There exists a circle of radius a not containing any point
r € P such that p and ¢ are on its boundary. Let ¢ be the center of this circle. Clearly,

d(p,c) = d(g,c) < d(r,c) for any r € P\{p, ¢q}. This means that c is in both the Voronoi cells
Vor(p) and Vor(q), which means that those cells are touching. In other words, p and ¢ are
neighbors in the (dual) Delaunay triangulation.

Consequence J

There exists only a finite number of different a-shapes of P when « goes from 0 to oc.

I 55155

Computing a-shapes: the a-complex
https://demonstrations.wolfram.com/AlphaComplexAndUnionOfGrowingDisks/
Which Delaunay triangle belong inside the a-shape?

Let S be a simplex (segment, triangle, tetrahedra,...). Let its circumsphere be centered at pg
with radius og.

S is in the a-complex if:

@ S is on the boundary of a simplex S’ of the a-complex, or

@ og < « and the sphere centered in ug of radius og is empty

39/66

https://demonstrations.wolfram.com/AlphaComplexAndUnionOfGrowingDisks/

Computing a-shapes: the a-complex

The a-shape is the boundary of the a-complex J

Three-dimensional alpha shapes, Edelsbrunner and Miicke, 1994

Computing a-shapes: the a-complex

The a-shape is the boundary of the a-complex)

Edelsbrunner’s algorithm

Input: points P = {p1,...,pn}
© Compute the Delaunay triangulation D = (V, E,T') of P
@ Determine the set C, of triangles T inside the a-shape
© Return the outside boundary of C,

“ DEMO ©

Three-dimensional alpha shapes, Edelsbrunner and Miicke, 1994

D 40/ 66

Three-dimensional alpha shapes, Edelsbrunner and Miicke, 1994

D 41/66

Three-dimensional alpha shapes, Edelsbrunner and Miicke, 1994
41/66

Ball Pivoting

2D example

D 42 /66

2D example

D 42 /66

2D example

D 42 /66

2D example

D 42 /66

2D example

D 42 /66

2D example

D 42 /66

2D example

D 42 /66

2D example

D 42 /66

2D example

D 42 /66

2D example

D 42 /66

2D example

D 42 /66

2D example

D 42 /66

2D example

2D example

Ball Pivoting

Algorithm in 2D
Consider a ball of radius .

Find an a-exposed edge e = (po,p1). Add edge e to reconstructed edges.
Set p = py as the pivot.

Iterate:

@ Pivot the ball around point p until another unvisited point ¢ is touched
@ If no point g can be reached, stop.

e Otherwise, add (p, q) as a reconstructed edge. Set p as the new pivot.

The Ball-Pivoting Algorithm for Surface Reconstruction, Bernardini et al., 1999

43 /66

Ball Pivoting

Algorithm in 2D
Consider a ball of radius .

Find an a-exposed edge e = (po,p1). Add edge e to reconstructed edges.
Set p = py as the pivot.

Iterate:

@ Pivot the ball around point p until another unvisited point ¢ is touched
@ If no point g can be reached, stop.

e Otherwise, add (p, q) as a reconstructed edge. Set p as the new pivot.

It generalizes naturally to surfaces in 3D (pivot around an edge), though
normals are needed to repair some bad cases J

The Ball-Pivoting Algorithm for Surface Reconstruction, Bernardini et al., 1999

43 /66

Properties

Cee
————

(b) (c)

Every edge found by the BPA with radius « is a-exposed

Properties

,,/i\ - » ‘,‘ ‘ A
IE A S
oL I O
ol o
, i |
. [|
| \ *‘ + Y\ ‘ .
‘ v/] | :]
o TN i

V‘L - /o \‘h
\ / /
Se o) .
(a) (b) ©

Suppose the existence of an underlying manifold M from which the points are sampled. If:
@ The intersection of any ball of radius o with M is a topological disk and
@ Any ball of radius « centered on M contains at least one point

then the reconstructed surface is manifold with the correct topology.

I oy

Algorithmic perspective

Computing the next intersected point

Let p be the current pivot, r be the previous
pivot and ¢ being the center of the a-ball.

@ Query the unvisited neighbors ¢1, ..., ¢ of
p at distance < 2«

@ Compute the centers ¢y, ..., ¢, of the
touching spheres for each of them

@ Sort ¢y, ...c; by increasing order of
oriented angle w.r.t. ¢ around p.

@ Select the minimum c¢;, as the new ball
position and g;, as the new pivot

D 45 /66

Algorithmic perspective

Computing the next intersected point

Let p be the current pivot, r be the previous
pivot and ¢ being the center of the a-ball.

@ Query the unvisited neighbors ¢1, ..., gi of
p at distance < 2«

e Compute the centers c1, ..., ¢; of the
touching spheres for each of them

@ Sort ¢y, ...c; by increasing order of
oriented angle w.r.t. ¢ around p.

o Select the minimum ¢;, as the new ball
position and g;, as the new pivot

D 45 /66

Algorithmic perspective

Computing the next intersected point

Let p be the current pivot, r be the previous
pivot and ¢ being the center of the a-ball.

@ Query the unvisited neighbors ¢1, ..., gi of
p at distance < 2«

e Compute the centers c1, ..., ¢; of the
touching spheres for each of them

@ Sort ¢y, ...c; by increasing order of
oriented angle w.r.t. ¢ around p.

o Select the minimum ¢;, as the new ball
position and g;, as the new pivot

D 45 /66

Algorithmic perspective

Computing the next intersected point

Let p be the current pivot, r be the previous
pivot and ¢ being the center of the a-ball.

@ Query the unvisited neighbors ¢1, ..., gi of
p at distance < 2«

e Compute the centers c1, ..., ¢; of the
touching spheres for each of them

@ Sort ¢y, ...c; by increasing order of
oriented angle w.r.t. ¢ around p.

o Select the minimum ¢;, as the new ball
position and g;, as the new pivot

D 45 /66

Algorithmic perspective

Computing the next intersected point

Let p be the current pivot, r be the previous
pivot and ¢ being the center of the a-ball.

@ Query the unvisited neighbors ¢1, ..., gi of
p at distance < 2«

e Compute the centers c1, ..., ¢; of the
touching spheres for each of them

@ Sort ¢y, ...c; by increasing order of
oriented angle w.r.t. ¢ around p.

o Select the minimum ¢;, as the new ball
position and g;, as the new pivot

D 45 /66

Algorithmic perspective

Computing the next intersected point

Let p be the current pivot, r be the previous
pivot and ¢ being the center of the a-ball.

@ Query the unvisited neighbors ¢1, ..., gi of
p at distance < 2«

e Compute the centers c1, ..., ¢; of the
touching spheres for each of them

@ Sort ¢y, ...c; by increasing order of
oriented angle w.r.t. ¢ around p.

o Select the minimum ¢;, as the new ball
position and g;, as the new pivot

D 45 /66

Algorithmic perspective

Computing the next intersected point

Let p be the current pivot, r be the previous
pivot and ¢ being the center of the a-ball.

@ Query the unvisited neighbors ¢1, ..., gi of
p at distance < 2«

e Compute the centers c1, ..., ¢; of the
touching spheres for each of them

@ Sort ¢y, ...c; by increasing order of °
oriented angle w.r.t. ¢ around p.

o Select the minimum ¢;, as the new ball
position and g;, as the new pivot

D 45 /66

Algorithmic perspective

Computing the next intersected point

Let p be the current pivot, r be the previous
pivot and ¢ being the center of the a-ball.

@ Query the unvisited neighbors ¢1, ..., gi of °
p at distance < 2« °

[J
e Compute the centers c, ..., ¢;, of the ./.\. L

touching spheres for each of them

@ Sort ¢y, ...c; by increasing order of °
oriented angle w.r.t. ¢ around p.

o Select the minimum ¢;, as the new ball
position and g;, as the new pivot

D 45 /66

Algorithmic perspective

Computing the next intersected point

Let p be the current pivot, r be the previous
pivot and ¢ being the center of the a-ball.

Y Il D
@ Query the unvisited neighbors ¢1, ..., g of “'\‘
p at distance < 2« s .
e Compute the centers c1, ..., ¢; of the ./.::\‘ ,".
touching spheres for each of them i “\\ ® ° :' e
@ Sort ¢y, ...c; by increasing order of ° .‘\ _______ '

oriented angle w.r.t. ¢ around p.

o Select the minimum ¢;, as the new ball
position and g;, as the new pivot

D 45 /66

Algorithmic perspective

Computing the next intersected point

Let p be the current pivot, r be the previous
pivot and ¢ being the center of the a-ball.

e
. . \ I
@ Query the unvisited neighbors ¢, ..., g of \ oo
p at distance < 2« 5 ':’ .0

touching spheres for each of them

[} '_':_‘:___.
e Compute the centers c1, ..., ¢; of the ./‘\“") L4
@ Sort ¢y, ...cy by increasing order of ° "‘
oriented angle w.r.t. ¢ around p.

o Select the minimum ¢;, as the new ball
position and g;, as the new pivot

D 45 /66

Algorithmic perspective

Computing the next intersected point

Let p be the current pivot, r be the previous
pivot and ¢ being the center of the a-ball.

e
@ Query the unvisited neighbors ¢1, ..., gi of “\ ',".,0
p at distance < 2« ““—5,;1'::.—"
o Compute the centers cq, ..., ¢, of the ./.\"é:: ----- ‘e
touching spheres for each of them ¢ ° “P : o
@ Sort ¢y, ...c by increasing order of ° o "‘

oriented angle w.r.t. ¢ around p.

o Select the minimum ¢;, as the new ball
position and g;, as the new pivot

D 45 /66

Algorithmic perspective

Computing the next intersected point

Let p be the current pivot, r be the previous
pivot and ¢ being the center of the a-ball.

@ Query the unvisited neighbors ¢1, ..., gi of
p at distance < 2«

e Compute the centers c1, ..., ¢; of the
touching spheres for each of them

@ Sort ¢y, ...c; by increasing order of °
oriented angle w.r.t. ¢ around p.

o Select the minimum ¢;, as the new ball
position and g;, as the new pivot

D 45 /66

Algorithmic perspective

Computing the next intersected point

Let p be the current pivot, r be the previous
pivot and ¢ being the center of the a-ball.

@ Query the unvisited neighbors ¢1, ..., gi of
p at distance < 2«

e Compute the centers c1, ..., ¢; of the
touching spheres for each of them

@ Sort ¢y, ...c; by increasing order of °
oriented angle w.r.t. ¢ around p.

o Select the minimum ¢;, as the new ball
position and g;, as the new pivot

D 45 /66

Algorithmic perspective

Computing the next intersected point

Let p be the current pivot, r be the previous
pivot and ¢ being the center of the a-ball.

@ Query the unvisited neighbors ¢, ..., gy of
p at distance < 2«

o Compute the centers ¢y, ..., ¢;, of the

touching spheres for each of them ° ° °
@ Sort ¢y, ...c; by increasing order of ¢ ® e
oriented angle w.r.t. ¢ around p. o °

@ Select the minimum ¢;, as the new ball
position and ¢;, as the new pivot

D 45 /66

The Ball-Pivoting Algorithm for Surface Reconstruction, Bernardini et al., 1999

CRUST

CRUST

Idea

Delaunay reconstruction but prevent edges from "crossing" inside the
domain

CRUST algorithm
Input: points P = {p1,...,pn}
@ Compute the Voronoi diagram V' of P.

@ Compute the Delaunay triangulation D of points P U S where S are the vertices of the
Voronoi diagram V/

© Return edges of D that link two points of P

A New Voronoi-based Surface Reconstruction Algorithm, Amenta et al., 1998

D 47 /66

CRUST

Idea

Delaunay reconstruction but prevent edges from "crossing" inside the
domain

CRUST algorithm
Input: points P = {p1,...,pn}
© Compute the Voronoi diagram V' of P.

@ Compute the Delaunay triangulation D of points P U S where S are the vertices of the
Voronoi diagram V/

© Return edges of D that link two points of P

“ DEMO @

A New Voronoi-based Surface Reconstruction Algorithm, Amenta et al., 1998

D 47 /66

Reconstruction algorithm based on implicit
representations

Implicit Representations of Geometry

Implicit Representation of Geometry

Represent a compact object 2 C R? as a level set of a continuous function:

Q={zeR'| f(z) <0} [

¢ ©

Indicator Function

0 otherwise

f(x):{lifxeﬁ J

D 49 /66

Indicator Function

1ifxze
0 otherwise

@)= {

@ Simplest possible function
o Not differentiable...

@ Not always easy to compute

49 /66

Indicator Function

1ifxze
0 otherwise

@)= {

@ Simplest possible function
o Not differentiable...

@ Not always easy to compute

A variant: the sign function

—1ifz e
ylz) =1-2f(s) = { 1 otherwise

D 49 /66

Signed Distance Function

—d(z,00) if x € Q
Sl = { d(z,09) otherwise J

I BV

Signed Distance Function

| —d(z,09Q) ifx € Q
Sl = { d(z,09) otherwise

Eikonal equation
IVS(z)|| =1, VzeR?
S(x) =0, VYaedd
VS(x) =mng, VYred

50/ 66

Applications [:J lj@{?%
‘/ > Eﬂ = [LB,? @ ﬁ
JoN SN ! @ Eﬁ NS
$osy AA UMY
<N N&p
Constructive Solid Geometry Closest Point Query Marching Cubes
[Ricci (1973)] [Sharp and Jacobson (2022)] [Lorensen and Cline (1987)]

Rendering Empty Sphere Query Monte-Carlo Simulation
Snail shader by Inigo Quilez [Hart (1995)] [Sawhney and Crane (2020)]

51/66

Constructive Solid Geometry

If Q4 < S, and Qp < Sp:
e —S, represents €,
@ min(S,, Sy) represents Q, N €Y,
e max(S,, Sy) represents Q, U Y

min(Sg, Sp) is not a distance field?

2https://iquilezles.org/articles/interiordistance/

52/66

https://iquilezles.org/articles/interiordistance/

Geometrical Queries

Forz € R4 and Q < S:
p=xz—S(x)VS(z)

is the closest point from x on Q

[Sharp and Jacobson (2022)]

Geometrical Queries

Forz € R4 and Q < S:
p=xz—S(x)VS(z)

is the closest point from x on Q

Approximated signed distance fields
This also works if |f(z)| < S(z) and

Tnt1 =T — (@) V f(2n)
[Sharp and Jacobson (2022)]

From implicit functions to surface meshes: the Marching Cubes Algorithm

@ Sample your implicit function over a grid

@ For each cell, determine which points are
inside/outside

@ Mesh the cell according to a finite set of
templates

@ Possible improvements depending on the
value of the function at grid vertices

pRIRNEA==C Ay =
= @ ©
NERRYSECRY PN IRy]

B %

Marching Cubes: A High Resolution 3D Surface Construction Algorithm, Lorensen and Cline, 1987
54 /66

Reconstruction algorithm based on implicit
representations

Poisson Surface Reconstruction

Poisson Surface Reconstruction: the setting

Input: points with normals
s
V4 | % ® Theidea

e l\. .":\.\\I}.T\ o Consider that each normal 77; at point p is

—e :.S the gradient V f of some implicit function

. e & /
ﬁ\;’_‘& & /.ffTTm :'E o Integrate this gradient into the function f
= 'ﬁr.‘\g\ —e - @ Recover the surface via marching cubes
IHE JaV
BXs k= ST

Z!:T Cas = LN

A 8
55 /66

Poisson surface reconstruction, Kazhdan et al., 2006

Poisson Surface Reconstruction: Principle

0
! 0 vy O 0
\\\\’ /7’ P \‘ 2 # i\ 0

: VO i 0 s A

- ~ : i
wh 1 00

L ~ -
Y . I 0 0

Oriented points Indicator gradient Indicator function Surface

V Vou *m oM

https://slides.cgg.unibe.ch/GP20/06 _Surface Reconstruction.html

I e

https://slides.cgg.unibe.ch/GP20/06_Surface_Reconstruction.html

Points p1, ...pn with normals 71, ..., in

Approximate a vector field v by v(p; 7. and v(z) = 0 otherwise.
Solve:
min/ IV £(z) — 7 ()| 2de
fJa
i.e.:

N
min y |[V£(po) = 7|
i=1

D 57 /66

Points p1,...px with normals 77, ..., in

Approximate a vector field v by v(p; 7. and v(z) = 0 otherwise.
Solve:
min/ IV £(z) — 7 ()| 2de
fJa
i.e.:

N
min > |V (pi) - wi]*
=1

Poisson Problem
Vector field v is not integrable in general.

We apply the divergence operator (Euler-Lagrange equation):

VVf=Af=V.7

We recover a Poisson problem (of form Af = a)

57 /66

Implementation: Solving the Poisson problem on an octree via FEM

© Consider a dataset of points p; with normals n;

AL ELers
RS e £

58 /66

Implementation: Solving the Poisson problem on an octree via FEM

NS
i =5
T lgent®
& ettt
© Consider a dataset of points p; with normals n; =" [’ Ty o +
@ Setup an octree containing a single point per cell N 0
= T T | + :;=
T I:I—_m ' H l :EEE_
o R T/ e
— ol It o _: =
I 1! __; WL s
Syda i §
Hle _F%_ n: Ol
FHAHF FRAFEHHHHRH

58 /66

Implementation: Solving the Poisson problem on an octree via FEM

@ Consider a dataset of points p; with normals n; L P

S

@ Setup an octree containing a single point per cell

T

© Splat the samples (define a FEM basis)

T
T T

T
T
T
T
I

T
T

T
T

Implementation: Solving the Poisson problem on an octree via FEM

© Consider a dataset of points p; with normals n;
@ Setup an octree containing a single point per cell
© Splat the samples (define a FEM basis)

o | «

58 /66

Implementation: Solving the Poisson problem on an octree via FEM

© Consider a dataset of points p; with normals n;
@ Setup an octree containing a single point per cell
© Splat the samples (define a FEM basis)

@ Solve the Poisson problem and recover indicator
function

I ey

Implementation: Solving the Poisson problem on an octree via FEM

© Consider a dataset of points p; with normals n;
@ Setup an octree containing a single point per cell
© Splat the samples (define a FEM basis)

@ Solve the Poisson problem and recover indicator
function

@ Recover the interface via marching cubes

I ey

Implementation: Solving the Poisson problem on an octree via FEM

© Consider a dataset of points p; with normals n;
@ Setup an octree containing a single point per cell
© Splat the samples (define a FEM basis)

@ Solve the Poisson problem and recover indicator
function

@ Recover the interface via marching cubes

“ DEMO ©

I 556

@ Result is a watertight manifold surface

@ Can also be implemented on a mesh instead of an octree

@ Needs consistently oriented normals

@ Implementation is not trivial on an octree

Generalized Winding Number

Winding Number: another possible implicit representation

i o W r—— §
winding number

https://nzfeng.github.io/research/WNoDS /PerspectivesOnWindingNumbers.pdf

https://nzfeng.github.io/research/WNoDS/PerspectivesOnWindingNumbers.pdf

Winding Number: another possible implicit representation

61/66

Computing Winding Number of Polylines

Leta=c¢; —pand b=ci11 —p. p

_det(a,b) azby — ayb,
ab agby + @l Ci+1

tan(6;)

62 /66

Generalizing for imperfect geometries

Idea
Winding number is a sum of "solid angle" weighted by "area": J

Robust Inside-Outside Segmentation Using Generalized Winding Numbers, Jacobson et al., 2013

https://observablehq.com/@rreusser/fast-generalized-winding-numbers-in-2d

Generalizing for imperfect geometries

Idea

Winding number is a sum of "solid angle" weighted by "area":

Generalized Winding Number
For points p1, ..., py with normals n; and local areas a;, the generalized winding number at

point q is:
1 (g —pi).n;
w(q)=—Y a—+——"—
@ 47TZ “Nlg — pil P

i

Robust Inside-Outside Segmentation Using Generalized Winding Numbers, Jacobson et al., 2013
B W

https://observablehq.com/@rreusser/fast-generalized-winding-numbers-in-2d

Generalizing for imperfect geometries

Idea

Winding number is a sum of "solid angle" weighted by "area":

Generalized Winding Number

For points p1, ..., py with normals n; and local areas a;, the generalized winding number at

point q is:
1 (g —pi)-mi
w(g) = = 3 o LR
4?2 “llg—pilP
A good representation of the underlying surface of p1, ..., pn is the isovalue % of w. J

https://observablehq.com/@rreusser/fast-generalized-winding-numbers-in-2d

Robust Inside-Outside Segmentation Using Generalized Winding Numbers, Jacobson et al., 2013
EEEE— i

https://observablehq.com/@rreusser/fast-generalized-winding-numbers-in-2d

64 /66

The generalized winding number corresponds to the electric potential of infinitely
many dipoles scattered on the surface = It's a harmonic function (Aw = p) J

negative Il positive
%
* ..\ .
. e .4 :
F s
k =]_ k,‘ = 3 k - 11

v 4

65/ 66

https://nzfeng.github.io/research/WNoDS/PerspectivesOnWindingNumbers.pdf

Relation with Poisson Surface Reconstruction

The two methods are actually equivalent in theory! J

@ Both solve a Laplace equation Af = a under constraint that f "jumps" from 0 to 1 at the
interface

@ Surface in Poisson is the discontinuity of the function. Surface of GWN is isovalue %
@ Only the implementations differ. GWN does not need to splat the points = more precise

@ Both need normals, but GWN also needs an approximation of the density

Fast Winding Numbers for Soups and Clouds, Barill et al., 2018

EEEEE— ey

References |

~ Brown, C. (1976). Principal Axes and Best-Fit Planes, with Applications.

- Pauly, M., Gross, M., & Kobbelt, L. (2002). Efficient simplification of point-sampled surfaces.
IEEE Visualization, 2002. VIS 2002., 163-170.
https: / /doi.org/10.1109/VISUAL.2002.1183771

- Gumbhold, S., Wang, X., & MaclLeod, R. (n.d.). Feature Extraction from Point Clouds.

~ Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., & Stuetzle, W. (1992). Surface
reconstruction from unorganized points. Proceedings of the 19th Annual Conference on
Computer Graphics and Interactive Techniques, 71-78.
https://doi.org/10.1145/133994.134011

~ Barill, G., Dickson, N. G., Schmidt, R., Levin, D. I. W., & Jacobson, A. (2018). Fast winding
numbers for soups and clouds. ACM Transactions on Graphics, 37(4), 1-12.
https://doi.org/10.1145/3197517.3201337

I T

https://doi.org/10.1109/VISUAL.2002.1183771
https://doi.org/10.1145/133994.134011
https://doi.org/10.1145/3197517.3201337

References |l

~ Schnabel, R., Wahl, R., & Klein, R. (2007). Efficient RANSAC for Point-Cloud Shape
Detection. Computer Graphics Forum, 26(2), 214-226.
https://doi.org/10.1111/j.1467-8659.2007.01016.x

~ Edelsbrunner, H., Kirkpatrick, D., & Seidel, R. (1983). On the shape of a set of points in the
plane. IEEE Transactions on Information Theory, 29(4), 551-5509.
https: //doi.org/10.1109/TIT.1983.1056714

 Edelsbrunner, H., & Miicke, E. P. (1994). Three-dimensional alpha shapes. ACM Transactions
On Graphics (TOG), 13(1), 43-72.

~ Bernardini, F., Mittleman, J., Rushmeier, H., Silva, C., & Taubin, G. (1999). The ball-pivoting
algorithm for surface reconstruction. /[EEE Transactions on Visualization and Computer
Graphics, 5(4), 349-359. https://doi.org/10.1109/2945.817351

- Amenta, N., Bern, M., & Kamvysselis, M. (1998). A new Voronoi-based surface reconstruction
algorithm. Proceedings of the 25th Annual Conference on Computer Graphics and
Interactive Techniques - SIGGRAPH 98, 415-421.
https://doi.org/10.1145/280814.280947

https://doi.org/10.1111/j.1467-8659.2007.01016.x
https://doi.org/10.1109/TIT.1983.1056714
https://doi.org/10.1109/2945.817351
https://doi.org/10.1145/280814.280947

References ||

 Ricci, A. (1973). A constructive geometry for computer graphics. The Computer Journal,
16(2), 157-160. https://doi.org/10.1093/comjnl/16.2.157

~ Sharp, N., & Jacobson, A. (2022). Spelunking the deep: Guaranteed queries on general neural
implicit surfaces via range analysis. ACM Transactions on Graphics, 41(4), 1-16.
https://doi.org/10.1145/3528223.3530155

- Lorensen, W. E., & Cline, H. E. (1987). Marching cubes: A high resolution 3D surface
construction algorithm. ACM SIGGRAPH Computer Graphics, 21(4), 163-169.
https://doi.org/10.1145/37402.37422

 Hart, J. (1995). Sphere Tracing: A Geometric Method for the Antialiased Ray Tracing of
Implicit Surfaces. The Visual Computer, 12. https://doi.org/10.1007 /s003710050084

~ Sawhney, R., & Crane, K. (2020). Monte Carlo geometry processing: A grid-free approach to
PDE-based methods on volumetric domains. ACM Transactions on Graphics, 39(4),
123:123:1-123:123:18. https://doi.org/10.1145/3386569.3392374

~ Kazhdan, M., Bolitho, M., & Hoppe, H. (2006). Poisson surface reconstruction. Proceedings of
the fourth Eurographics symposium on Geometry processing, 7(4).

I T

https://doi.org/10.1093/comjnl/16.2.157
https://doi.org/10.1145/3528223.3530155
https://doi.org/10.1145/37402.37422
https://doi.org/10.1007/s003710050084
https://doi.org/10.1145/3386569.3392374

References |V

~ Jacobson, A., Kavan, L., & Sorkine-Hornung, O. (2013). Robust inside-outside segmentation
using generalized winding numbers. ACM Transactions on Graphics, 32(4), 33:1-33:12.
https://doi.org/10.1145/2461912.2461916

https://doi.org/10.1145/2461912.2461916

	The Point Cloud Processing Toolbox
	Nearest Neighbors and the k-NN graph
	Estimating Normals
	Best fitting hyperplane
	Consistent Orientation

	Estimating Density
	Clustering and Primitive Fitting
	The RANSAC Algorithm

	Presentation of the Project

	Surface Reconstruction
	Reconstruction algorithms based on Delaunay triangulations
	-shapes
	Ball Pivoting
	CRUST
	Implicit Representations of Geometry

	Reconstruction algorithm based on implicit representations
	Poisson Surface Reconstruction
	Generalized Winding Number

	References

