Thematic Map
Overlay

Computational Geometry
2 : Line Segment Intersection
pages 19-41

Compute all intersections
among the segments !

Brute force algorithm :

Simply take each pair of segments,
compute whether they intersect,
and, if so, report their intersection point.

The brute-force algorithm clearly requires O(n?) time.

In a sense this is optimal here !

When each pair of segments intersects,
any algorithm must take Q(n?) time,
because it has to report all intersections.c

An output

sensitive

algorithm ? Plane sweep

algorithm

event point

The moments at which the sweep line
reaches an event point are the only
moments when we do something:

X
e Update the status of the sweep line.
* Performs some intersection tests.
How can we avoid testing The status corresponds
all pairs Of segments to the ordered sequence of segments

intersecting the sweep line.

for intersection?

Event point = upper endpoint

= intersection
detected

This segment must be tested for
intersection against its two neighbors
along the sweep line.

Only intersection points below the
sweep line are important

Event point = intersection

The two segments that intersect change
their order.

Each of them gets (at most) one new
neighbor against which it is tested for
intersection.

Again, only intersections below the
sweep line are still interesting.

Event point = lower point

Assume three segments s, s, and s,, appear
in this order on the sweep line when the
lower endpoint of s, is encountered.

Then s, and s,, will become adjacent and we
test them for intersection.

Its two neighbors now become adjacent
and must be tested for intersection.

If they intersect below the sweep line,
then their intersection point is an event
point. (Again, this event could have
been detected already.)

Y (&)
@ ‘@' b R ’ N
Event queue ¢ p g AL
\ / \ (o) () (&)
9 © @ s S
/ / Y TS o B
a2 67) (@) () E)(L)
We store the eventsin a balanced binary search tree,
ordered according to the altitude.
I
Fetching the next event and inserting an event
take O(log m) time,
where m is the number of events in Q. ‘
___. asadlcs 4..‘4‘ Lhhi N

We do not use a heap to implement the event queue,
because we have to be able to test whether a given
event is already present in Q.

The event queue stores the events.
We denote the event queue by Q.

We need an operation that removes the next event that will
occur from Q, and returns it so that it can be treated.

Status tree

We also use a balanced binary search tree !
|

Each update and neighbor search operation

takes O(log n) time.

The status tree stores the ordered sequence of segments
intersecting the sweep line.

We denote the status tree by T.

We need an operation that removes the next event that will
occur from Q, and returns it so that it can be treated.

The algorithm |+

kv

HANDLEEVENTPOINT(p)

1.

bk w

0.

10.
11.
12.
13.
14.
15.
16.

Algorithm FINDINTERSECTIONS(S)

Input. A set S of line segments in the plane.

Output. The set of intersection points among the segments in S, with for each
intersection point the segments that contain it.

Initialize an empty event queue Q. Next, insert the segment endpoints into
Q; when an upper endpoint is inserted, the corresponding segment should
be stored with it.
Initialize an empty status structure 7.
while Q is not empty
do Determine the next event point p in Q and delete it.
HANDLEEVENTPOINT(p)

Let U(p) be the set of segments whose upper endpoint is p; these segments
are stored with the event point p. (For horizontal segments, the upper
endpoint is by definition the left endpoint.)
Find all segments stored in T that contain p; they are adjacent in 7. Let
L(p) denote the subset of segments found whose lower endpoint is p, and
let C(p) denote the subset of segments found that contain p in their interior.
if L(p) UU(p) UC(p) contains more than one segment
then Report p as an intersection, together with L(p), U(p), and C(p).
Delete the segments in L(p) UC(p) from T.
Insert the segments in U (p) UC(p) into T. The order of the segments in T
should correspond to the order in which they are intersected by a sweep
line just below p. If there is a horizontal segment, it comes last among all
segments containing p.
(* Deleting and re-inserting the segments of C(p) reverses their order. *)
if U(p)UC(p) =0
then Let s; and s, be the left and right neighbors of p in 7.
FINDNEWEVENT(s;,s,, P)
else Let s’ be the leftmost segment of U(p) UC(p) in 7.
Let s; be the left neighbor of s’ in 7.
FINDNEWEVENT(s;, s, p)
Let s” be the rightmost segment of U(p) UC(p) in T.
Let s, be the right neighbor of s” in 7.,
FINDNEWEVENT(s", 5,, p)

A a little

bit more
tricky !

HANDLEEVENTPOINT(p)

1.

kW

9.

11.
12.
13.

15.
16.

Let U(p) be the set of segments whose upper endpoint is p; these segments
are stored with the event point p. (For horizontal segments, the upper
endpoint is by definition the left endpoint.)
Find all segments stored in T that contain p; they are adjacent in 7J. Let
L(p) denote the subset of segments found whose lower endpoint is p, and
let C(p) denote the subset of segments found that contain p in their interior.
if L(p) UU (p) UC(p) contains more than one segment
then Report p as an intersection, together with L(p), U(p), and C(p).
Delete the segments in L(p) UC(p) from 7.
Insert the segments in U (p) UC(p) into T. The order of the segments in T
should correspond to the order in which they are intersected by a sweep
line just below p. If there is a horizontal segment, it comes last among all
segments containing p.
(* Deleting and re-inserting the segments of C(p) reverses their order.)
ifU(p)UC(p) =0
then Let s; and s, be the left and right neighbors of p in 7.
FINDNEWEVENT(s}, s, P)
else Let s’ be the leftmost segment of U(p) UC(p) in T
Let s; be the left neighbor of s in T
FINDNEWEVENT(s;,s', p)
Let s” be the rightmost segment of U(p) UC(p) in 7.
Let s, be the right neighbor of s” in T.
FINDNEWEVENT(s”, 5,, p)

FINDNEWEVENT(s;, s, P)

1. if 5; and s, intersect below the sweep line, or on it and to the right of the
current event point p, and the intersection is not yet present as an
event in Q

2. then Insert the intersection point as an event into Q.

HANDLEEVENTPOINT(p)

1.

A

9.

10.
11.
12.
13.
14.
15.
16.

Let U(p) be the set of segments whose upper endpoint is p; these segments
are stored with the event point p. (For horizontal segments, the upper
endpoint is by definition the left endpoint.)
Find all segments stored in 7 that contain p; they are adjacent in T. Let
L(p) denote the subset of segments found whose lower endpoint is p, and
let C(p) denote the subset of segments found that contain p in their interior.
if L(p) UU(p) UC(p) contains more than one segment
then Report p as an intersection, together with L(p), U(p), and C(p).
Delete the segments in L(p) UC(p) from T.
Insert the segments in U (p) UC(p) into T. The order of the segments in T
should correspond to the order in which they are intersected by a sweep
line just below p. If there is a horizontal segment, it comes last among all
segments containing p.
(* Deleting and re-inserting the segments of C(p) reverses their order. x)
if U(p)UC(p) =0
then Let s; and s, be the left and right neighbors of p in 7.
FINDNEWEVENT(s;,s,, P)
else Let s’ be the leftmost segment of U(p) UC(p) in 7.
Let s; be the left neighbor of 5" in 7.
FINDNEWEVENT(s;,s’, p)
Let s” be the rightmost segment of U(p) UC(p) in T.
Let s, be the right neighbor of s in T".
FINDNEWEVENT(s", s, p)

FINDNEWEVENT(s;, s, P)

1. if 5; and s, intersect below the sweep line, or on it and to the right of the
current event point p, and the intersection is not yet present as an
event in Q

2. then Insert the intersection point as an event into Q.

Complexity
of the sweep
algorithm

Theorem 2.4 Let S be a set of n line segments in the plane. All intersection
points in S, with for each intersection point the segments involved in it, can be
reported in O(nlogn+ Ilogn) time and O(n) space, where I is the number of
intersection points.

ToLYHEDRA

=

GEOHETRIC
CorPONENTS _ -
m—_—/

908

r)sz !

conyex

= PoLrconS

SN

OF GeNeRa(TY

ProPeR —

Local

NAaTurRAL
GENERALIZATION

To PolosY

STRETLHING
+ BeNOING
BuT No TEARING

.

Ko

o

®

N

\

3 VALIDITY
) CoNDITIONS

Faces$s

INTERSECT
PROPeR LY

L

A eoee orR A

2 VeRTIeS A vertex
OR

PROPER
GLO RS
ToPoLoGY

Hort eoH oR PHISH

AD SKELE[ON

= ConNNECTED
GRAPH

CLOSED CVRVE

PoLY éoNS
CoNVEX PoLY 6ONS

REGULAR POLY6ONS

PoLYToPeS

2 _ HlaNIFoLDS \'C\k\@

-

= SPeGAL (ASE

-

PoLYHEDRA _ e
INTERN AL
ANGLE 1N SPACE
BETWEEN

" 2- ranN1IFOLDS
A1 THE EDGE ‘ ‘

PLANES CONTAINING AKOCIATED FACES

PoLYToPEeS
<= = A CONVEX
PolLYYHEPRA
EQUAL BNGLES

cEQuAL SIDES

DideoralL

POLYTOPES
FACES = REGULAR POLYSONS
Sarlie WUMBeR oOF FAGS

ar EeAcH VERTEX

m 3V€Rnc€5
M= DiA6ONBLS
/ D o
: f
Y
s 2 NuriBeR
- = OF VERTICES Z & = Cm —2> 1 (éDﬁ
. PER FACE / M‘
.‘. l =

envexX

= / ' POLYHEDRA
/ CONDITION
- = NUMBER .
N = or FACES X, < 21 CQ:‘?">
.

Per VERTEX

‘PLAjrouic .
\SOL\DS | Tm-2v - 2m << ?1
|N€QUAUT)’ ?::7(:7

L’

® e
TETRAHEDRON
S TRIANGLES AT eacH Verrex
C\I‘-L)('n -l) - /‘
4 veatices ¢
G ENGES Fo T
HE X A HeoronN
3 SQUARES AT encH VeRTEY A2
—— N
(v-2)a-2) -2 DoDPECA HEDRON
S PENTAGONS
AT eacH VERTEX
L /Q\ Ev2)6s2) .3
CURBE
- & vernces
A2 epges 20 Vertces

PLATONIC
SoLid$S

/ A0 EDseS

7

A2 VerTieS
30 EDGES

OCTA HeDrRoN
Ll TRIANGLES
AT €eAacH VERTEX
G VERTIES Ce-2)(m -z) =2
A2 EDGES

20
—

| CoS$A HeEDRON

S TRianNGLES
AT Eack VERIEX

(1'—23(-1« 33 3

EULER’S — -

F TRONSFORHING
O R H ‘ IT N A TREeE
PRESERVING N -¢€ + ‘:

doei f s \«Lfﬂ . +/(

#/ A eyt ' \]_, l/ij\}
VERTLCES H Fpces 8 !

W

\f—&-l—gs.z
TRUE FoR TREE

o~

PolLYHEDRON # EDGES

e
°

4

Nou

NT = e
£=4

\I—-().+£=2 ok

®

THE GRAPH | D
s Not A TREE ‘

Exercice 2

2.1

Let S be a set of n disjoint line segments whose upper endpoints lie on the
line y = 1 and whose lower endpoints lie on the line y = 0. These segments
partition the horizontal strip [—oo : 00| x [0 : 1] into n+ 1 regions. Give an
O(nlogn) time algorithm to build a binary search tree on the segments
in § such that the region containing a query point can be determined in
O(logn) time. Also describe the query algorithm in detail.

