
Thematic Map
Overlay

Computational Geometry
2 : Line Segment Intersection
pages 19-41

Compute all intersections
among the segments !

The brute-force algorithm clearly requires O(n2) time.

In a sense this is optimal here !
When each pair of segments intersects,
any algorithm must take Ω(n2) time,
because it has to report all intersections.c

Brute force algorithm :

Simply take each pair of segments,
compute whether they intersect,
and, if so, report their intersection point.

An output
sensitive
algorithm ?

How can we avoid testing
all pairs of segments
for intersection?

Plane sweep
algorithm

The status corresponds
to the ordered sequence of segments
intersecting the sweep line.

The moments at which the sweep line
reaches an event point are the only
moments when we do something:

•  Update the status of the sweep line.
•  Performs some intersection tests.

Event queue

The event queue stores the events.
We denote the event queue by Q.

We need an operation that removes the next event that will
occur from Q, and returns it so that it can be treated.

We store the eventsin a balanced binary search tree,
ordered according to the altitude.

Fetching the next event and inserting an event
take O(log m) time,
where m is the number of events in Q.

We do not use a heap to implement the event queue,
because we have to be able to test whether a given
event is already present in Q.

Status tree

The status tree stores the ordered sequence of segments
intersecting the sweep line.
We denote the status tree by T.

We need an operation that removes the next event that will
occur from Q, and returns it so that it can be treated.

We also use a balanced binary search tree !

Each update and neighbor search operation
takes O(log n) time.

Overlay
of two planar
subdivisions

Computational Geometry
2 : Line Segment Intersection
pages 29-41

Subdivisions of the plane
into labeled regions.

An algorithm for computing
the overlay of two subdivisions

Planar subdivisions induced
by planar embeddings of graph

What should we require from a representation of a subdivision ?

Walking around the boundary of a given face
Finding the faces containing a given vertex
Visiting all edges around a given vertex

Storing a subdivision as a collection of line
segments is not such a good idea.

Operations like reporting the boundary of a
region would be rather complicated.

The
doubly-connected
edge list

Half-edge with an origin and a destination
Twin of an half-edge

The
doubly-connected
edge list

Computing the overlay
of two subdivisions

How much information from the doubly-connected edge lists for S1 and S2
we can re-use in the doubly-connected edge list for O(S1,S2) ?

Consider the network of edges and vertices of S1.
This network is cut into pieces by the edges of S2.
These pieces are for a large part re-usable.
Only the edges that have been cut by the edges of S2 should be renewed.

Using the plane sweep algorithm

Event queue : Q
Segments intersecting the sweep line : T
A doubly-connected edge list : D

Using the plane sweep algorithm

Event queue : Q
Segments intersecting the sweep line : T
A doubly-connected edge list : D

Which boundary cycles
do bind
the same face?

Event queue : Q
Segments intersecting the sweep line : T
A doubly-connected edge list : D
A graph : G

How can we construct
the graph G ?

Event queue : Q
Segments intersecting the sweep line : T
A doubly-connected edge list : D
A graph : G

The
algorithm

Complexity
of the sweep
algorithm

Applications :-)
Boolean operations

The line segment intersection problem is one of the most
fundamental problems in computational geometry.

The O(n log n + k log n) solution presented
was given by Bentley and Ottmann [47] in 1979.

Exercice 3

