Thematic Map
Overlay

Computational Geometry
2 : Line Segment Intersection
pages 19-41

Compute all intersections
among the segments !

Brute force algorithm :

Simply take each pair of segments,
compute whether they intersect,
and, if so, report their intersection point.

The brute-force algorithm clearly requires O(n?) time.

In a sense this is optimal here !

When each pair of segments intersects,
any algorithm must take Q(n?) time,
because it has to report all intersections.c

An output

sensitive

algorithm ? Plane sweep

algorithm

event point

The moments at which the sweep line
reaches an event point are the only
moments when we do something:

X
e Update the status of the sweep line.
* Performs some intersection tests.
How can we avoid testing The status corresponds
all pairs Of segments to the ordered sequence of segments

intersecting the sweep line.

for intersection?

Y (&)
@ ‘@' b R ’ N
Event queue ¢ p g AL
\ / \ (o) () (&)
9 © @ s S
/ / Y TS o B
a2 67) (@) () E)(L)
We store the eventsin a balanced binary search tree,
ordered according to the altitude.
I
Fetching the next event and inserting an event
take O(log m) time,
where m is the number of events in Q. ‘
___. asadlcs 4..‘4‘ Lhhi N

We do not use a heap to implement the event queue,
because we have to be able to test whether a given
event is already present in Q.

The event queue stores the events.
We denote the event queue by Q.

We need an operation that removes the next event that will
occur from Q, and returns it so that it can be treated.

Status tree

We also use a balanced binary search tree !
|

Each update and neighbor search operation

takes O(log n) time.

The status tree stores the ordered sequence of segments
intersecting the sweep line.

We denote the status tree by T.

We need an operation that removes the next event that will
occur from Q, and returns it so that it can be treated.

Subdivisions of the plane
into labeled regions.

An algorithm for computing
the overlay of two subdivisions

Overlay
Computational Geometry
O f tWO planar 2 : Line Segment Intersection

pages 29-41
subdivisions

Planar subdivisions induced
by planar embeddings of graph

Storing a subdivision as a collection of line
segments is not such a good idea.

Operations like reporting the boundary of a
region would be rather complicated.

disconnected
“—“510n

What should we require from a representation of a subdivision ?

Walking around the boundary of a given face
Finding the faces containing a given vertex
Visiting all edges around a given vertex

v Twin(é)

Half-edge with an origin and a destination
Twin of an half-edge

The

doubly-connected
edge list

Vertex Coordinates IncidentEdge Origin(€)
\

Vi (0,4) €11

V2 (2a 4) é‘4.2 Twin (é‘)

V3 (2a 2) é"2.1 \ I
V4 (1,1) €2 \

Next(€)

Face OuterComponent InnerComponents

h nil €11
f2 €41 nil
Half-edge Origin Twin IncidentFace Next Prev

€1 vy €12 h €n &3
€12 12) €11 f €, €
@_:2.1 V3 f?:z,z ; 1 fz,z ?:4,2 |
€22 Vi €21 1 €31 €21 .
€3 V3 &2 h g1 @ IncidentFace(€)
€3 Vi 53,1 f 54,1 € 2
€41 V3 €12 f €12 €
€42 vy €4 fi & €

The

doubly-connected
edge list "

Computing the overlay
of two subdivisions

How much information from the doubly-connected edge lists for S1 and S2
we can re-use in the doubly-connected edge list for O(S1,S2) ?

Consider the network of edges and vertices of S1.

This network is cut into pieces by the edges of S2.

These pieces are for a large part re-usable.

Only the edges that have been cut by the edges of S2 should be renewed.

Using the plane sweep algorithm

Event queue : Q
Segments intersecting the sweep line : T
A doubly-connected edge list : D

the geometric situation and the

two doubly-connected edge lists the doubly-connected edge list
before handling the intersection after handling the intersection

o

Using the plane sweep algorithm

Event queue : Q
Segments intersecting the sweep line : T
A doubly-connected edge list : D

Which boundary cycles
do bind
the same face?

Event queue : Q

Segments intersecting the sweep line : T
A doubly-connected edge list : D

A graph: G

Lemma 2.5 Each connected component of the graph G corresponds exactly to
the set of cycles incident to one face.

How can we construct
the graph G ?

Event queue : Q

Segments intersecting the sweep line : T
A doubly-connected edge list : D

A graph: G

Lemma 2.5 Each connected component of the graph G corresponds exactly to
the set of cycles incident to one face.

The
algorithm

Algorithm MAPOVERLAY(Sy, 87)

Input. Two planar subdivisions §; and §; stored in doubly-connected edge lists.

Output. The overlay of 8, and §, stored in a doubly-connected edge list D.

1. Copy the doubly-connected edge lists for §; and 8, to a new doubly-
connected edge list D.

2. Compute all intersections between edges from 8, and 8, with the plane
sweep algorithm of Section 2.1. In addition to the actions on T and Q
required at the event points, do the following:

» Update D as explained above if the event involves edges of both §,
and §,. (This was explained for the case where an edge of §, passes
through a vertex of §,.)

» Store the half-edge immediately to the left of the event point at the
vertex in D representing it.

3. (x Now D is the doubly-connected edge list for O(8,, 82), except that the
information about the faces has not been computed yet. *)
4. Determine the boundary cycles in O(8;,83) by traversing D.

5. Construct the graph G whose nodes correspond to boundary cycles and
whose arcs connect each hole cycle to the cycle to the left of its leftmost ver-
tex, and compute its connected components. (The information to determine
the arcs of G has been computed in line 2, second item.)

6. for each connected component in G

7. do Let C be the unique outer boundary cycle in the component and let

f denote the face bounded by the cycle. Create a face record for f,
set QuterComponent(f) to some half-edge of €, and construct the
list InnerComponents(f) consisting of pointers to one half-edge in
each hole cycle in the component. Let the IncidentFace() pointers
of all half-edges in the cycles point to the face record of f.

8. Label each face of O(8;,8;) with the names of the faces of §; and §;
containing it, as explained above.

Complexity
of the sweep
algorithm

Theorem 2.6 Let §; be a planar subdivision of complexity n;, let 8, be a

subdivision of complexity ny, and let n := n; + nz. The overlay of §| and §;

can be constructed in O(nlogn + klogn) time, where k is the complexity of the
overlay.

Applications :-)
Boolean operations |

| -~ -

L - '.
intersection difference
The line segment intersection problem is one of the most
fundamental problems in computational geometry.

The O(n log n + k log n) solution presented
was given by Bentley and Ottmann [47] in 1979.

Exercice 3

2.14 Let S be a set of n disjoint line segments in the plane, and let p be a
point not on any of the line segments of §S. We wish to determine all
line segments of § that p can see, that is, all line segments of S that
contain some point g so that the open segment pg doesn’t intersect any
line segment of S. Give an O(nlogn) time algorithm for this problem that
uses a rotating half-line with its endpoint at p.

.,.-—.
i ¢

]
p

!
|
|

.\o
e

\
\ ~

— -

\ /. .
not visible

