Manufacturing with molds

Computational Geometry

4 : Linear Programming pages 63-93 (not sections 4.5 and 4.6)

The casting process

Lemma 4.1 The polyhedron \mathcal{P} can be removed from its mold by a translation in direction \vec{d} if and only if \vec{d} makes an angle of at least 90° with the outward normal of all ordinary facets of \mathcal{P}.

Finding the translation

direction

$\vec{\eta}_{x} d_{x}+\vec{\eta}_{y} d_{y}+\vec{\eta}_{z} \leqslant 0$.

An ordinary facet induces a constraint.
It is an inequality that describes
a half-plane on the plane $z=1$.

Given a set of half-planes,
find a point in their intersection or decide that the intersection is empty.

... is a purely geometric problem

Half-planes intersection

Let $H=\left\{h_{1}, h_{2}, \ldots, h_{n}\right\}$ be a set of linear constraints in two variables, that is, constraints of the form

$$
a_{i} x+b_{i} y \leqslant c_{i},
$$

(ii)

(iii)

(iv)

(v)

This planar problem can be solved in expected linear time !
What is the meaning of expected ?
If we try all its facets as top facets, we derive the theorem :

Theorem 4.2 Let \mathcal{P} be a polyhedron with n facets. In $O\left(n^{2}\right)$ expected time and using $O(n)$ storage it can be decided whether \mathcal{P} is castable. Moreover, if \mathcal{P} is castable, a mold and a valid direction for removing \mathcal{P} from it can be computed in the same amount of time.

Divide and conquer algorithm

Algorithm Intersecthalfplanes (H)

Input. A set H of n half-planes in the plane.
Output. The convex polygonal region $C:=\bigcap_{h \in H} h$.

1. if $\operatorname{card}(H)=1$
2. then $C \leftarrow$ the unique half-plane $h \in H$
3. else Split H into sets H_{1} and H_{2} of size $\lceil n / 2\rceil$ and $\lfloor n / 2\rfloor$.
4. $\quad C_{1} \leftarrow \operatorname{IntersecthalfPLANES}\left(H_{1}\right)$
5. $\quad C_{2} \leftarrow \operatorname{INTERSECTHALFPLANES}\left(H_{2}\right)$
6. $C \leftarrow$ INTERSECTCONVEXREGIONS $\left(C_{1}, C_{2}\right)$

What remains is to describe the final procedure?
But wait—didn't we see this problem before?
Indeed, we can compute the intersection of two polygons in $O(n \log n+k \log n)$! Moreover, $\boldsymbol{k}<\boldsymbol{n}$!

This gives the following recurrence for the total running time:

$$
T(n)= \begin{cases}O(1), & \text { if } n=1 \\ O(n \log n)+2 T(n / 2), & \text { if } n>1\end{cases}
$$

This recurrence solves to $T(n)=O\left(n \log ^{2} n\right)$.

But our

 polygonal regions are convex!

$$
\begin{aligned}
& \mathcal{L}_{\text {left }}(C)=h_{3}, h_{4}, h_{5} \\
& \mathcal{L}_{\text {right }}(C)=h_{2}, h_{1}
\end{aligned}
$$

The new algorithm is a plane sweep algorithm:
we move a sweep line downward over the plane, and we maintain the edges of C 1 and C 2 intersecting the sweep line.

Since C1 and C2 are convex, there are at most four such edges. Hence, there is no need to store these edges in a complicated data structure.

Handling

an event

in the sweep algorithm

Half-planes

 intersection
This planar problem can be solved in expected linear time :

What is the meaning of expected?
If we try all its facets as top facets, we derive the theorem :
Theorem 4.3 The intersection of two convex polygonal regions in the plane can be computed in $O(n)$ time.

This theorem shows that we can do the merge step in Intersecthalfplanes in linear time. Hence, the recurrence for the running time of the algorithm becomes

$$
T(n)= \begin{cases}O(1), & \text { if } n=1 \\ O(n)+2 T(n / 2), & \text { if } n>1\end{cases}
$$

leading to the following result:
Corollary 4.4 The common intersection of a set of n half-planes in the plane can be computed in $O(n \log n)$ time and linear storage.

Incremental linear programming

(i)

(ii)

(iii)

(iv)

Incremental

\section*{bounded
 linear
 | Maximize | $c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{d} x_{d}$ |
| :---: | :---: |
| Subject to | $a_{1,1} x_{1}+\cdots+a_{1, d} x_{d} \leqslant b_{1}$ |
| | $a_{2,1} x_{1}+\cdots+a_{2, d} x_{d} \leqslant b_{2}$ |
| | \vdots |
| | $a_{n, 1} x_{1}+\cdots+a_{n, d} x_{d} \leqslant b_{n}$ |}

feasible region

$$
\begin{aligned}
& m_{1}:= \begin{cases}p_{x} \leqslant M & \text { if } c_{x}>0 \\
-p_{x} \leqslant M & \text { otherwise }\end{cases} \\
& m_{2}:= \begin{cases}p_{y} \leqslant M & \text { if } c_{y}>0 \\
-p_{y} \leqslant M & \text { otherwise }\end{cases}
\end{aligned}
$$

Let (H, \vec{c}) be a linear program. We number the half-planes $h_{1}, h_{2}, \ldots, h_{n}$. Let H_{i} be the set of the first i constraints, together with the special constraints m_{1} and m_{2}, and let C_{i} be the feasible region defined by these constraints:

$$
\begin{array}{ll}
H_{i}:= & \left\{m_{1}, m_{2}, h_{1}, h_{2} \ldots, h_{i}\right\}, \\
C_{i}:= & m_{1} \cap m_{2} \cap h_{1} \cap h_{2} \cap \cdots \cap h_{i} .
\end{array}
$$

Algorithm 2DBoundedLP(H, \vec{c}, m_{1}, m_{2})

Input. A linear program $\left(H \cup\left\{m_{1}, m_{2}\right\}, \vec{c}\right)$, where H is a set of n half-planes, $\vec{c} \in \mathbb{R}^{2}$, and m_{1}, m_{2} bound the solution.
Output. If $\left(H \cup\left\{m_{1}, m_{2}\right\}, \vec{c}\right)$ is infeasible, then this fact is reported. Otherwise, the lexicographically smallest point p that maximizes $f_{\vec{c}}(p)$ is reported.
Let v_{0} be the corner of C_{0}.
Let h_{1}, \ldots, h_{n} be the half-planes of H.
for $i \leftarrow 1$ to n
do if $v_{i-1} \in h_{i}$
then $v_{i} \leftarrow v_{i-1}$
else $v_{i} \leftarrow$ the point p on ℓ_{i} that maximizes $f_{\vec{c}}(p)$, subject to the constraints in H_{i-1}.
if p does not exist
8.
9. return v_{n}

In more detail

Lemma 4.7 Algorithm 2DBoundedLP computes the solution to a bounded
 linear program with n constraints and two variables in $O\left(n^{2}\right)$ time and linear storage.

It is easy to see that the algorithm requires only linear storage. We add the half-planes one by one in n stages. The time spent in stage i is dominated by the time to solve a 1 -dimensional linear program in line 6 , which is $O(i)$. Hence, the total time needed is bounded by

$$
\sum_{i=1}^{n} O(i)=O\left(n^{2}\right)
$$

Randomized

linear

 programmingAlgorithm 2DRANDOMIZEDBOUNDEDLP $\left(H, \vec{c}, m_{1}, m_{2}\right)$
Input. A linear program $\left(H \cup\left\{m_{1}, m_{2}\right\}, \vec{c}\right)$, where H is a set of n half-planes, $\vec{c} \in \mathbb{R}^{2}$, and m_{1}, m_{2} bound the solution.
Output. If $\left(H \cup\left\{m_{1}, m_{2}\right\}, \vec{c}\right)$ is infeasible, then this fact is reported. Otherwise, the lexicographically smallest point p that maximizes $f_{\vec{c}}(p)$ is reported.

1. Let v_{0} be the corner of C_{0}.
2. Compute a random permutation h_{1}, \ldots, h_{n} of the half-planes by calling Randompermutation $(H[1 \cdots n])$.
3. for $i \leftarrow 1$ to n
4. do if $v_{i-1} \in h_{i}$
5. then $v_{i} \leftarrow v_{i-1}$
6.

else $v_{i} \leftarrow$ the point p on ℓ_{i} that maximizes $f_{c}(p)$, subject to the constraints in H_{i-1}.
7. if p does not exist
8. then Report that the linear program is infeasible and quit.
9. return v_{n}

Lemma 4.8 The 2-dimensional linear programming problem with n constraints can be solved in $O(n)$ randomized expected time using worst-case linear storage.

Let X_{i} be a random variable, which is 1 if $v_{i-1} \notin h_{i}$, and 0 otherwise.

Expected complexity

Since the half-planes are added in random order, the probability that \boldsymbol{h}_{i} is one of the special half-planes

$$
\text { is at most } 2 / i
$$

Lemma 4.8 The 2-dimensional linear programming problem with n constraints can be solved in $O(n)$ randomized expected time using worst-case linear storage.

$$
\sum_{i=1}^{n} O(i) \cdot \frac{2}{i}=O(n)
$$

Smallest Enclosing Disk

Algorithm MiniDisc (P)

Input. A set P of n points in the plane.
Output. The smallest enclosing disc for P.

1. Compute a random permutation p_{1}, \ldots, p_{n} of P.
2. Let D_{2} be the smallest enclosing disc for $\left\{p_{1}, p_{2}\right\}$.
3. for $i \leftarrow 3$ to n
4. do if $p_{i} \in D_{i-1}$
5. then $D_{i} \leftarrow D_{i-1}$
6. else $D_{i} \leftarrow \operatorname{MiniDiscWithPoint}\left(\left\{p_{1}, \ldots, p_{i-1}\right\}, p_{i}\right)$
7. return D_{n}

The simple randomized technique we used above turns out to be surprisingly powerful.

It can be applied not only to linear programming but to a variety of other optimization problems as well.

Smallest Enclosing Disk

MinidiscWithPoint (P, q)

Input. A set P of n points in the plane, and a point q such that there exists an enclosing disc for P with q on its boundary.
Output. The smallest enclosing disc for P with q on its boundary.

1. Compute a random permutation p_{1}, \ldots, p_{n} of P.
2. Let D_{1} be the smallest disc with q and p_{1} on its boundary.
3. for $j \leftarrow 2$ to n
4. do if $p_{j} \in D_{j-1}$
5. \quad then $D_{j} \leftarrow D_{j-1}$
6. else $D_{j} \leftarrow \operatorname{MiniDiscWith} 2 P o i n t s\left(\left\{p_{1}, \ldots, p_{j-1}\right\}, p_{j}, q\right)$
7. return D_{n}

MinidiscWith2Points $\left(P, q_{1}, q_{2}\right)$

Input. A set P of n points in the plane, and two points q_{1} and q_{2} such that there exists an enclosing disc for P with q_{1} and q_{2} on its boundary.
Output. The smallest enclosing disc for P with q_{1} and q_{2} on its boundary.

1. Let D_{0} be the smallest disc with q_{1} and q_{2} on its boundary.
2. for $k \leftarrow 1$ to n
3. do if $p_{k} \in D_{k-1}$
4. then $D_{k} \leftarrow D_{k-1}$
5. else $D_{k} \leftarrow$ the disc with q_{1}, q_{2}, and p_{k} on its boundary
6. return D_{n}

Theorem 4.15 The smallest enclosing disc for a set of n points in the plane can be computed in $O(n)$ expected time using worst-case linear storage.

$$
O(n)+\sum_{i=2}^{n} O(i) \frac{2}{i}=O(n) .
$$

Expected

running
time for miniDiskWithPoint!

Exercice 4

4.2 Consider the casting problem in the plane: we are given polygon \mathcal{P} and a 2-dimensional mold for it. Describe a linear time algorithm that decides whether \mathcal{P} can be removed from the mold by a single translation.

