Manufacturing /\‘
with molds e\

“ ‘ The casting process

Computational Geometry
4 : Linear Programming
pages 63-93 (not sections 4.5 and 4.6)

Geometry
of casting

The object to be constructed is polyhedral.
Molds of one piece, not molds consisting of two or more pieces.
The object is removed from the mold by a single translation.

Lemma 4.1 The polyhedron P can be removed from its mold by a translation
in direction d if and only if d makes an angle of at least 90° with the outward
normal of all ordinary facets of P.

Finding
the translation
direction ...

+ Wiithg equations of nes
: Cgeny o e
z
l z=1
L AR Given a set of half-planes,
. ’ find a point in their intersection

or decide that the intersection is empty.

ﬁxdx + ﬁ)‘dy + ﬁ: S 0.

% Half-plane
“~ Intersection

|_| An ordinary facet induces a constraint.
It is an inequality that describes
a half-plane on the planez =1.

... 1s a purely
geometric problem

Let H = {hy,hz,...,h,} be a set of linear constraints in two variables, that is,
constraints of the form

aix+biy < ci,

Half-planes (

Intersection &(\\\

(iv))

(iii)

This planar problem can be solved in expected linear time !

What is the meaning of expected ?
If we try all its facets as top facets, we derive the theorem :

Theorem 4.2 Let P be a polyhedron with n facets. In O(n*) expected time and
using O(n) storage it can be decided whether P is castable. Moreover, if P is
castable, a mold and a valid direction for removing P from it can be computed
in the same amount of time.

Divide o kg e
Output. The convex polygonal region C := (e h.
1. if card(H) =1

and conquer

algorithm

2 then C «- the unique half-plane h € H

3 else Split H into sets H) and H; of size [n/2] and [n/2].
4, C; «INTERSECTHALFPLANES(H))

5 C» «~INTERSECTHALFPLANES(H>)

6 C +INTERSECTCONVEXREGIONS(C;,C2)

What remains is to describe the final procedure ?
But wait—didn’t we see this problem before ?

Indeed, we can compute the intersection of two polygons in O(n log n+ k log n) !
Moreover, k<n !

This gives the following recurrence for the total running time:

o — O, ifn=1,
(n) = O(nlogn)+2T(n/2), ifn>1.

This recurrence solves to T'(n) = O(nlog®n). €1 e

But our
polygonal
regions are
convex !

hy

right boundary

left boundary
hs

Lie(C) = h3, g, hs
Lright(C) = h2,

left_edge C2

left_edge Cl

G G

right edge C1 = nil

right_edge C2

-

l

The new algorithm is a plane sweep algorithm:

we move a sweep line downward over the plane,
and we maintain the edges of C1 and C2 intersecting the sweep line.

Since C1 and C2 are convex, there are at most four such edges.
Hence, there is no need to store these edges in a complicated data structure.

Handling

an event

1in the sweep
algorithm

P

v

right edge -C2

e right_edge C2

leftedge .C2

Half-planes
Intersection

This planar problem can be solved in expected linear time !

What is the meaning of expected ?
If we try all its facets as top facets, we derive the theorem :

Theorem 4.3 The intersection of two convex polygonal regions in the plane can
be computed in O(n) time.

This theorem shows that we can do the merge step in INTERSECTHALF-
PLANES in linear time. Hence, the recurrence for the running time of the
algorithm becomes

. B 0(1), ifn= 15
(n) - O(R) ol 2T(n/2)_ ifn>1,

leading to the following result:

Corollary 4.4 The common intersection of a set of n half-planes in the plane
can be computed in O(nlogn) time and linear storage.

Incremental L

[)
linear Subjetto avizi 4+ avers < by g
. :
programming i s S B

(1) (ii) (iii) (iv)
X" Zf Jﬁﬁ‘

Incremental

bounded s
linear s
programming g

~px €M otherwise

ol

solution

[p<M ife>0
2= “py<M otherwise

Let (H,C) be a linear program. We number the half-planes h;, ha, ..., h,. Let
H; be the set of the first i constraints, together with the special constraints m
and m;, and let C; be the feasible region defined by these constraints:

H; .= {mlamZahl:hz"'ahi}a
Ci:= mnNmaNhNhyN---Nh;.

Algorithm 2DBOUNDEDLP(H,¢, my,m3)

Input. A linear program (H U {m,m,},), where H is a set of n half-planes,
¢ € R2, and m,, m; bound the solution.

Output. If (HU {m;,my},€) is infeasible, then this fact is reported. Otherwise,
the lexicographically smallest point p that maximizes fz(p) is reported.

AN ol ol S

g N

Let vy be the corner of C.
Let hy,...,h, be the half-planes of H.
fori« 1ton
do if Vi1 € hi
then Vi Vi
else v; «the point p on #; that maximizes f:(p), subject to the
constraints in H; ;.
if p does not exist
then Report that the linear program is infeasible and quit.

9. returnv,

In more
detail

Lemma 4.7 Algorithm 2DBOUNDEDLP computes the solution to a bounded
linear program with n constraints and two variables in O(nz) time and linear
storage.

It is easy to see that the algorithm requires only linear storage. We add the
half-planes one by one in n stages. The time spent in stage i is dominated by the
time to solve a 1-dimensional linear program in line 6, which is O(i). Hence,
the total time needed is bounded by

Y 0(i) = o(n?).

n
i=1

Randomized

linear

Algorithm 2DRANDOMIZEDBOUNDEDLP(H, ¢, m;,m3)
Input. A linear program (H U {m,m,},c), where H is a set of n half-planes,
¢ € R?, and m,, m; bound the solution.
Output. If (HU {my,m3},€) is infeasible, then this fact is reported. Otherwise,
the lexicographically smallest point p that maximizes fz(p) is reported.
Let vg be the corner of Cp.

—

[}
prO grammlng 2: Compute a random permutation h,,...,h, of the half-planes by calling

&

half-planes
defining v,

Lot}

RANDOMPERMUTATION(H|1 -+ - n]).

3. fori«1lton

4. doifv; | €h;

5. then Vi Vi1

6. else v; «the point p on ¢; that maximizes f:(p), subject to the
constraints in H; ;.

7. if p does not exist

8. then Report that the linear program is infeasible and quit.

9. return v,

Lemma 4.8 The 2-dimensional linear programming problem with n constraints
can be solved in O(n) randomized expected time using worst-case linear storage.

Let X; be a random variable, which is 1 if v;_; & h;, and 0 otherwise.

Expected £ 005
complexity

Linearity of expectation

n ¢ n
E[}_:1 0(i) - Xi] = }_:10(1')

21}

g? Since the half-planes are added in random order,
the probability that h; is one of the special half-planes

{E[X]].

half-planes
defining vy is at most 2/i
y
= 2
Lemma 4.8 The 2-dimensional linear programming problem with n constraints Z — = 0(n) .
can be solved in O(n) randomized expected time using worst-case linear storage. i1 i

Smallest
Enclosing

Disk

D;i = D;

Algorithm MINIDISC(P)

Input. A set P of n points in the plane.

Output. The smallest enclosing disc for P.

1. Compute a random permutation py,...,p, of P.

2. Let D, be the smallest enclosing disc for {p;,p,}.

3. fori«3ton

4, doif p; € D;

5 then D; « D;

6 else D; «— MINIDISCWITHPOINT({p1,...,pi1}.pPi)
7. return D,

The simple randomized technique we used above turns out to be
surprisingly powerful.

It can be applied not only to linear programming but to a variety
of other optimization problems as well.

MINIDISCWITHPOINT(P, g)
Input. A set P of n points in the plane, and a point g such that there exists an

S mal 1 e St enclosing disc for P with g on its boundary.

Output. The smallest enclosing disc for P with g on its boundary.

. 1. Compute a random permutation py,...,p, of P.
2. Let D; be the smallest disc with g and p; on its boundary.
Enclosing et
4. doif p; € Dj
° 5. then Dj L Dj 1
D 1 Sk 6 else D; « MINIDISCWITH2POINTS({p1,...,Pj-1}:Pjq)
7. return D,

MINIDISCWITH2POINTS(P.q1,42)

e, Dy Inpu{. A set P of n poin§ in the plz.me, and two poir}ts g1 and g> such that there
’ exists an enclosing disc for P with g; and g7 on its boundary.
Output. The smallest enclosing disc for P with g; and g on its boundary.

else D, «the disc with g,, g,, and p; on its boundary
return D,

1. Let Dy be the smallest disc with ¢, and g, on its boundary.
2. fork« lton

3. doif p, € D, |

4. then Dy «+ Dy,

5.

6.

Theorem 4.15 The smallest enclosing disc for a set of n points in the plane can D;
be computed in O(n) expected time using worst-case linear storage.

Expected
running

S

points that together with
q define D;

One of the points on the boundary is q,
so there are at most two points that cause
the smallest enclosing circle to shrink.

time for mimniDiskWithPoint !

Exercice 4

4.2 Consider the casting problem in the plane: we are given polygon P and a
2-dimensional mold for it. Describe a linear time algorithm that decides
whether P can be removed from the mold by a single translation.

