
Querying a
database

Orthogonal searching
5 : Linear Programming
pages 95-116

1D Range
Searching

When we search with the interval [18 : 77] in the tree,
we have to report all the points stored in the dark grey leaves
plus the leaf of item 19.

We can solve the 1-dimensional range
searching problem efficiently
using a well-known data structure:

a balanced binary search tree !

Finding
the split node ?

We first search for the split node
where the paths to x and x’ split.

Let lc(ν) and rc(ν) denote
the left and right child of a node ν.

Query
algorithm

One traverses the subtree rooted at a given node
and reports the points stored at its leaves.

Since the number of internal nodes of any binary tree is
less than its number of leaves,
the time is linear in the number of reported points.

Performance
of this
data
structure

The query algorithm is output-sensitive !

A balanced binary search tree uses O(n) storage and is built in O(n logn) time.

The time spent in a query
is linear in the number of reported points : O(k).

The remaining nodes are nodes on the search path.
The paths of a balanced tree have length O(logn).
The time we spend at each node is O(1).

2D Range
Searching

How can we generalize the data structure
used for 1-dimensional range queries

-which was just a binary search tree-

to 2-dimensional range queries?

Kd-trees

Building Kd-trees

Nodes of
a kd-tree…

The left child of the root
corresponds to the left half- plane
and the right child
corresponds to the right half-plane. … and

regions of the plane

A point is stored in the subtree rooted at a node
ν if and only if it lies in region(ν).

The subtree of the node stores the black dots.

Recursive
Query
Procedure

Recursive
Query
Procedure

Let us
summarize
the performances of kd-trees

Nodes in a d-dimensional kd-trees
Query time is given by :

Range-trees

Building
a range
tree

Query
algorithm

Let us
summarize
the performances of range trees

Nodes in a d-dimensional ange-trees
Query time is given by :

Composite
Number
Space

The first coordinate of any two composite points are distinct
The same holds true for the second coordinate.

We construct kd-trees and range trees for this space with the order defined by

Fractional
Cascading

We query with the range [20 : 65].

First we use binary search in A1 to find 23, the smallest key larger than or equal to 20.
From there we walk to the right until we encounter a key larger than 65.
The objects that we pass have their keys in the range, so they are reported.

Then we follow the pointer from 23 into A2.
We get to the key 30, which is the smallest one larger than or equal to 20 in A2.
From there we also walk to the right until we reach a key larger than 65.
We report the objects from S2 whose keys are in the range.

Layered
Range

Tree

In conclusion :-)

•  Kd tree
 space : O(n) – build : O(n log n)
query : O(k + sqrt n)

•  Range tree
 space : O(n log n) – build : O(n log n)
query : O(k + log2 n)

•  Layered Range tree
 space : O(n log n) – build : O(n log n)
query : O(k + log n)

Exercice 5

