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1D Range 
Searching 

When we search with the interval [18 : 77] in the tree,  
we have to report all the points stored in the dark grey leaves 
plus the leaf of item 19. 

We can solve the 1-dimensional range 
searching problem efficiently  
using a well-known data structure:  
 
a balanced binary search tree ! 



Finding 
the split node ? 

We first search for the split node  
where the paths to x and x’ split.  
 
Let lc(ν) and rc(ν) denote  
the left and right child of a node ν. 



Query 
algorithm 

One traverses the subtree rooted at a given node  
and reports the points stored at its leaves.  
 
Since the number of internal nodes of any binary tree is 
less than its number of leaves,  
the time is linear in the number of reported points. 



Performance 
of this 
data  
structure 

The query algorithm is output-sensitive ! 
 
A balanced binary search tree uses O(n) storage and is built in O(n logn) time. 

The time spent in a query  
is linear in the number of reported points : O(k).  
 
The remaining nodes are nodes on the search path. 
The paths of a balanced tree have length O(logn).  
The time we spend at each node is O(1). 



2D Range 
Searching 

How can we generalize the data structure 
used for 1-dimensional range queries  
 
-which was just a binary search tree-  
 
to 2-dimensional range queries?  



Kd-trees 



Building Kd-trees 



Nodes of  
a kd-tree… 

The left child of the root  
corresponds to the left half- plane  
and the right child  
corresponds to the right half-plane. … and  

regions of the plane 

A point is stored in the subtree rooted at a node 
ν if and only if it lies in region(ν). 
 
The subtree of the node stores the black dots. 



Recursive 
Query  
Procedure 



Recursive 
Query  
Procedure 



Let us 
summarize 
the performances of kd-trees 
 

Nodes in a d-dimensional kd-trees 
Query time is given by :  



Range-trees 



Building 
a range 
tree 



Query 
algorithm 



Let us 
summarize 
the performances of range trees 
 

Nodes in a d-dimensional ange-trees 
Query time is given by :  



Composite 
Number 
Space 
 

The first coordinate of any two composite points are distinct 
The same holds true for the second coordinate.  

We construct kd-trees and range trees for this space with the order defined by  



Fractional 
Cascading 

We query with the range [20 : 65].  
 
First we use binary search in A1 to find 23, the smallest key larger than or equal to 20.  
From there we walk to the right until we encounter a key larger than 65.  
The objects that we pass have their keys in the range, so they are reported.  
 
Then we follow the pointer from 23 into A2.  
We get to the key 30, which is the smallest one larger than or equal to 20 in A2.  
From there we also walk to the right until we reach a key larger than 65. 
We report the objects from S2 whose keys are in the range. 



Layered 
Range 

Tree 
 



In conclusion  :-) 
  

•  Kd tree   
 space : O(n) – build : O(n log n) 
query : O(k + sqrt n) 

•  Range tree   
 space : O(n log n)  – build : O(n log n) 
query : O(k + log2 n) 

•  Layered Range tree   
 space : O(n log n)  – build : O(n log n) 
query : O(k + log n) 



Exercice 5 


