

1D Range
 Searching

We can solve the 1-dimensional range

 searching problem efficiently using a well-known data structure:a balanced binary search tree !

When we search with the interval [18:77] in the tree, we have to report all the points stored in the dark grey leaves plus the leaf of item 19.

Let $P:=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ be the given set of points on the real line.

Finding the split node?

We first search for the split node where the paths to x and x ' split.

Let $l c(v)$ and $r c(v)$ denote the left and right child of a node v.

FindSplitNode($\left.\mathcal{T}, x, x^{\prime}\right)$
Input. A tree \mathcal{T} and two values x and x^{\prime} with $x \leqslant x^{\prime}$.
Output. The node v where the paths to x and x^{\prime} split, or the leaf where both paths end.

1. $\quad v \leftarrow \operatorname{root}(\mathcal{T})$
2. while v is not a leaf and ($x^{\prime} \leqslant x_{v}$ or $x>x_{v}$)
3. do if $x^{\prime} \leqslant x_{v}$
4. \quad then $v \leftarrow l c(v)$
5. else $v \leftarrow r c(v)$
6. return v

Query algorithm

Algorithm 1DRANGEQUERY(T), $\left.\left[x: x^{\prime}\right]\right)$
Input. A binary search tree \mathcal{T} and a range $\left[x: x^{\prime}\right]$.
Output. All points stored in \mathcal{T} that lie in the range.

1. $\quad v_{\text {split }} \leftarrow$ FindSplitNode($\left.\mathcal{T}, x, x^{\prime}\right)$
2. if $v_{\text {split }}$ is a leaf
3. then Check if the point stored at $v_{\text {split }}$ must be reported.
4. else $(*$ Follow the path to x and report the points in subtrees right of the path. *)
5. $\quad v \leftarrow l c\left(v_{\text {split }}\right)$
6. while v is not a leaf
7. do if $x \leqslant x_{v}$
8. then REPORTSUBTREE $(r c(v))$
9.
10.
11.
12. Similarly, follow the path to x^{\prime}, report the points in subtrees left of the path, and check if the point stored at the leaf where the path ends must be reported.

One traverses the subtree rooted at a given node and reports the points stored at its leaves.

Since the number of internal nodes of any binary tree is less than its number of leaves, the time is linear in the number of reported points.

Performance of this data

 structureThe time spent in a query
is linear in the number of reported points: $\mathbf{O (k)}$.
The remaining nodes are nodes on the search path. The paths of a balanced tree have length $\mathbf{O}(\operatorname{logn})$.
The time we spend at each node is $O(1)$.

The query algorithm is output-sensitive !

A balanced binary search tree uses $\mathbf{O (n)}$ storage and is built in $\mathbf{O}(\mathrm{n} \operatorname{logn})$ time.

Theorem 5.2 Let P be a set of n points in 1-dimensional space. The set P can be stored in a balanced binary search tree, which uses $O(n)$ storage and has $O(n \log n)$ construction time, such that the points in a query range can be reported in time $O(k+\log n)$, where k is the number of reported points.

2D Range
 Searching

How can we generalize the data structure used for 1-dimensional range queries
-which was just a binary search tree-
to 2-dimensional range queries?

A 2-dimensional rectangular range query on P asks for the points from P lying inside a query rectangle $\left[x: x^{\prime}\right] \times\left[y: y^{\prime}\right]$. A point $p:=\left(p_{x}, p_{y}\right)$ lies inside this rectangle if and only if

$$
p_{x} \in\left[x: x^{\prime}\right] \quad \text { and } \quad p_{y} \in\left[y: y^{\prime}\right] .
$$

Kd-trees

Lemma 5.3 A kd-tree for a set of n points uses $O(n)$ storage and can be constructed in $O(n \log n)$ time.

$$
T(n)= \begin{cases}O(1), & \text { if } n=1, \\ O(n)+2 T(\lceil n / 2\rceil), & \text { if } n>1,\end{cases}
$$

Building Kd-trees

Lemma 5.3 A kd-tree for a set of n points uses $O(n)$ storage and can be constructed in $O(n \log n)$ time.

Nodes of

 a kd-tree...

The left child of the root corresponds to the left half- plane and the right child
corresponds to the right half-plane.

Recursive Query Procedure

Algorithm SearchKdTree (v, R)
Input. The root of (a subtree of) a kd-tree, and a range R. Output. All points at leaves below v that lie in the range.

1. if v is a leaf
2. then Report the point stored at v if it lies in R.
3. else if $\operatorname{region}(l c(v))$ is fully contained in R
4. then REPortSUbTREE $(l c(v))$
5. else if region $(l c(v))$ intersects R
then $\operatorname{SearchKdTree}(l c(v), R)$
6. if $\operatorname{region}(r c(v))$ is fully contained in R
7. then REPORTSUBTREE $(r c(v)$)
8. else if region $(r c(v))$ intersects R
9.

then $\operatorname{SearchKdTree}(r c(v), R)$

Recursive

 Query Procedure

Algorithm SearchKdTree (v, R)

 Input. The root of (a subtree of) a kd-tree, and a range R. Output. All points at leaves below v that lie in the range.1. if v is a leaf
2. then Report the point stored at v if it lies in R.
3. else if $\operatorname{region}(l c(v))$ is fully contained in R
4. then ReportSubtree ($l c(v)$)
5. else if $\operatorname{region}(l c(v))$ intersects R
6. then $\operatorname{SearchKdTreE}(l c(v), R)$
7. if $\operatorname{region}(r c(v))$ is fully contained in R
8. then REPORTSUBTREE($r c(v)$)
9. else if region $(r c(v))$ intersects R
10. then $\operatorname{SEARCHKDTREE}(r c(v), R)$

$$
\operatorname{region}(l c(v))=\operatorname{region}(v) \cap \ell(v)^{\text {left }}
$$

where $\ell(v)$ is the splitting line stored at v, and $\ell(v)^{\text {left }}$ is the half-plane to the left of and including $\ell(v)$.

Let us

 summarize$$
O\left(n^{1-1 / d}+k\right)
$$

the performances of kd-trees

$$
Q(n)= \begin{cases}O(1), & \text { if } n=1, \\ 2+2 Q(n / 4), & \text { if } n>1\end{cases}
$$

This recurrence solves to $Q(n)=O(\sqrt{n})$.

Theorem 5.5 A kd-tree for a set P of n points in the plane uses $O(n)$ storage and can be built in $O(n \log n)$ time. A rectangular range query on the $k d$-tree takes $O(\sqrt{n}+k)$ time, where k is the number of reported points.

Range-trees

Lemma 5.6 A range tree on a set of n points in the plane requires $O(n \log n)$ storage.

Building

a range

410e

Algorithm Build2DRANGETREE (P)

Input. A set P of points in the plane.
Output. The root of a 2 -dimensional range tree.

1. Construct the associated structure: Build a binary search tree $\mathcal{T}_{\text {assoc }}$ on the set P_{y} of y-coordinates of the points in P. Store at the leaves of $\mathcal{T}_{\text {assoc }}$ not just the y-coordinate of the points in P_{y}, but the points themselves.
2. if P contains only one point
3. then Create a leaf v storing this point, and make $\mathcal{T}_{\text {assoc }}$ the associated structure of v.
4. else Split P into two subsets; one subset $P_{\text {left }}$ contains the points with x-coordinate less than or equal to $x_{\text {mid }}$, the median x-coordinate, and the other subset $P_{\text {right }}$ contains the points with x-coordinate larger than $x_{\text {mid }}$.
5. $\quad v_{\text {left }} \leftarrow$ BUILD2DRANGETREE $\left(R_{\text {left }}\right)$
6. $\quad v_{\text {right }} \leftarrow$ BUILD2DRANGETREE $\left(P_{\text {right }}\right)$
7. Create a node v storing $x_{\text {mid }}$, make $v_{\text {left }}$ the left child of v, make $v_{\text {right }}$ the right child of v, and make $\mathcal{T}_{\text {assoc }}$ the associated structure of v.

8. return v

Lemma 5.6 A range tree on a set of n points in the plane requires $O(n \log n)$
storage.

Query algorithm

Algorithm 2DRANGEQUERY($\left.\mathcal{T},\left[x: x^{\prime}\right] \times\left[y: y^{\prime}\right]\right)$
Input. A 2-dimensional range tree \mathcal{T} and a range $\left[x: x^{\prime}\right] \times\left[y: y^{\prime}\right]$.
Output. All points in \mathcal{T} that lie in the range.

1. $\quad v_{\text {split }} \leftarrow$ FindSplitNode $\left(\mathcal{T}, x, x^{\prime}\right)$
2. if $v_{\text {split }}$ is a leaf
3. then Check if the point stored at $v_{\text {split }}$ must be reported.
4. else $(*$ Follow the path to x and call 1DRANGEQUERY on the subtrees right of the path. *)
5. $\quad v \leftarrow l c\left(v_{\text {split }}\right)$
6. while v is not a leaf
7. do if $x \leqslant x_{v}$
8.

then 1DRANGEQUERY $\left(\mathcal{T}_{\text {assoc }}(r c(v)),\left[y: y^{\prime}\right]\right)$
$v \leftarrow l c(v)$
else $v \leftarrow r c(v)$
Check if the point stored at v must be reported.
11. Similarly follow the path from $r(v, i)$ to x^{\prime},
12. Similarly, follow the path from $r c\left(v_{\text {split }}\right)$ to x^{\prime}, call 1DRANGEQUERY with the range $\left[y: y^{\prime}\right]$ on the associated structures of subtrees left of the path, and check if the point stored at the leaf where the path ends must be reported.

Nodes in a d-dimensional ange-trees
Query time is given by :

$$
O\left(\log ^{d} n+k\right)
$$

Let us

 summarize
the performances of range trees

Theorem 5.8 Let P be a set of n points in the plane. A range tree for P uses $O(n \log n)$ storage and can be constructed in $O(n \log n)$ time. By querying this range tree one can report the points in P that lie in a rectangular query range in $O\left(\log ^{2} n+k\right)$ time, where k is the number of reported points.

Composite
 $$
p:=\left(p_{x}, p_{y}\right)
$$
 $$
\hat{p}:=\left(\left(p_{x} \mid p_{y}\right),\left(p_{y} \mid p_{x}\right)\right)
$$

$$
\left[x: x^{\prime}\right] \times\left[y: y^{\prime}\right]
$$

$$
\left[(x \mid-\infty):\left(x^{\prime} \mid+\infty\right)\right] \times\left[(y \mid-\infty):\left(y^{\prime} \mid+\infty\right)\right]
$$

The first coordinate of any two composite points are distinct The same holds true for the second coordinate. We construct kd-trees and range trees for this space with the order defined by

$$
(a \mid b)<\left(a^{\prime} \mid b^{\prime}\right) \Leftrightarrow a<a^{\prime} \text { or }\left(a=a^{\prime} \text { and } b<b^{\prime}\right) .
$$

Fractional

Cascading

We query with the range [20:65].
First we use binary search in A1 to find 23, the smallest key larger than or equal to 20.
From there we walk to the right until we encounter a key larger than 65.
The objects that we pass have their keys in the range, so they are reported.

Then we follow the pointer from 23 into $\mathbf{A 2}$.
We get to the key 30, which is the smallest one larger than or equal to 20 in $\mathbf{A 2}$.
From there we also walk to the right until we reach a key larger than 65.
We report the objects from $S 2$ whose keys are in the range.

Layered Range

 Tree

Theorem 5.11 Let P be a set of n points in d-dimensional space, with $d \geqslant 2$. A layered range tree for P uses $O\left(n \log ^{d-1} n\right)$ storage and it can be constructed in $O\left(n \log ^{d-1} n\right)$ time. With this range tree one can report the points in P that lie in a rectangular query range in $O\left(\log ^{d-1} n+k\right)$ time, where k is the number of reported points.

In conclusion :-)

- Kd tree
space : $O(n)$ - build : $O(n \log n)$ query : $\mathbf{O}(\mathrm{k}+\mathrm{sqrt} \mathrm{n})$
- Range tree space : $O(n \log n)$ - build : $O(n \log n)$ query: $O\left(k+\log ^{2} n\right)$

- Layered Range tree space : $O(n \log n)$ - build : $O(n \log n)$ query: $\mathbf{O}(k+\log n)$

Exercice 5

5.1 In the proof of the query time of the kd-tree we found the following recurrence:

$$
Q(n)= \begin{cases}O(1), & \text { if } n=1 \\ 2+2 Q(n / 4), & \text { if } n>1\end{cases}
$$

Prove that this recurrence solves to $Q(n)=O(\sqrt{n})$. Also show that $\Omega(\sqrt{n})$ is a lower bound for querying in a kd-tree by defining a set of n points and a query rectangle appropriately.

