Querying a
database

sal
ary o
G. Ometer
7 born: Aug 19, 1954
4,000 salary: $3.500
e
3,000
e °
; ™
®.
. ®
' ' date of birth
19,500,000 19,559,999

Orthogonal searching
5 : Linear Programming
pages 95-116

4,000 |

3,000 ¢

.......

.......

B [P

...........

19.500.000

19.559.999

1D Range
Searching

We can solve the 1-dimensional range
searching problem efficiently
using a well-known data structure:

a balanced binary search tree !

49
23 80
10 62 89
3 19 (49 Y 70 89 100
3|(10{[19 (0 o6 i} (80 100] 105
u u

When we search with the interval [18 : 77] in the tree,

we have to report all the points stored in the dark grey leaves
plus the leaf of item 19.

Let P:= {p1,p2,...,pn} be the given set of points on the real line.

Finding
the split node ?

root(T)

. - . . P e i : Lo o a1 € >

- - —~— T AL T ~ - -
- . e ﬂg('.‘,’%& - -~ ~—
. ¥ ot . 4

the selected subtrees B
FINDSPLITNODE(T, x,x')

Input. A tree T and two values x and X’ with x < x'.
Output. The node v where the paths to x and x’ split, or the leaf where both

paths end.
V « root
We first search for the split node (_ (T)
where the paths to x and x’ split. while v is not a leaf and (x' Sy Or x> Xxy)
do ifx’ < Xy

then v « lc(V)
else v« rc(v)

Let lc(v) and rc(v) denote
the left and right child of a node v.

ANl

return v

Query
algorithm

the selected subtrees

Algorithm IDRANGEQUERY(T, [x : x'])
Input. A binary search tree T and a range [x : x'].
Output. All points stored in T that lie in the range.

1.

Vsplit <——FINDSPLITNODE(T, x,x’)
if Vsplit is a leaf
then Check if the point stored at vyp,); must be reported.
else (* Follow the path to x and report the points in subtrees right of the

path. x)
Vel (Vsplit)
while v is not a leaf
doifx <x,
then REPORTSUBTREE(rc(V))
v« le(v)

else v« re(v)
Check if the point stored at the leaf v must be reported.
Similarly, follow the path to x/, report the points in subtrees left of
the path, and check if the point stored at the leaf where the path
ends must be reported.

One traverses the subtree rooted at a given node
and reports the points stored at its leaves.

Since the number of internal nodes of any binary tree is
less than its number of leaves,

the time is linear in the number of reported points.

Performance
of this

data
The time spent in a query
Sthture is linear in the number of reported points : O(k).

The remaining nodes are nodes on the search path.
The paths of a balanced tree have length O(logn).
The time we spend at each node is O(1).

The query algorithm is output-sensitive !

A balanced binary search tree uses O(n) storage and is built in O(n logn) time.

Theorem 5.2 Let P be a set of n points in 1-dimensional space. The set P
can be stored in a balanced binary search tree, which uses O(n) storage and
has O(nlogn) construction time, such that the points in a query range can be
reported in time O(k+ logn), where k is the number of reported points.

2D Range
Searching

How can we generalize the data structure
used for 1-dimensional range queries

-which was just a binary search tree-

to 2-dimensional range queries?

) _____
Py|----- -—==
|
|
|
|
}' _____ T
I | |
| | |
| | |
I | |
1 | |
X Px ¥

A 2-dimensional rectangular range query on P asks for the points from P lying
inside a query rectangle [x:x'] X [y:y']. A point p := (py, py) lies inside this

rectangle if and only if

Py € [x:X] and

py€y:y]

Kd-trees .

£y £
®
Pa Ps *
.Plo
_Q.ﬂ
T[! ’ + L 7 .

2 P2
-l o L
} Rt & m P opfj
l t 1 Pl p
T r \ ’ ’
p! C
o} + T Ed fb
1 f ?_.,n

T

_ﬁ—.

WS
=7;=‘—1—
—..f

——:

| —.[- T-] | ‘r
N *;Fr_n Jt ‘ e

[
i

ot
I-.
i
r
_..—-—
hi
]

Lemma 5.3 A kd-tree for a set of n points uses O(n) storage and can be con-
structed in O(nlogn) time.

A A—

W i

iR

QE_

_Jo(1), ifn=1,
T(m)= {0(n)+2T([n/2]), ifn>1,

£
£ &
Pa ps 4 Po‘
L]
P10
° ° £ P2 |
Building Kd-trees R
& m °
° Ps
. £y Pe
Lemma 5.3 A kd-tree for a set of n points uses O(n) storage and can be con- ; ;
structed in O(nlogn) time. ! ’

Nodes of
a kd-tree...

\\\\
\»

A point is stored in the subtree rooted at a node

The left child of the root
corresponds to the left half- plane
and the right child

corresponds to the right half-plane.

v if and only if it lies in region(v).

The subtree of the node stores the black dots.

£
[L] K
o ° |
e o ° ° o
Mgion(v) £ e o o and

regions of the plane

Recursive

Query
Procedure

P4 ps‘ PIZ..
P13
P2
e 78 40 i
P . : o °
P 11
Ps

Algorithm SEARCHKDTREE(V,R)
Input. The root of (a subtree of) a kd-tree, and a range R.
Output. All points at leaves below v that lie in the range.
if v is a leaf
then Report the point stored at v if it lies in R.
else if region(lc(v)) is fully contained in R
then REPORTSUBTREE(lc(V))
else if region(lc(v)) intersects R
then SEARCHKDTREE(lc(V),R)
if region(rc(v)) is fully contained in R
then REPORTSUBTREE(rc(V))
else if region(rc(v)) intersects R
0. then SEARCHKDTREE(rc(V),R)

SO R LN =

R . Algorithm SEARCHKDTREE(V, R)
e Curs 1V€ Input. The root of (a subtree of) a kd-tree, and a range R.
Output. All points at leaves below v that lie in the range.
1. ifvisaleaf
Query 2. then Report the point stored at v if it lies in R.
3. else if region(lc(v)) is fully contained in R
4. then REPORTSUBTREE(lc(V))
Pro C e dure 5. else if region(lc(v)) intersects R
6. then SEARCHKDTREE(/c(V),R)
7. if region(rc(v)) is fully contained in R
&) 8. then REPORTSUBTREE(rc(V))
£y 9. else if region(rc(v)) intersects R
10. then SEARCHKDTREE(rc(V),R)

region(v)

region(lc(v)) = region(v) N£(v)*™,

where £(Vv) is the splitting line stored at v, and £(v)' is the half-plane to the
left of and including £(V).

Nodes in a d-dimensional kd-trees

Let us Query time is given by :
. O(nl‘l/d+k),
SUIMIinNarizc

the performances of kd-trees

~[o(), ifn=1,
Qln) = {2+2Q(n/4), ifn>1.

This recurrence solves to Q(n) = O(y/n).

Theorem 5.5 A kd-tree for a set P of n points in the plane uses O(n) storage
and can be built in O(nlogn) time. A rectangular range query on the kd-tree
takes O(+/n+ k) time, where k is the number of reported points.

binary search tree on
x-coordinates
binary search tree
on y-coordinates

Range-trees

NP

—ac

Lemma 5.6 A range tree on a set of n points in the plane requires O(nlogn)

storage.

Building
a range
tree

Algorithm BUILD2DRANGETREE(P)
Input. A set P of points in the plane.
Output. The root of a 2-dimensional range tree.

1.

N

Construct the associated structure: Build a binary search tree Tygs0c On the
set P, of y-coordinates of the points in P. Store at the leaves of Tyg50c DOt
just the y-coordinate of the points in P, but the points themselves.
if P contains only one point
then Create a leaf v storing this point, and make Ty the associated
structure of v.
else Split P into two subsets; one subset A.s contains the points with
x-coordinate less than or equal to x4, the median x-coordinate,
and the other subset Fjgp; contains the points with x-coordinate
larger than xpg.
Vieft ¢+ BUILD2DRANGETREE(Bef)
Vright < BUILD2DRANGETREE(P,1gm)
Create a node v storing xni4, make Vs the left child of v, make
Vright the right child of v, and make Tyssoc the associated structure
of v.
return v

Lemma 5.6 A range tree on a set of n points in the plane requires O(nlogn)

storage.

Query
algorithm

Algorithm 2DRANGEQUERY(T, [x: x| x [y :y'])
Input. A 2-dimensional range tree T and a range [x: X'] x [y: y'].
Output. All points in T that lie in the range.

L.

2
3.
4

Veplit <~ FINDSPLITNODE(T, x,x")
if Vgpiit is a leaf
then Check if the point stored at Vg must be reported.
else (* Follow the path to x and call IDRANGEQUERY on the subtrees

right of the path. %)
V — lC(Vspm)
while v is not a leaf
doifx <x,
then IDRANGEQUERY(Tyss0c(re(V)), [y 1 ¥'])
v« lc(v)

else v« re(v)
Check if the point stored at v must be reported.
Similarly, follow the path from re(Vgpit) to X', call IDRANGE-
QUERY with the range [y : y’] on the associated structures of sub-
trees left of the path, and check if the point stored at the leaf where
the path ends must be reported.

Nodes in a d-dimensional ange-trees
Query time is given by :

O(login +k).

Let us

summarize
the performances of range trees

Theorem 5.8 Let P be a set of n points in the plane. A range tree for P uses
O(nlogn) storage and can be constructed in O(nlogn) time. By querying this
range tree one can report the points in P that lie in a rectangular query range in
O(log?n+k) time, where k is the number of reported points.

Composite

p = (Px,Py)

Number

P := ((px|py), (Pylpx))

Space

[x]x[y:y]

(] = 0) = (] +20)] X [(¥] —20) : (/| +2)].

The first coordinate of any two composite points are distinct
The same holds true for the second coordinate.

We construct kd-trees and range trees for this space with the order defined by

(alb) < (d'|b)) & a<d or(a=d and b<?)

Fractional
Cascading

Ay

30 (37 |59 | 62 70|80‘100‘105‘

310‘19\

Ay 10 19 62 | 70 80 100

We query with the range [20 : 65].

First we use binary search in A1 to find 23, the smallest key larger than or equal to 20.
From there we walk to the right until we encounter a key larger than 65.
The objects that we pass have their keys in the range, so they are reported.

Then we follow the pointer from 23 into A2.

We get to the key 30, which is the smallest one larger than or equal to 20 in A2.
From there we also walk to the right until we reach a key larger than 65.

We report the objects from S2 whose keys are in the range.

(2,19) (7,10) (12,3) (17,62) (21,49) (41,95) (58,59) (93,70)

(5,80) (8,37) (15,99)

(33,30)

(52,23)

(67,89)

Layered
Range
Tree

(3 To] 1923]30]37]49[s9] 62] 70 80[89195199

PRERERE

[3 ToT19]57] 62[80]99]

[.I T RI'J [T: i I
IE T 2R A ¥ 1

M9[so] [10]37] [3]99] [62] [30]a9][23]95] [59][70]89]

i | Ij__ [Il v !_

Theorem 5.11 Let P be a set of n points in d-dimensional space, withd > 2. A
layered range tree for P uses O(nlog? ! n) storage and it can be constructed in
O(nlog?~!n) time. With this range tree one can report the points in P that lie
in a rectangular query range in O(log® ' n+ k) time, where k is the number of

reported points.

In conclusion :-)

* Kd tree
space : O(n) — build : O(n log n)
query : O(k + sqrt n)

* Range tree
space : O(n log n) — build : O(n log n)
query : O(k + log? n)

I, CANOPY (LARGE FRUIT ¥ NUT TREES)

@ 13 N 2. L%w TREE LAYER c(DWARF FRUIT TREES) * Layered Range tree
3, SHRug LAYER (CurrRanTS ¥ BERRIES) . _ i1d -
o) \ghfm\\u (\'“is ,‘s“’ﬁ 4. HergacEous (ComMFREYS, Beers, HERBS) space : O(n log n) —build : O(n log n)
SIS IE, AR 5, RHIZOS PHERE (Ro0T vEwETABLES) query : O(k + log n)

&/‘ &‘Q‘ "\)\)4,“1 6 SoiL S (GR

T4 / /\/) "ll/// oL URFﬂ CE DUND

% j /\), w) q*«) ”“037‘5\?',’9‘ COVER,EG, STRAWBERRY, €7¢)

A ‘Jv;,,i \\W‘, ‘\\\m "Mﬁ N .,,w\}'-g'g, 7. VERTICAL LAYER

(CLIMBERS, VINES)

@ Vi
\\\\"ﬁtﬁ e V5

~ /L -
THE FOREST GARDEN: A SEVEN LEVEL BENEFICIAL

GuiLD

Exercice 5

5.1

In the proof of the query time of the kd-tree we found the following

recurrence:
~[oq), ifn=1,
O(m) = {2+2Q(n/4), ifn> 1.

Prove that this recurrence solves to Q(n) = O(y/n). Also show that
Q(4/n) is a lower bound for querying in a kd-tree by defining a set of n
points and a query rectangle appropriately.

