Post Oftice Problem

Let us assume that people simply get their goods at
the nearest site. The trading area for a given site
consists of all those points for which that site is

closer than any other site !

Computational Geometry
7 : Voronoi Diagrams
pages 147-161

The induced subdivision is called the Voronoi
diagram of the set of sites.

Vorono1 Diagrams
A universal structure !

Voronoi Cell

Vip)= [) h(p;i, P;)
1<G<N ji

dist(q, p;) < dist(q,p;) Vp; € P,

Thus, the Voronoi cell is
the intersection of n—1 half-planes.

Hence, it is a possibly unbounded

open convex polygonal region bounded
by at most n — 1 vertices

and at most n — 1 edges.

VORONCI
RECIONS

| | »

7Y

Cg. ..A CC}A/\) o Sy
CIRCUH CIRCLE \/ e

Associated To V¢ /
VORON OV
E06E

V. VORONOI

=t YeR1EX

tedAem

SeT
OF PoINTS

“ petaunay “
TRIANGLE
AssowuiaTed T© |V

{é st wer | Box | < |

VoRenot CeELL

VoRoNO!
DiasRar

(3 VORONO! (P> &
-

By-%

-

l ¥yl

U, (veed VR
\‘M /—_/

SeT oF POINTS

THAT HAVe toRe THAN
ONE NeEPReST NGMHMR '

DUVAL :
GRAPH OF VORONOI

>(7@5 j\/ : -ﬁfﬁ'&?ﬁzm.‘w*

cotel’s FORHULA

/ 2){—:‘— 2-(.

Am- ¢ Decavnay epées
2m-“ DetAuNAY FACES
INCLUDING THE ‘owTSIDE © FACE

VO RONOI
REGIONS [/ SITES

= M/

DelAuNAY *

‘_"‘{ NODES ' \—w—— Iﬂ B, s

O(VORONO! > DeLavNAaY I 1S A TRIANGULATION, ONTY
N M JERTICES E06ES [

IE WE ASsure, PoR SiHAPLIUTY,

LAR
A‘ [' DELAUNAY No H cecirwtAR PoINTS
>

™ FACES

F—]
v

VORoNG|
EPGES

0 Frod A PRACTICAL PoINT oF VIeW,
Z‘-. ST DIVIDE QUADRILATERALS
M N

INTD 2 TRIANGUS
Lc/é E .

(2]

} DeLAaunAaY “{4___
Faces
PROPGRTIES s e «jﬂ

Deuuum P) 15 2} TR[ANéuLAnor\& } DELAUNAY]
IF No Y PoiNTS ARE) VeRrTices -
, CDC!KFULAR | @ l

o @ v

36 (PSP J ﬂ

CoNVEX
INTERIOR

Houtl
Of cacH T; e G ,
CoNTAINS NO SITES \(oRorooi
e ! V VERTICES
- e EL. & 8 NEAREST NeiéHBoR of E

THeN CQ;Eﬁ) IS A ODELUNAY EDEE

[.
&\/(Eﬂ \$ & P(EJ I$ UNBOUN DED] VORONO\ S

:NLY e U o€ HCP)\NTGR\D'\ PROPERT‘ES
= e \

= CIRCLE
DetauN AY <> THR OVGH PL p
eDGe

o A
e e~

e s

Complexity

(ny+1)—n.+n=2.

2n, 2 3(n, +1)

Theorem 7.3 For n > 3, the number of vertices in the Voronoi diagram of a set
of n point sites in the plane is at most 2n — 5 and the number of edges is at most

3n—6.

Since there are n sites
and each Voronoi cell has
at most n — 1 vertices

and edges,

the complexity
is at most quadratic.

Largest empty circle

Theorem 7.4 For the Voronoi diagram Vor(P) of a set of points P the following

holds:

(i) A point q is a vertex of Vor(P) if and only if its largest empty circle Cp(q)
contains three or more sites on its boundary.

(i) The bisector between sites p; and p; defines an edge of Vor(P) if and only
if there is a point g on the bisector such that Cp(q) contains both p; and p
on its boundary but no other site.

LAY ®
o ®
6 4
\ O !

/
o \\ / ‘
\._‘_/

PoSsi1BLE |

INCREHENTAL
CONSTRUCTION : }

WATSON
O(w*) aLcorITHM

CASES ke, ok
Q/ CDk But é—Ck
¢ C*

L—\j_rl>
How TO - OBTAIN }

CDK-M o Cﬂk ? . Cjk

4]

SUPER

FrReTLY ' (

| AD® 3 VERTICES

3
—» aw poine e P |

e

LAST N
Flesr oul”
: STACK
SWAPPAD LE
EDGES LIST _/Q -
L G
)

Swuaf
> cire v CIRCLE A
 CRLTERIA :
gy @ ———
‘ l CIRCOHCIRULE =
HNALL\/I CRITERA j -
ReHOVE AL TRIANGES : QN;/ FAILS
CONNEUTED TO THE 3 égg\ﬂ’zgg pOD EDGES l
' ' To sSwaePasle =~ <———
EDEES ULST

VATSoM
PROCEDURE

Fortune O(nlogn)
Algorithm

0(n?)

Let us use a sweep line !

But, it is not so easy, because the part of Vor(P)
above depends not only on the sites
that lie above the line but also on sites below.

Watson

Algorthm

Crystal seeds growth
and Vorono1 diagrams q

LRAN CoNe \WHose neex 15 ar [

j l Scioes ScoPe AT T’A
\ N\ /
———-q. v ————D’x

e =

_\

¥

adl

/
B

<

VoRONO!
EDGES

O llnn)

FoRTUNE 'S
ALGORITHHM

PARAR oLIC
FRONT

< . :
| N : AN
()(’Y\) Size S e N =

SWEEPINE \! ‘\//' W/

PLaNe

CONNE ¢TION

Berween Detavnay

TRIANGVLATION
GND k CONVEX
CONVER .

HULLS

/K 2D DELAUNAY

TRIANGULATION

(X %)

\ 2D C(ONVEX

HULL

AD
TRIANGULATION

C'N FACT
THe SoRUNG

PRroGeer E)

z = X*14?
Z= 2ex+ 25y = (ats l®)

Z o 2ax 1 253 -Co..zf,ga) + nt

—

X‘{‘az 2~ 2ax+4 253 - (a."-p S")-},"&
P :

Y
Cx—a.)a+ (cj -S)I = 1%

2D

The beach line !

The locus of points that arec loser to some site
than to the line
is bounded by a parabola.

Hence, the locus of points that are closer to any site above
than to the line
is bounded by parabolic arcs

They move in opposite directions
Assite event will occur ! to trace out the same edge.

The new breakpoints
coincide at first !

Maintaining
the beach line

as the sweep line moves

What happens
at a site event ?

Lemma 7.6 The only way in which a new arc can appear on the beach line is
through a site event.

So now we understand what happens at a site event:
a new arc appears on the beach line, and a new edge of the Voronoi
diagram starts to be traced out.

Is it possible that a new arc appears on the beach line in any other way ?

The answer is no !

Lemma 7.7 The only way in which an existing arc can disappear from the beach
line is through a circle event.

An arc disappears
fromt the beach line

Data
Structures

Beach line :
a binary
search
tree

Events :
a priority
queue

Voronoi1 diagram :
a doubly-connected

edge list

Designing
Fortune’s
algorithm

~

All the site events are known in advance,
but the circle events are not.

This brings us to one final issue that we must
discuss, namely the detection of circle events.

1. Initialize
* Event queue Q € all site events
* Binarysearchtree T €
* Doubly linked list D € &

2. While Q not I,

* Remove event (¢) from Q with largest y-
coordinate
* HandleEvent(e, T, D)

Handling Site Events

Locate the existing arc (if any) that is above the
new site

Break the arc by replacing the leaf node with a
sub tree representing the new arc and its break

points

Add two half-edge records in the doubly linked
list

Check for potential circle event(s), add them to
event queue if they exist

Locate the arc above

[]
A S lte e » ent * The x coordinate of the new site is used for the binary search

* The x coordinate of each breakpoint along the root to leaf path
is computed on the fly

Break the arc

Corresponding leaf replaced by a new sub-tree

<p[’pm> pj ®
Pi ¢ Pk o P
@
SPmw Pr
Pm
! |

Different arcs can be identified
by the same site!

A new site

Add a new edge

New Half Edge Record
Endpoints € &

Pointers to two half-edge
records

p.
o ° o P

Checking for potential

A ClI’ClG eVent circle events

* Scan for triple of consecutive arcs and
determine if breakpoints converge
— Triples with new arc in the middle do not have
break points that converge

Converging
breakpoints
may not always » Appearance of a new site before the circle
yie]d a circle event event makes the potential circle non-empty
/7 - -~ \
[] d \
{ r—1
/
W/
-_’\J P /l
oo
(The original circle event becomes a false alarm)

A circle event

Add vertex
to the corresponding
edge

Handling circle events

1. Locate the leaf representing the existing arc that is
above the new site
— Delete the potential circle event in the event queue
2. Break the arc by replacing the leaf node with a
sub tree representing the new arc and break points

3. Add anew edge record in the doubly linked list
4. Check for potential circle event(s), add them to
queue if they exist

— Store in the corresponding leaf of T a pointer to the
new circle event in the queue

Link!

Half Edge Record
Endpoints.add(x, y)

A circle event

Deleting the disappearing arc

Creating
a new
edge

New Half Edge Record
Endpoints.add(;g, y)

A new edge is traced out by the new
break point < py, p,>

A circle event

Check the new triplet
for potential
circle event

GD \
Q e w - /
new circle event

End of the
story

Algorithm terminates when the queue is empty,
but the beach line and its break points continue to trace Voronoi edges.

Close those half-infinite edges with a bounding box

Incorporate
a bounding box

Terminate half-lines
with a bounding box!

o[Z ,

O(n log(n))

Handling
a circle event

1. Delete from T the leaf node of the
disappearing arc and its associated
circle events in the event queue

2. Add vertex record in doubly link list O(1)

3. Create new edge record in doubly 0(1)
link list

4. Check the new triplets formed by the o(1)
former neighboring arcs for potential
circle events

O(log n)

Handling
a site event

1. Locate the leaf representing the existing arc

that is above the new site
— Delete the potential circle event in the event queue

2. Break the arc by replacing the leaf node with a
sub tree representing the new arc and break
points

3. Add anew edge record in the link list

4. Check for potential circle event(s), add them to
queue if they exist

— Store in the corresponding leaf of T a pointer to the
new circle event in the queue

O(log n)
o(1)
Each new site can generate at most two new arcs.
o(1) The beach line has at most 2n+1 arcs.
o(1) At most O(n) events in the queue list.
The total running time is O(n log(n))

PrRoBleH A
&2 var SORTING
(i3
oagfxwu? CY/(-
e &
= KnowN LoWeR BOUND

'\ o
- \
CON : \-\DRROR
j/p Yery !
Jj? - —
e

Is Fortune
algorithm
optimal ?

REDUCTION OF THE SORTING PRORLEH ‘

PRoOF
&Y

To | THE CONVEX Hul PROBLEH

ProgieHt
CoNVEX Hull

ASSLHE THAT
AN ALGORITHH

w7 7
7 NOT -
et

Pl Lrl

Re REOUCED TO ED

EXISTS

A ChAN
Sotve WITH

THIS ALGORITHM

FiNDING
TS VERTeX

\,
/OU Sowve Too &u KLY

\\,,/; - Cx xf)

>/Dt/ SORTED

INn a(w\)

osTS 13 (m)

* We can sort numbers using any algorithm that
constructs a Voronoi diagram!

» Map input numbers to a position on the number
line. The resulting Voronoi diagram is doubly
linked list that forms a chain of unbounded cells in
the left-to-right (sorted) order.

Exercice 7

7.5

7.6

1.7

Give an example where the parabola defined by some site p; contributes
more than one arc to the beach line. Can you give an example where it
contributes a linear number of arcs?

Give an example of six sites such that the plane sweep algorithm encoun-
ters the six site events before any of the circle events. The sites should lie
in general position: no three sites on a line and no four sites on a circle.

Do the breakpoints of the beach line always move downwards when the
sweep line moves downwards? Prove this or give a counterexample.

