Height Interpolation

First, we build a triangulation of P : a planar subdivision whose bounded faces are triangles and whose vertices are the points of P.

Computational Geometry 9 : Delaunay Triangulation pages 191-214

Then, we get is a polyhedral terrain, the graph of a continuous function that is piecewise linear. The polyhedral terrain can be used as an approximation of the original terrain.

What is the most

 appropriate triangulation?

Triangulation of Planar Point Sets

A triangulation of P is defined
as a maximal planar subdivision of a planar point set.
No edge connecting two vertices can be added to such a subdivision without destroying its planarity.

Theorem 9.1 Let P be a set of n points in the plane, not all collinear, and let k denote the number of points in P that lie on the boundary of the convex hull of P. Then any triangulation of P has $2 n-2-k$ triangles and $3 n-3-k$ edges.

Optimal Triangulation

$A(\mathcal{T}) \geqslant A\left(\mathcal{T}^{\prime}\right)$ for all triangulations \mathcal{T}^{\prime} of P

$$
A\left(\mathcal{T}^{\prime}\right):=\left(\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{3 m}^{\prime}\right)
$$

The define as the angle vector of a triangulation the list of all angles of a triangulation sorted by increasing value.

Then, we lexicographically compare those vectors.

We call the edge $e=\overline{p_{i} p_{j}}$ an illegal edge if

$$
\min _{1 \leqslant i \leqslant 6} \alpha_{i}<\min _{1 \leqslant i \leqslant 6} \alpha_{i}^{\prime}
$$

$\measuredangle a r b>\measuredangle a p b=\measuredangle a q b>\measuredangle a s b$.
Thales's Theorem

Empty circle

 criterion

Lemma 9.4 Let edge $\overline{p_{i} p_{j}}$ be incident to triangles $p_{i} p_{j} p_{k}$ and $p_{i} p_{j} p_{l}$, and let C be the circle through p_{i}, p_{j}, and p_{k}. The edge $\overline{p_{i} p_{j}}$ is illegal if and only if the point p_{l} lies in the interior of C. Furthermore, if the points $p_{i}, p_{j}, p_{k}, p_{l}$ form a convex quadrilateral and do not lie on a common circle, then exactly one of $\overline{p_{i} p_{j}}$ and $\overline{p_{k} p_{l}}$ is an illegal edge.

Computing a legal

 triangulationAlgorithm LegalTriangulation(\mathcal{T}) Input. Some triangulation \mathcal{T} of a point set P.
Output. A legal triangulation of P.

1. while \mathcal{T} contains an illegal edge $\overline{p_{i} p_{j}}$ do ($*$ Flip $\overline{p_{i} p_{j}} *$)

Let $p_{i} p_{j} p_{k}$ and $p_{i} p_{j} p_{l}$ be the two triangles adjacent to $\overline{p_{i} p_{j}}$.
Remove $\overline{p_{i} p_{j}}$ from \mathcal{T}, and add $\overline{p_{k} p_{l}}$ instead.
return \mathcal{T}

[^0]
The Delaunay Triangulation

Boris Delaunay

Mathématicien
Boris Nikolaïevitch Delaunay, né le 15 mars 1890 à Saint-Pétersbourg et mort le 17 juillet 1980 à Moscou, était un mathématicien russe. Il a travaillé en algèbre moderne, en géométrie des nombres et en cristallographie mathématique. Wikipédia

Gueorgui Voronoï

Mathématicien
Gueorgui Feodossievitch Voronoï né 28 avril 1868 à Jouravka, un village de l'oblast de Poltava en Russie, mort 20 novembre 1908 à Varsovie, est un mathématicien connu pour son diagramme de Voronoï qui ... Wikipédia

All Delaunay triangulations are legal!

Theorem 9.5 The Delaunay graph of a planar point set is a plane graph.
Theorem 9.6 Let P be a set of points in the plane.
(i) Three points $p_{i}, p_{j}, p_{k} \in P$ are vertices of the same face of the Delaunay graph of P if and only if the circle through p_{i}, p_{j}, p_{k} contains no point of P in its interior.
(ii) Two points $p_{i}, p_{j} \in P$ form an edge of the Delaunay graph of P if and only if there is a closed disc C that contains p_{i} and p_{j} on its boundary and does not contain any other point of P.

Theorem 9.7 Let P be a set of points in the plane, and let \mathcal{T} be a triangulation of P. Then \mathcal{T} is a Delaunay triangulation of P if and only if the circumcircle of any triangle of \mathcal{T} does not contain a point of P in its interior.

Theorem 9.8 Let P be a set of points in the plane. A triangulation \mathcal{T} of P is legal if and only if \mathcal{T} is a Delaunay triangulation of P.

Computing the Delaunay triangulation

First, we start with a large triangle that contains the point set
The algorithm is randomized incremental,
so it adds the points in random order
and it maintains a Delaunay triangulation of the current point set.
p_{r} lies in the interior of a triangle
p_{r} falls on an edge

How to maintain
 a legal triangulation?

LEGALIZEEdGE $\left(p_{r}, \overline{p_{i} p_{j}}, \mathcal{T}\right)$

1. (* The point being inserted is p_{r}, and $\overline{p_{i} p_{j}}$ is the edge of \mathcal{T} that may need to be flipped. $*$)
2. if $\overline{p_{i} p_{j}}$ is illegal
3. then Let $p_{i} p_{j} p_{k}$ be the triangle adjacent to $p_{r} p_{i} p_{j}$ along $\overline{p_{i} p_{j}}$.
4. $\quad\left(*\right.$ Flip $\left.\overline{p_{i} p_{j}}: *\right)$ Replace $\overline{p_{i} p_{j}}$ with $\overline{p_{r} p_{k}}$.
5. LEGALIZEEdGE $\left(p_{r}, \overline{p_{i} p_{k}}, \mathcal{T}\right)$
6. LEGALIZEEDGE $\left(p_{r}, \overline{p_{k} p_{j}}, \mathcal{T}\right)$

Test of empty circle
to deduce if the flip is required

How to find the triangle containing a point ?

$\Delta \Delta_{1} \Delta$

A directed acyclic graph !

A directed acyclic graph !

Complexity

analysis

Lemma 9.11 The expected number of triangles created by algorithm DELAUnAYTRIANGULATION is at most $9 n+1$.

$$
\begin{aligned}
\mathrm{E}[\text { number of triangles created in step } r] & \leqslant \mathrm{E}\left[2 \operatorname{deg}\left(p_{r}, \mathcal{D} \mathcal{G}_{r}\right)-3\right] \\
& =2 \mathrm{E}\left[\operatorname{deg}\left(p_{r}, \mathcal{D} \mathcal{G}_{r}\right)\right]-3 \\
& \leqslant 2 \cdot 6-3=9
\end{aligned}
$$

Theorem 9.12 The Delaunay triangulation of a set P of n points in the plane can be computed in $O(n \log n)$ expected time, using $O(n)$ expected storage.

It remains to account for the point location steps

The visit to a triangle during the location of for a point is charged when the point belongs to $K(\Delta)$.

It is easy to see that a triangle Δ can be charged at most once for every one of the points in $K(\Delta)$.

Therefore the total time for the point location steps is

$$
O\left(n+\sum_{\Delta} \operatorname{card}(K(\Delta))\right)
$$

It remains to bound the expected size of the sets K

Lemma 9.13 If P is a point set in general position, then

$$
\sum_{\Delta} \operatorname{card}(K(\Delta))=O(n \log n),
$$

where the summation is over all Delaunay triangles Δ created by the algorithm.

$$
\mathrm{E}\left[\sum_{\Delta \in \mathcal{T}_{r} \backslash \mathcal{T}_{r-1}} \operatorname{card}(K(\Delta))\right] \leqslant 12\left(\frac{n-r}{r}\right)
$$

Exercice 9

9.11 A Euclidean minimum spanning tree (EMST) of a set P of points in the plane is a tree of minimum total edge length connecting all the points. EMST's are interesting in applications where we want to connect sites in a planar environment by communication lines (local area networks), roads, railroads, or the like.
a. Prove that the set of edges of a Delaunay triangulation of P contains an EMST for P.
b. Use this result to give an $O(n \log n)$ algorithm to compute an EMST for P.

[^0]: Why does this algorithm terminate?
 The angle-vector increases in every iteration of the loop.
 Since there is only a finite number of different triangulations, this proves termination of the algorithm.

 Once it terminates, the result is a legal triangulation.
 Although the algorithm is guaranteed to terminate, it is too slow to be interesting.

