

Computational Geometry 9 : Delaunay Triangulation pages 191-214 First, we build a triangulation of P : a planar subdivision whose bounded faces are triangles and whose vertices are the points of P.

Then, we get is a polyhedral terrain, the graph of a continuous function that is piecewise linear. The polyhedral terrain can be used as an approximation of the original terrain.

What is the most appropriate triangulation ?

Theorem 9.1 Let *P* be a set of *n* points in the plane, not all collinear, and let *k* denote the number of points in *P* that lie on the boundary of the convex hull of *P*. Then any triangulation of *P* has 2n - 2 - k triangles and 3n - 3 - k edges.

Optimal Triangulation

 $A(\mathcal{T}) \ge A(\mathcal{T}')$ for all triangulations \mathcal{T}' of P.

 $A(\mathfrak{T}') := (\boldsymbol{\alpha}'_1, \boldsymbol{\alpha}'_2, \dots, \boldsymbol{\alpha}'_{3m})$

The define as the angle vector of a triangulation the list of all angles of a triangulation sorted by increasing value.

Then, we lexicographically compare those vectors.

Lemma 9.4 Let edge $\overline{p_i p_j}$ be incident to triangles $p_i p_j p_k$ and $p_i p_j p_l$, and let *C* be the circle through p_i , p_j , and p_k . The edge $\overline{p_i p_j}$ is illegal if and only if the point p_l lies in the interior of *C*. Furthermore, if the points p_i , p_j , p_k , p_l form a convex quadrilateral and do not lie on a common circle, then exactly one of $\overline{p_i p_j}$ and $\overline{p_k p_l}$ is an illegal edge.

Computing a legal triangulation

Algorithm LEGALTRIANGULATION(\mathcal{T}) Input. Some triangulation \mathcal{T} of a point set P. Output. A legal triangulation of P.

- 1. while T contains an illegal edge $\overline{p_i p_j}$
- 2. **do** (* Flip $\overline{p_i p_j}$ *) 3. Let $p_i p_j p_k$ and
 - Let $p_i p_j p_k$ and $p_i p_j p_l$ be the two triangles adjacent to $\overline{p_i p_j}$.
 - Remove $\overline{p_i p_j}$ from \mathcal{T} , and add $\overline{p_k p_l}$ instead.

5. return T

4.

Why does this algorithm terminate ? The angle-vector increases in every iteration of the loop. Since there is only a finite number of different triangulations, this proves termination of the algorithm.

Once it terminates, the result is a legal triangulation. Although the algorithm is guaranteed to terminate, it is too slow to be interesting.

The Delaunay Triangulation

Boris Delaunay

Mathématicien

Boris Nikolaïevitch Delaunay, né le 15 mars 1890 à Saint-Pétersbourg et mort le 17 juillet 1980 à Moscou, était un mathématicien russe. Il a travaillé en algèbre moderne, en géométrie des nombres et en cristallographie mathématique. Wikipédia

Gueorgui Voronoï

Mathématicien

Gueorgui Feodossievitch Voronoï né 28 avril 1868 à Jouravka, un village de l'oblast de Poltava en Russie, mort 20 novembre 1908 à Varsovie, est un mathématicien connu pour son diagramme de Voronoï qui ... Wikipédia

All Delaunay triangulations are legal !

Theorem 9.5 The Delaunay graph of a planar point set is a plane graph.

Theorem 9.6 Let *P* be a set of points in the plane.

- (i) Three points p_i, p_j, p_k ∈ P are vertices of the same face of the Delaunay graph of P if and only if the circle through p_i, p_j, p_k contains no point of P in its interior.
- (ii) Two points $p_i, p_j \in P$ form an edge of the Delaunay graph of P if and only if there is a closed disc C that contains p_i and p_j on its boundary and does not contain any other point of P.

Theorem 9.7 Let P be a set of points in the plane, and let T be a triangulation of P. Then T is a Delaunay triangulation of P if and only if the circumcircle of any triangle of T does not contain a point of P in its interior.

Theorem 9.8 Let *P* be a set of points in the plane. A triangulation T of *P* is legal if and only if T is a Delaunay triangulation of *P*.

Computing the Delaunay triangulation

First, we start with a large triangle that contains the point set

The algorithm is randomized incremental, so it adds the points in random order and it maintains a Delaunay triangulation of the current point set.

p_r lies in the interior of a triangle

 p_r falls on an edge

How to maintain a legal triangulation ?

- 1. (* The point being inserted is p_r , and $\overline{p_i p_j}$ is the edge of \mathcal{T} that may need to be flipped. *)
- 2. **if** $\overline{p_i p_j}$ is illegal
- 3. then Let $p_i p_j p_k$ be the triangle adjacent to $p_r p_i p_j$ along $\overline{p_i p_j}$.
- 4. (* Flip $\overline{p_i p_j}$: *) Replace $\overline{p_i p_j}$ with $\overline{p_r p_k}$.
- 5. LEGALIZEEDGE $(p_r, \overline{p_i p_k}, \mathcal{T})$
- 6. LEGALIZEEDGE $(p_r, \overline{p_k p_j}, \mathcal{T})$

Test of empty circle to deduce if the flip is required

A directed acyclic graph !

 Δ_6

 $\left(\Delta_{7}\right)$

A directed acyclic graph !

Complexity analysis

Lemma 9.11 The expected number of triangles created by algorithm DELAU-NAYTRIANGULATION is at most 9n + 1.

 $E[\text{number of triangles created in step } r] \leq E[2 \deg(p_r, \mathcal{D}\mathcal{G}_r) - 3]$ $= 2E[\deg(p_r, \mathcal{D}\mathcal{G}_r)] - 3$ $\leq 2 \cdot 6 - 3 = 9$

Theorem 9.12 The Delaunay triangulation of a set P of n points in the plane can be computed in $O(n\log n)$ expected time, using O(n) expected storage.

It remains to account for the point location steps

The visit to a triangle during the location of for a point is charged when the point belongs to $K(\Delta)$.

It is easy to see that a triangle \triangle can be charged at most once for every one of the points in $K(\triangle)$.

Therefore the total time for the point location steps is

$$O(n + \sum_{\Delta} \operatorname{card}(K(\Delta)))$$

It remains to bound the expected size of the sets K

Lemma 9.13 If P is a point set in general position, then

$$\sum_{\Delta} \operatorname{card}(K(\Delta)) = O(n \log n),$$

where the summation is over all Delaunay triangles Δ created by the algorithm.

$$\mathbf{E}\Big[\sum_{\Delta\in\mathfrak{T}_r\backslash\mathfrak{T}_{r-1}}\operatorname{card}(K(\Delta))\Big]\leqslant 12\Big(\frac{n-r}{r}\Big)$$

Exercice 9

- 9.11 A *Euclidean minimum spanning tree* (EMST) of a set *P* of points in the plane is a tree of minimum total edge length connecting all the points. EMST's are interesting in applications where we want to connect sites in a planar environment by communication lines (local area networks), roads, railroads, or the like.
 - a. Prove that the set of edges of a Delaunay triangulation of P contains an EMST for P.
 - b. Use this result to give an $O(n \log n)$ algorithm to compute an EMST for *P*.