
An introduction to Mesh Generation

Christophe Geuzaine Jean-François Remacle

2

Contents

1 Combinatorial topology of meshes 5
1.1 Euler’s formula . 5

1.1.1 Platonic solids . 7
1.2 Euler-Poincaré characteristic . 8
1.3 Poincaré-Hopf Theorem . 9
1.4 Topology of triangular meshes . 9

1.4.1 Regular triangulations . 10
1.5 Topology of quadrilateral meshes . 11

1.5.1 Regular quadrangulations . 12
1.6 Generalization to higher dimensions . 15

1.6.1 Simplical complexes . 15

2 Delaunay triangulations in the plane 17
2.1 The Voronoi Diagram . 17
2.2 The Delaunay triangulation . 19

2.2.1 The empty circumcircle property 21
2.2.2 Delaunay Edges . 21
2.2.3 Local Delaunayhood . 22
2.2.4 Edge Flip . 23
2.2.5 Locally Delaunay vs. Globally Delaunay 25
2.2.6 The Flip Algorithm . 25
2.2.7 The MaxMin property . 28

3 Construction of 2D Delaunay Triangulations 31
3.1 The Delaunay Kernel . 31

3.1.1 Star shapeness . 32
3.1.2 The Delaunay Cavity . 33
3.1.3 The Delaunay Ball B(DTp , pn+1) 34

3.2 The Bowyer-Watson algorithm . 34
3.2.1 Super-triangles . 35
3.2.2 What if pn+1 ∉Ω(Sn)? . 36

3.3 A robust implementation in O (n logn) complexity 36
3.3.1 Robust predicates . 37
3.3.2 Choice of a datastructure . 40
3.3.3 Algorithms . 44

3

4 CONTENTS

3.3.4 Hilbert Curves . 48
3.3.5 Edge flip . 51

4 Finite Element Mesh generation in the plane 53
4.1 Triangle shape or quality measures . 53

4.1.1 The famous angle condition . 54
4.1.2 Discrete maximum principle . 60
4.1.3 Triangle quality measures . 62

4.2 Mesh size . 63
4.3 One dimensional meshing . 63
4.4 The general 2D Meshing procedure . 64

4.4.1 Recovering the boundary edges 66
4.4.2 The empty mesh . 68
4.4.3 Mesh refinement . 70

5 Quadrangulations 75
5.1 Topology of quadrilateral meshes . 75

5.1.1 Euler Characteristic . 75
5.1.2 Poincaré-Hopf Theorem . 75
5.1.3 Poincaré-Hopf theorem for triangular meshes 77
5.1.4 Poincaré-Hopf theorem with boundaries 77

5.2 Indirect generation of quadrilateral meshes 79
5.2.1 A greedy algorithm for quad-meshing 80
5.2.2 The Blossom-Quad algorithm . 82
5.2.3 Blossom: a minimum cost perfect matching algorithm 82
5.2.4 Optimal triangle merging . 83

CHAPTER 1

Combinatorial topology of meshes

1.1 Euler’s formula

Consider a finite set S = {p1, . . . , pn} ⊆R2 of n distinct points in the plane. The con-
vex hullΩ(S) is is the smallest convex set that contains S.

Definition: A triangulation T (S) of S is a set of non overlapping triangles that ex-
actly covers the convex hullΩ(S) with all points of S being among the vertices of the
triangulation.

Different triangulations of the same point set S may exist (e.g. Figure 1.1), but we are
going to show that they all have the same number of edges and of triangles.

Property 1.1.1 Every triangulation T (S) contains exacltly n f = 2(n−1)−nh triangles
and ne = 3(n −1)−nh edges.

Proof The proof uses a very well know result of Euler that he proved in 1758. Here
is what Euler had to say: Consider any polyhedron and let n be the number of its
vertices, n f the number of its faces, and ne be the number of its edges. Then

n +n f −ne = 2. (1.1)

A commemorative stamp put out by the Swiss Post shows Euler together with that
very famous formula (Figure 1.2). David Eppstein gives 20 different proofs of Euler’s
formula in [?]. Here is one that is quick and elegant. The skeleton of any convex
polyhedron is a planar graph. This is geometrically easy to see: in order tu build such
a planar graph, dispose the polyhedron on one on a plane and dig a hole on one of
its face (an upper face). Then, enlarge this hole in order to unfold the polyhedron up
to the point it is completely flattened. The upper face then becomes “infinite” and
can be seen as the outer face of the graph. Figure 1.3 shows an example of such a
flattening procedure: a cube is shown with its corresponding skelton that is actually
a planar graph Γ. Let Γ′ be the dual of Γ i.e. a graph with its 6 nodes that correspond
to the faces of the cubes and its 12 edges that correspond to the edges of the cube.
Edges of both graphs have a one-to-one correspondance.

5

6 CHAPTER 1. COMBINATORIAL TOPOLOGY OF MESHES

Figure 1.1: Two triangulations of the same point set, both containing n f = 13 trian-
gles defined by a total of n = 12 points with nh = 9 points that lie onΩ(S).

Figure 1.2: Commemorative stamp with Euler and his famous formula.

1.1. EULER’S FORMULA 7

Outer face

1 2

34

6

78

5 1

4

5

8

6

7

2

3

T ′

T

Figure 1.3: A cube (left) and its corresponding skelton Γ (right, plain lines) and the
dual Γ′ of Γ (right, dashed lines). Edges in bold correspond to a spanning tree T of Γ
and edges in bold and dashed correspond to a spanning tree of Γ′.

Let T be a spanning tree of Γ i.e. a subgraph T ⊂ Γ that includes all of the vertices
of Γ and that is a tree i.e. that contains no cycles. T does not contain any cycles, so
it does not disconnect the plane. The co-tree T ∗ of T is the set of edges of the graph
that are not in T . Consider now the set of edges T ′ ⊂ Γ′ that correspond to T ∗. Set T ′

contains no cycles: if one cycle exists in T ′, then the corresponding edges of Γwould
create some isolated vertices in T , which is impossible because T is a spanning tree
and it contains all vertices of Γ. T ′ contains all vertices (the faces of the polyhedron)
of Γ′ because T does not contain any cycles. Then, T ′ is a spanning tree of Γ′.

The number of edges on a spanning tree can be computed in a general fashion.
Let’s construct a spanning tree in the following way: start with one random edge e
of Γ and add it to T . This first edge e connects 2 vertices that are inserted in a stack.
While this stack is not empty, we take the vertex v at the top of the stack and look
for all edges ei (v, vi) that are incident to v . We add ei to T if neither v or vi is not
yet in T . So, each edge of T correspond to one vertex of Γ, except the first one that
correspond to two. Then, a spanning tree has exactly n −1 vertices.

So T has n vertices and k ≡ n − 1 edges. Similarly, T ′ has n f vertices and k ′ ≡
n f −1 edges. Since k +k ′ = ne , we have n −1+n f −1 = ne and formula 1.1 follows.

1.1.1 Platonic solids

As a first example of use of Euler’s formula, it is easy to prove that there exist only 5
platonic solids i.e. regular, convex polyhedron. Let m denote the number of edges
and vertices of each face and k the degree of each vertex i.e. the number of faces
adjacent to the vertex.

We require that k is the same for every vertex: each vertex has k adjacent face

8 CHAPTER 1. COMBINATORIAL TOPOLOGY OF MESHES

and each face has m vertices so that so that mn f = kn. Each edge has 2 adjacent
faces and each face has m edges. This leads to

mn f = kn = 2ne .

Using Euler’s formula n −ne +n f = 2, we have

n

(
1+

(
k

m
− k

2

))
= 2

which leads to
(2m +2k −mk)n = 4m.

Since n > 0 and m > 0, we have to have

2m +2k −mk =−(k −2)(m −2)+4 > 0

or
(k −2)(m −2) < 4.

Since k ≥ 3 and m ≥ 3, we have the following possible solutions for (m,k): (3,3),
(4,3), (5,3), (3,4) and (3,5) which correspond respectively to the tetrahedron , the
cube, the octahedron, the dodecahedron and the icosahedron.

1.2 Euler-Poincaré characteristic

Euler’s formula applies to polyhedron i.e. meshes that are topologically equivalent
to a sphere. Assume a closed orientable surface S . The genus g of S is an inte-
ger representing the maximum number of cuttings along non-intersecting closed
simple curves without rendering the resultant manifold disconnected. Consider a
sphere. There exist no closed curve on the sphere that does not divide it into two
disconnected parts: its genus is g = 0. A simple torus has a genus of one. The genus
of a surface S can be defined in terms of its Euler characteristic χ (see §1.1). Both
g and χ carry the same topological information and their relationship (valid for ori-
entable closed surfaces) is

χ= 2−2g . (1.2)

For a sphere, we have obviously χ= 2. Figure 1.4 shows manifold meshes of different
objects together with their Euler characteristic.

Formula (5.1) is valid for closed surfaces. Assume that surface S has b bound-
aries, then the Euler-Poincare characteristic changes to

χ= 2−2g −b. (1.3)

This corresponds to the topology of a sphere with g handles and b holes. For exam-
ple, a cylindrical topology can be constructed by opening two separated holes in a
sphere. Then χ= 2−2×0−2 = 0.

Euler’s formula can be generalized to general 2D manifolds as

n −ne +n f =χ. (1.4)

1.3. POINCARÉ-HOPF THEOREM 9

Sphere (χ= 2) Sphere (χ= 2) Torus (χ= 0) Disk (χ= 1)
n = 4, ne = 6, n f = 4 n = 8, ne = 12, n f = 6 n = 16, ne = 32, n f = 16 n = 3, ne = 3, n f = 1

Figure 1.4: Computation of Euler’s characteristic χ for different manifold meshes.

1.3 Poincaré-Hopf Theorem

Assume a surface S and its Euler-Poincaré characteristic χ. Poincaré-Hopf Theo-
rem is stated as follows: let be a vector field on S with K isolated zeroes zi (a zero
is an isolated singularity of the field). If S has a boundary, the is on its normal
direction, pointing outside S . Then we have the formula

K∑
i=1

index(zi) =χ.

The index of the singularity is +1 for a source singularity and −1 for a saddle singu-
larity. It is possible to develop discrete versions of this theorem.

1.4 Topology of triangular meshes

Now let’s specialize Euler’s formula to triangulations. Assume a surface S with
genus g and that has b boundaries. Assume a triangulation of that surface that has n
vertices, ne edges and n f triangles. We assume finally that nh vertices and nh edges
of the triangulation are situated on the boundaries.

If nh = 0, then every edge of the triangulation is is connected to exactly 2 triangles
and each triangle has (obviously) 3 incident edges. We have then

2ne = 3n f .

This last result combined with Eulers’s formula gives, for a closed surface (no holes)

n f = 2(n −χ) and ne = 3(n −χ).

It is easy to take into account boundaries: if nh edges are on the boundary of the
triangulation, then ne −nh edges are internal with two adjacent triangles and nh

edges and have only one adjacent triangle. Every triangle being always incident to 3
edges, we get the following result

3n f = 2(ne −nh)+nh . (1.5)

10 CHAPTER 1. COMBINATORIAL TOPOLOGY OF MESHES

Combining Euler’s formula (5.7) with (1.5) gives the result n f = 2(n − 1)−nh and
ne = 3(n −1)−nh .

A triangulation is composed of a collection of “entities” (triangles, edges and
points) together with their adjacencies. Any entity bounds and/or is bounded by
other ones of higher and/or lower dimension. This adjacency information repre-
sents the graph of a mesh. In many cases, algorithms that deal with triangulation
have to keep track of “upward adjacencies” i.e. the set of triangles or of edges that
are adjacent to a given vertex or the triangles that are adjacent to an edge. The num-
ber of triangles and edges adjacent to a vertex are called respectively nv f and nve .

Proposition 1.4.1 Consider a triangulation T with n points and nh points on its con-
vex hullΩ(T). We claim here that a point of T has in average nv f = 6− 3nh+6

n adjacent

triangles and nve = 6− 2nh+6
n adjacent edges.

Proof A triangle is adjacent to three vertices and a vertex is adjacent to nv f triangles.
This leads to

nv f n = 3n f = 3(2(n −1)−nh)

and we have the result

nv f = 6− 3nh +6

n
. (1.6)

Similarly, nve that is the number of edges adjacent to a vertex can be computed as

nve n = 2ne = 2(3(n −1)−nh)

which gives

nve = 6− 2nh +6

n
. (1.7)

Figure 1.5 illustrate equation (1.6). The average number of adjacencies per entity in
the triangulation is know in advance. Yet, as it is seen on Figure (1.5), this number
varies from one vertex to another.

1.4.1 Regular triangulations

An internal vertex in a triangular mesh is regular if it has exactly 6 adjacent triangles.
Its it said to have a valence of 6. A regular triangulation is a triangulation with reg-
ular vertices only. Regular triangulations are usually desirable because they allow
regular sampling of the points and good geometrical properties of the triangulation
(equilateral triangles in planar triangulations). At that point, let us see wether a tri-
angulation made of regular vertices only is possible. In the triangulation of a closed
surface, each triangle is made of 3 edges while each edge has two adjactent triangles.
This means that 2ne = 3n f which leads to

n f = 2(n −χ).

1.5. TOPOLOGY OF QUADRILATERAL MESHES 11

2

2

2

3

3

2

2

2

3 → 4
7 → 6

5 → 6

6 → 5

Figure 1.5: A triangulation T with n = 12 and nh = 9. The average number of trian-
gles adjacent to a vertex is (see (1.6)) nv f = 6− 3×9+6

12 = 3,25. This average can also be
computed explicitely: nv f = 39

12 = 3,25.

If we assume a mesh with regular vertices only, then 3n f = 6n and the conclusion is
that only torus-like surfaces with χ= 0 can be covered with a perfecly regular trian-
gular mesh. Introducing nk irregular vertices of valence 6−k leads to

3n f = 6(n −nk)+ (6−k)nk .

and the discrete version of Poincaré-Hopf Theorem for triangular meshes is:

∑
k

knk

6
=χ. (1.8)

Twelve irregular vertices of valence 5 are require to triangulate a sphere. The sim-
plest version of this mesh is the icosaedron with n f = 20, ne = 30 and n = 12, each of
the vertices being of valence 5.

1.5 Topology of quadrilateral meshes

When surface S of genus g has b boundaries, χ= 2−2g −b. Some vertices are situ-
ated on the boundaries of S : assume that their number is nh . Then, we can use the
usual trick:

4n f = 2(ne −nh)+nh

combined with
n −ne +n f =χ

leads to
n −n f =χ+

nh

2
.

12 CHAPTER 1. COMBINATORIAL TOPOLOGY OF MESHES

Figure 1.6: A quadrilateral mesh of a circle. Two dual curves have been drawn, one
being closed (in blue) and one ending at the boundary.

If boundaries are considered, nh has to be an even number for allowing a fully quadri-
lateral mesh regardless of the topology of S .

Another way to view this problem is to dualize, that is, take the dual subdivision.
The dual of a quadrilateral mesh is characterized by the property that edges meet
in 4’s (each quad has exactly 4 neighbors). The dual of a quadrilateral mesh can be
drawn as a collection of curves that are either closed or that meet the boundary of
the domain at two edges (see Figure 1.6). So a necessary condition for a quadrilateral
mesh to exist is that there be an even number of edges on the bounary.

1.5.1 Regular quadrangulations

Assume a quadrangulations of S made of n vertices, ne edges and n f quadrilaterals.
An internal vertex in a quadrilateral mesh is regular if it has exactly 4 adjacent quads.
Its it said to have a valence of 4. A regular quadrangulation is a quadrangulation with
regular vertices only.

At that point, let us see wether a quadrangulation made of regular vertices only
is possible. In the quadrangulation of a closed surface, each quadrilateral is made of

1.5. TOPOLOGY OF QUADRILATERAL MESHES 13

Figure 1.7: A fully regular quadrilateral mesh of a torus

4 edges while each edge has two adjactent quadrilaterals. This means that ne = 2n f

which leads to

n −n f =χ.

If every vertex is regular, then each vertex has 4 quadrilateral neighbors and each
quadrilateral has 4 vertices. Then, n f = n which means that only torus-like closed
surfaces with χ = 0 can be covered with a regular quadrangular mesh (see Figure
5.1).

If χ 6= 0, irregular vertices have to be present in the mesh, i.e. vertices of valence
different than 4. Let us now how irregular vertices affect the Euler-Poincaré char-
acteristic. Assume nk vertices of valence 4−k and n −nk vertices of valence 4. We
have

4n f = 4(n −nk)+ (4−k)nk

which means that

4n −4(n −nk)− (4−k)nk = 4χ

or

χ= knk

4
.

Each irregular vertex of valence 4−k counts for k/4 in the Euler characteristic. Each
irregular vertex of valence 3 adds 1/4 to the Euler-Poincare characteristic of the sur-
face: its index is 1/4. Each irregular vertex of valence 5 adds −1/4 to the Euler-
Poincare characteristic of the surface and its index is −1/4. More generally, we ob-
tain the following discrete version of Poincaré-Hopf Theorem:

∑
k

knk

4
=χ. (1.9)

14 CHAPTER 1. COMBINATORIAL TOPOLOGY OF MESHES

Figure 1.8: A quadrilateral mesh of a circle. Four singularities of index 1/4 (in red)
are required to obtain such a mesh. The singularities may be inside the disk (left) or
on its boundary (right)

A sphere can then be quadrilateralized using n1 = 8: the simplest version of this
mesh is the cube with its 8 corners of valence 3.

In order to extend Poincaré-Hopf to meshes of a domain with boundaries, the
regular valence of a vertex on a boundary has to be defined. For quadrilateral meshes,
the regular valence of a vertex on the boundary is 2. This is easily justified by the fact
that the boundary of the mesh is along one of the two vector fields so the vertex
is not a singularity. Assume that S is a disk. A disk has the topology of a sphere
g = 0 with one hole in it b = 1 so χ= 2−2×0−1 = 1. Four singularities of index 1/4
are needed to build a quad mesh on the disk. Those 4 singularities may be located
anywhere in the disk, eventually on its boundary (see Figure 5.2). A vertex of the
boundary has an index 1/4 if it has only one adjacent quadrangle and −1/4 if it has 3
adjactent quadrangles. Figure 5.2 (right) shows a quadrilateral mesh of a circle with
all 4 singularities on the boundary. There, the unique quadrilateral adjactent to each
singularity is ill shaped so it’s not a good idea to have irregular vertices on smooth
boundaries.

If the boundary is non smooth, it may be a good idea to locate some irregular
vertices on the boundary. More precisely, we distinguish external (or reentrant) cor-
ners which external angles are about 90 degrees and internal corners which internal
angles are about 90 degrees. Irregular vertices of degree −1/4 are suitable for reen-
trant corners while irregular vertices of index 1/4 are suitable for internal corners.
Figure 5.3 shows two quadrilateral meshes of a domain with 4 internal corners and
1 reentrant corner. The mesh on the left is the one that has 6 non regular vertices
on all corners of the boundary. The right mesh has the minimum amount of non
regular vertices. Here, one internal corner and the reentrant corner have been regu-
larized. The two meshes are both valid: choosing either one or the other depends on

1.6. GENERALIZATION TO HIGHER DIMENSIONS 15

Figure 1.9: Quadrilateral meshes of a non smooth domain. Five singularities of index
1/4 (in red) and one singularity of index −1/4 (in blue) are required to have the sum
of the indices to be one (left). It is also possible to use 4 irregular nodes only (right),
leading to a different result.

the underlying application. More specifically, those two configurations are typical of
boundary layer meshes.

Up to now, we have assumed that it is possible to build a quadrilateral mesh
with a minimum amount of irregular vertices. Even though this is the ideal situa-
tion, building such a “perfect” mesh is usually difficult. Figure 5.4 shows a quadri-
lateral mesh that has been generated using a standard technique. It has 8 vertices of
valence 5 and 12 vertices ov valence 3.

1.6 Generalization to higher dimensions

1.6.1 Simplical complexes

A d-simplex σ is the convex hull of d + 1 affinely independent vertices p0, . . . , pd .
Triangles are 2D simplices and tetrahedra are 3D simplices. The orientation of σ
|σ| is induced by the ordering of its vertices. For any permutation π of points, the

orientation of σ is given as (−1)sign(π)|σ|. The boundary of σ is composed of d −1
faces: the k-th face of σ is constructed by ommiting vertex pk . It is a simplex of
dimension d −1 and its orientation is induced by the orientation of σ.

A simplical complex S is a finite set of simplices in Rd . The simplices of S are
topologically glued together in a precise fashion.

as in a mesh i.e intersection of celles are themselves lower dimensional topolog-
ical complexes:

A cellular complex C (or CW complex, C standing for "closure-finite", and W for
"weak topology") is made of basic building blocks called cells. assume c0 points (0-
cells) in a space of dimlension d . The c1 edges (or 1-cells) are made with pairs of

16 CHAPTER 1. COMBINATORIAL TOPOLOGY OF MESHES

Figure 1.10: Quadrilateral mesh with 8 vertices of index −1/4, and 12 of index 1/4,
leading to χ= 12/4−8/4 = 1.

points. We assume then that there exist c j j -cells, j = 1. . .d that are topologically
bounded by c j−1 cells. The Euler-Poincaré characteristic of C is computed as the
alternate sum:

χ=
d∑

k=0
(−1)k ck .

For surfaces (d = 2), we have seen that χ = 2− 2g −b i.e. there exist a relation be-
tween the combinatorics of the cellular complex and the topology of the surface that
is considered. Betti numbers are topological objects which were proved to be invari-
ants by Poincaré, and used by him to extend Euler’s formula to higher dimensional
spaces.

Consider any polyhedron and let n be the number of its vertices, n f the number
of its faces, and ne be the number of its edges.

CHAPTER 2

Delaunay triangulations in the plane

2.1 The Voronoi Diagram

Definition: Consider a finite set S = {p1, . . . , pn} ⊆ R2 of n distinct points in the
plane. The Voronoi cell Vi of pi ∈ S is the set of points x that are closer to pi than to
any other points of the set:

Vi =
{

x ∈R2 |
∥∥x −pi

∥∥<
∥∥x −p j

∥∥ , ∀1 ≤ i ≤ n, i 6= j
}

where
∥∥x − y

∥∥ is the euclidian distance between x and y .

Hi j

p j

pi

Figure 2.1: Points pi and p j , their perpendicular bissector (in dashed lines) and half-
plane Hi j .

Consider first the case where S = {pi , p j }. The perpendicular bisector of the line
segment pi p j is a line perpendicular to pi p j and passing through its midpoint. The

17

18 CHAPTER 2. DELAUNAY TRIANGULATIONS IN THE PLANE

perpendicular bissector of pi p j dividesR2 into two halfplanes Hi j and H j i :

Hi j =
{

x ∈R2 |
∥∥x −pi

∥∥<
∥∥x −p j

∥∥}
.

Here, we have clearly Vi = Hi j . The perpendicular bissector of line segment pi p j is

the intersection of the closures of the two half planes: Hi j ∩H j i .
Let’s make the problem a little more complicated and consider a set S = {pi , p j , pk }

of 3 points. The Voronoi cell associated to pi is the intersection of half planes Hi j

and Hi k : Vi = Hi j ∩Hi k (see Figure 2.2).

Hi j

pk

Hi j ∩Hi k

Hi k

pi

p j

Figure 2.2: Points pi , p j and pk and their perpendicular bissectors.

In the general case, the Voronoi cell relative to pi is the intersection of all half
planes:

Vi =
⋂

1≤ j≤n, j 6=i
Hi j . (2.1)

By definition (2.1), each Voronoi cell Vi is the intersection of open half planes con-
taining vertex pi . The intersection of two convex polygon being itself a convex poly-
gon, Vi is therefore a convex polygon.

Definition: The Voronoi diagram V (S) is the unique subdivision of the plane into n
cells is the union of all Voronoi cells Vp :

V =
⋃

1≤i≤n
Vi . (2.2)

Each point x ∈R2 having at least one closest point in S, the Voronoi diagram cov-
ers the entire plane. Different Voronoi regions are disjoint. Therefore, the Voronoi
diagram is unique.

2.2. THE DELAUNAY TRIANGULATION 19

v I

Vi

p j

pl

pi

pk

Vl

Ω(S)

Figure 2.3: Voronoi Diagram. Voronoi cell Vi is closed because it correspond to point
pi that is not onΩ(S). Voronoi cell Vl is open because pl ∈Ω(S).

Definition: The convex hull Ω(S) of a finite point set S is the smallest convex poly-
gon that contains S.

Voronoi cells are either closed or open. They can only be open for points (like pl in
see Figure 2.3) that are located on the convex hullΩ(S) of the point set.

2.2 The Delaunay triangulation

The Delaunay triangulation DT(S) is the geometric dual of the Voroinoi diagram (see
Figure 2.4). The Voronoi diagram V is made of n Voronoi cells Vi that correspond to
the points pi , 1 ≤ i ≤ n of S. The line segments that form the boundaries of Voronoi
cells and are the Voronoi edges. Voronoi edges are orthogonal bissectors of neigh-
boring points in the diagram. The endpoints of the Voronoi edges are called Voronoi
vertices v I ,1 ≤ I ≤ N , N being the number of Voronoi vertices. Voronoi vertices v I

20 CHAPTER 2. DELAUNAY TRIANGULATIONS IN THE PLANE

are those points that are equidistant to three or more vertices.

Definition: Points of S are said to be in general position if there exist no quadruplet
of points of S that are co-circular.

When the points of S are in general position, Voronoi vertices are triple points i.e.
they are equidistant of three points of S. Consider a Voronoi Vertex v I that is equidis-
tant to points pi , p j and pk ∈ S (see Figure 2.3). Voronoi point v I = Hi j ∩H j k ∩Hki

is the circumcenter of a triangle ∆I = pi p j pk .

Definition: The Delaunay triangulation DT(S) is the triangulation of S that consist
in the union of the N triangles ∆I ,1 ≤ I ≤ N that correspond to the triple points of
the Voronoi diagram (see Figure 2.4).

Figure 2.4: Voronoi Diagram (in dashed lines) and Delaunay triangulation. White
points are points of S and blue points are Voronoi vertices that are the circumcenters
of the triangles.

We should now show that the set of triangles in question is a triangulation in the
sense of Definition 1.1. If this is the case, then Property 1.1.1 applies and N = 2(n −
1)−nh . The fact that DT is a triangulation will be the consequense of the following
properties of the Delaunay triangles. The fact that DT is a triangulation will be the
consequence of the two following properties.

2.2. THE DELAUNAY TRIANGULATION 21

pl

C I

∆I

pi

p j

pk

v I

Figure 2.5: Illustration of why the empty circle property is true.

2.2.1 The empty circumcircle property

We will first demonstrate the following remarkable result that is called the empty
circumcircle property.

Property 2.2.1 The empty circumcircle of any triangle in the Delaunay triangulation
is empty i.e. it contains no point of S.

Proof Consider the Delaunay triangle ∆I = pi p j pk (see Figure 2.5). Assume now
that point pl ∈ C I where C I is the circumcircle of ∆I . By definition, the triple point
v I is at equal distance to pi , p j and pk and no other points of S are closer to v I

than those three points. Then, if a point like pl exist in S, v I is not a triple point and
triangle ∆I cannot be a Delaunay triangle.

2.2.2 Delaunay Edges

It is useful at that point to look at some geometrical properties of circle bundles that
share two points pi and p j . The centers of such circles lie on the perpendicular
bissectors of line segment pi p j (see Figure 2.6). Edge pi p j divides disk C1 into two
disk sectors and one of the two sectors completely lies inside C2. On the Figure, the
pink sector of C1 is inside C2 and the yellow sector of C2 lies inside C1.

Definition: An edge pi p j of a triangulation is a Delaunay edge if there exist a circle
that contains pi and p j and that is empty i.e. that contain no point of S.

Property 2.2.2 A mesh is a Delaunay Triangulation if and only if all its edges are
Delaunay edges.

Proof Let us first show that a Delaunay triangulation has only Delaunay edges. As-
sume a Delaunay triangulation T (S) and an edge pi p j that is not Delaunay. This
means that there exist no circle passing through pi and p j that is empty. Consider

22 CHAPTER 2. DELAUNAY TRIANGULATIONS IN THE PLANE

C2

pi

p j

C1

c1

c2

Figure 2.6: Two circles C1 and C2 sharing an edge pi p j . The centers of the circles c1

and c2 lie on the perpendicular bissector of segment pi p j (in dashed lines).

Delaunay triangle∆I = pi p j pk that contains edge pi p j . Its circumcircle is empty by
definition because T is a Delaunay triangulation. This is in contradiction with the
hypothesis that there exist no circle passing through pi and p j and that is not empty.

Now let’s proof that if every edge of a triangulation is Delaunay, then every trian-
gle is Delaunay as well. Assume that triangle ∆I = pi p j pk is not Delaunay, but all its
3 edges pi p j , pi pk and p j pk are Delaunay. Figure 2.7 shows a configuration whith
a non Delaunay triangle ∆I = pi p j pk which circumcircle contains pl . Because we
deal with triangulations as defined in Definition 1.1, pl cannot be inside triangle∆I .
It is then situated inside one of the three circular sectors delimited by pi , p j and pk .
Assume that pl and p j are on opposite sides of pi pk like in Figure 2.7. By hypoth-
esis, there exist a circle passing through pi and pk and that is empty. The center of
such a circle lies on the orthogonal bissector of pi pk . Any circle like C1 with its cen-
ter c1 that is below cI contains p j any circle C2 that is above cI contains pl , which
is in contradiction with the hypothesis that there exist a circle passing through pi pk

and that is empty.

2.2.3 Local Delaunayhood

Definition: Given a triangulation T (S) and an edge pi p j in the triangulation that is
adjacent to two triangles ∆I = pi p j pk and ∆J = pi pl p j . We call edge pi p j locally
Delaunay if pl lies on or outside the circumcircle of ∆I .

Figure 2.8 gives an illustration of an edge pi p j that is not locally Delaunay: point pl

lies inside circle C I . It is easy to see that this condition is symmetric: if point pl lies
inside circle C I , then point pk lies inside circle C J . We’ll prove that below.

2.2. THE DELAUNAY TRIANGULATION 23

pk

pl

c2

c1

C2

C1

C I

p j

cI

pi

Figure 2.7: Two circles C1 and C2 sharing an edge pi p j . The centers of the circles c1

and c2 lie on the perpendicular bissector of segment pi p j .

2.2.4 Edge Flip

Consider again the situation of two triangles adjacent to edge pi p j as depicted in
Figure 2.8. Flipping edge pi p j consist in replacing triangles pi p j pk and p j pi pl by
triangles pl pk pi and pk pl p j . Edge pi p j has been flipped and replaced by edge
pk pl .

The edge flip operator can only be applied to a pair of triangles that form a con-
vex quadrilateral. If it is concave, then flipping the edge leads to an invalid configu-
ration with two overlapping triangles (see Figure 2.9).

Property 2.2.3 An edge that is not locally Delaunay is flippable and the new edge
resulting of the flip operation is locally Delaunay.

Proof Let us first show that any edge that is not locally Delaunay is flippable. Con-
sider Figure 2.8. Edge pi p j is not locally Delaunay because pk ∈ C J and pl ∈ C I . A
simple way of checking wether edges pi p j and pk pl can be flipped is to verify that
they actually intersect. Consider triangle p j pk pi on Figure 2.8. The fact that pl is on
the opposite side of pi p j than pk and that it lies inside C I ensures that pk pl inter-

24 CHAPTER 2. DELAUNAY TRIANGULATIONS IN THE PLANE

C J

pl

p j
C I

pk

pi

Figure 2.8: An edge pi p j that is not locally Delaunay.

Invalid flip

pi

pk
pl

p j

pi

pk
pl

p j

Figure 2.9: Invalid edge flip configurations.

sects pi p j which proves that edge pi p j is flippable if pi p j is not locally Delaunay.
Move now to Figure 2.10. and prove that, if pi p j is not locally Delaunay, then pk pl

is locally Delaunay. In other words, we’d like to prove that, provided that pl is inside
C , then pi is outside C ′.

Circles C and C ′ share edge pk p j and points pi and pl are on the same sides of
edge pk p j . Edge pi p j is not Delaunay by hypothesis. Then point pl is inside C , as
well as the whole arc Üpk pl p j (in dashed line on Figure 2.10) of C ′. Point pi belongs
to C and is on the same side of pk p j as pl , it is then outside C ′ and edge pk pl is
locally delaunay.

2.2. THE DELAUNAY TRIANGULATION 25

p j

pk

pi

pl

C

C ′

Figure 2.10: If pi p j is not locally Delaunay, then pk pl is locally Delaunay.

2.2.5 Locally Delaunay vs. Globally Delaunay

Property 2.2.4 If all edges of triangulation T (S) are locally Delaunay, then T is the
Delaunay triangulation DT(S).

The fact that a specific edge is locally Delaunay does not imply that both its two
adjacent triangles are Delaunay triangles. Yet, if all edges are locally Delaunay, then
the resulting triangulation is Delaunay.

Proof We prove property 2.2.4 by contradiction. Assume all edges of a triangulation
to be locally Delaunay. Assume that triangle ∆I = pi p j pk has its circumcircle C I

that contains point pl ∈ S. The situation is summarized on Figure 2.11. Assume that
point pl and pi are on opposite sides of p j pk . Edge p j pk is locally Delaunay but
triangle pi p j pk is not Delaunay because its circumcircle is not empty (it actually
contains point pl). Consider triangle pk p j pm . Points pi and pm are on opposite
sides of p j pk and and pm is outside C I . This implies that C J contains pl as well. We
can continue that and show that CK and CL both contain pl as well. Yet, edge p0pn

is supposed to be locally Delaunay which means that pl should be outside CL . This
is indeed a contradiction.

2.2.6 The Flip Algorithm

Result 2.2.4 is of high importance. Combined with the flip algorithm, we can forsee
a simple algorithm that would start with any triangulation T (S) and would produce
the Delaunay triangulation DT(S) using edge successive flips. The algorithm could
be summarized as follows

• Insert all the internal edges of T (S) in a stack.

• Do while the stack is not empty

26 CHAPTER 2. DELAUNAY TRIANGULATIONS IN THE PLANE

p j

CK

CL

po

pn

pi

pl

pk

pm

C J

C I

Figure 2.11: An edge pi p j that is locally Delaunay (point pm is outside C I) but with
triangle pi p j pk that is not Delaunay.

– Take edge pi p j at the top of the stack. This edge is adjacent to triangles
pi p j pk and p j pi pl . If pi p j is not locally Delaunay, then flip it and add
edges pi pk ,pk p j , p j pl and pl pi in the stack. If one of those edges was
already present in the stack, update its neighbors.

– Remove pi p j from the stack.

Two questions should be asked at that point: (i) does this algorithm produce the De-
launay triangulation of S and (ii) if it achieves to create DT(S), what is its complexity?

Proposition 2.2.1 The edge flip algorithm converges to DT(S) in at most O (n2) flips.

Proof Consider an edge pi p j that is not Delaunay (Figure 2.12) with its two adja-
cent triangles pi p j pk and p j pi pl and their respective circumcircles C I and C J , with
pl ∈ C ′

J and pk ∈ C ′
I . Edge flip will produce triangles p j pk pl and pi pl pk and their

respective circumcircles C ′
I and C ′

J . Edge pk pl is locally Delaunay i.e. pi ∉ C ′
I and

p j ∉C ′
J .

Consider now the set of all possible point-triangle relations in a mesh T and a
function F (T) that counts how many of those relations violate the Delaunay empty
circle property. There is at most O (n2) point-triangle pairs in a mesh (see property
1.1.1). So, F ’s magnitude is not bigger than O (n2). Assume now that edge pi p j is

2.2. THE DELAUNAY TRIANGULATION 27

R = (C I ∪C J) \ (C ′
I ∪C ′

J)

C I

C J

C ′
I

C ′
J

pi p j

pk

pl

Figure 2.12: Edge flip: C I ∪C J ⊂C ′
I ∪C ′

J .

flipped, leading to a new triangulation T ′. Flipping an edge always leads to F (T ′) <
F (T). Figure 2.12 shows visually that

C I ∪C J ⊂C ′
I ∪C ′

J ,

the colored zone in the Figure representing

R = (C I ∪C J) \ (C ′
I ∪C ′

J).

If some points of S were inside circumcenters of triangles pi p j pk and p j pi pl in
T , then edge flip will not increase that number because those points will not be
anymore invalid. If R contains no points of S, then F (T ′) = F (T)−2 because the two
point-triangle relations associated to points pl and pk and triangles pi p j pk and
p j pi pl disappear from F . In conclusion, we have

F (T ′) ≤ F (T)+2

28 CHAPTER 2. DELAUNAY TRIANGULATIONS IN THE PLANE

Figure 2.13: Building an angle-optimal triangulation using swaps.

which means that F decreases at each edge flip.
F is bounded by above by O (n2). It is also bounded by below: only the Delaunay

triangulation has empty circumcircles, F (DT) = 0. The edge flip algorithm converges
to the Delaunay triangulation and its complexity is O (n2) in the worst case.

This result is outmost importance. It means that every triangulation T (S) is con-
nected to the Delaunay triangulation DT(S) by at most O (n2) flips. It also means
that any two triangulations T and T ′ are flip connected. Both T and T ′ being con-
nected to DT, it is therefore possible to go from T to DT using flips and then from
DT to T ′ using “back flipping”. The flip-connectness of 2D triangulations allows to
generate meshes of arbitrary domains with low complexity. This will be developped
in further chapters. Figure 2.13 illustrate the edge flip procedure.

2.2.7 The MaxMin property

Let us first recall a very old geometry theorem from Thales.

Proposition 2.2.2 Let C A and CB be two circumcircles of edge pi p j (see Figure 2.14).
Let b1 and b2 be two points on CB on the same side of pi p j . Then, b1 and b2 see the
edge pi p j with the same angle β. Consider now point a on the same side of pi p j as
b1 and b2 but on circle C A . Assume that b1,b2 are inside C A . Then, α<β.

Consider a triangulation T (S) with n f triangles. This triangulation has 3n f inter-
nal angles (3 angles per triangle). Consider the vector of angles A(T) = (α1, . . . ,α3n f)
sorted by increasing values. We can define such a vector for any triangulation. Each
triangulation T (S) has the same number of triangles so each vector A(T) has the
same length and it is therefore possible to compare them, e.g. lexicographically. We
say that one given triangulation T is angle-optimal if A(T) ≤ A(T ′), ∀T ′.

Property 2.2.5 The Delaunay triangulation DT(S) is angle-optimal: it maximizes
the minimum angle among all possible triangulations.

2.2. THE DELAUNAY TRIANGULATION 29

C A

Æ<Ø

pi

p j

CB

a
b1

Ø

Ø b2

γ2

κ1 κ2

λ1 C

C ′

pj

pk

pl

ι2
ι1 γ1

λ2pi

Figure 2.14: Thales theorem (left) and MaxMin property illustrated (right)

Proof Consider two triangulations T and T ′, where T ′ differs from T by one edge
flip. Let us proove that A(T ′) ≤ A(T). The edge flip procedure consist in replacing
triangles pi p j pk and p j pl pk by triangles pk pl pi (see Figure 2.14). The angles of the
old configuration are respectively

κ1 +κ2,γ2, ι1, ι2,γ1 and λ1 +λ2.

The angles of the new configuration are respectively

ι1 + ι2,κ1,λ1,κ2,λ2 and γ1 +γ2.

Our aim is to bound by above all angles of the old configuration. Two of the 6 rela-
tions are obvious: γ1,γ2 < γ1 +γ2 and ι1, ι1 < ι1 + ι2. We use Thales Theorem 2.2.2 for
the last four ones. Thales Theorem applied respectively to segments pi pl (blue and
yellow circles), p j pk (red and green circles), pi pk (blue and red circles) and pl p j

(yellow and green circles) gives

γ1 < κ1, ι1 <λ2, γ2 <λ1 and ι2 < κ2

which are the four relations that were needed. Successive edge flips lead to the De-
launay triangulation and each flip does not increase the minimum angle. The De-
launay triangulation is therefore angle-optimal.

30 CHAPTER 2. DELAUNAY TRIANGULATIONS IN THE PLANE

CHAPTER 3

Construction of 2D Delaunay Triangulations

3.1 The Delaunay Kernel

Let DTn be the Delaunay triangulation of a point set Sn = {p1, . . . , pn} ⊂R2 that are
in general position. We describe an incremental process allowing the insertion of a
given point pn+1 ∈Ω(Sn) into DTn and to build the Delaunay triangulation DTn+1 of
Sn+1 = {p1, . . . , pn , pn+1}.

pn+1

C (DTi , pn+1)

Figure 3.1: Delaunay triangulation Tn (left) and the Delaunay cavity Cp (DTn , pn+1)
(right).

31

32 CHAPTER 3. CONSTRUCTION OF 2D DELAUNAY TRIANGULATIONS

pn+1

σ1

σm

σ2

ker(Σ)

Figure 3.2: A star shaped polygon Σ and its kernel ker(Σ). All the corners σ j , 1 ≤ j ≤
m of Σ are visible from any x ∈ ker(Σ).

Definition: The Delaunay kernel is the following procedure

DTn+1 = DTn −C (DTn , pn+1)+B(DTn , pn+1). (3.1)

The Delaunay cavity C (DTn , pn+1) is the set of all triangles whose circumcircles con-
tain the new point pn+1 (see Figure 3.1) in consequense of what they are cannot be-
long to DTn+1. The Delaunay ball B(DTn , pn+1) is a set of triangles that fill the polyg-
onal hole that has been left empty while removing the Delaunay cavity C (DTn , pn+1)
from DTn .

In what follows, we will show that the Delaunay cavity C (DTn , pn+1) is star-
shaped and that pn+1 belongs to its kernel. Then, we will explain how to build
B(DTn , pn+1) in such a way that DTn+1 is a Delaunay triangulation.

3.1.1 Star shapeness

Consider a polygonΣwith m cornersσ1, . . . ,σm that is bounded by m edgesσi ,σ(i+1)%m ,
1 ≤ i ≤ m.

Definition: The kernel ker(Σ) is the set of point x ∈R2 that are visible to every σ j

i.e. the line segment xσ j them do not intersect any edges of the polygon.

The kernel ker(Σ) can be computed by intersection of the halfplanes that correspond
to all oriented edges of the polygon (see Figure 3.2).

3.1. THE DELAUNAY KERNEL 33

p6

pn+1

p1

p2

p3

p4

p5

CJ

CI

CK

Figure 3.3: The delaunay cavity is star shaped.

3.1.2 The Delaunay Cavity

Definition: The Delaunay cavity C (Tn , pn+1) is the set of m triangles ∆1, . . . ,∆m ∈
DTn for which their circumcircle contains pn+1 (see Figure 3.1).

The Delaunay cavity contains the set of triangles that cannot belong to Tn+1. The
region covered by those invalid triangles should be emptied and re-triangulated in a
Delaunay fashion. The Delaunay cavity has some interresting properties.

Proposition 3.1.1 The Delaunay cavity C (Tn , pn+1) is a non empty connected set of
triangles which the union form a star shaped polygon with pn+1 in its kernel.

Proof The proof is very similar to the one of proposition 2.2.4. Consider point pn+1

of Figure 3.3. Assume that pn+1 belongs to the circumcircle C I of triangle p2p3p4.
Let’s draw a line between pn+1 and p3 which is the triangle that is the furthest away
from pn+1. If p3 is our point of view, pn+1 is on the other side of p2p4. Point p5

is outside C I because triangle p2p4p5 is a Delaunay triangle. Then The part of C J

which is on the orther side of p2p4 contains the part of C J which is on the same
side. This implies that triangle p2p4p5 is invalid and is itself on the Delaunay cavity.
We can continue that kind of argument starting with p4, then p2. Finally, triangle
p1p5p6 contains pn+1 and is obviously on the Delaunay cavity. So, any vertex of the
boundary of the cavity can be seen by pn+1, which proves the proposition.

Property 3.1.1 The Delaunay cavity C (Tn , pn+1) does not contain any point of Sn .

34 CHAPTER 3. CONSTRUCTION OF 2D DELAUNAY TRIANGULATIONS

p j

B(DTi , pn+1)

σ j+1σ j

pn+1

Figure 3.4: The Delaunay Ball.

Proof To do.

3.1.3 The Delaunay Ball B(DTp , pn+1)

The Delaunay cavity C (DTn , pn+1) is star shaped and pn+1 belongs to its kernel. So,
one possible solution for the Delaunay ball is to create m triangles σiσ(i+1)%m pn+1,
1 ≤ i ≤ m that all contain the new point pn+1. This procedure indeed produces the
desired Delaunay triangulation. DTn+1.

All triangles that are not in C (Tn , pn+1) remain in DTn+1. Those triangles (e.g.
σiσi+1, p j on Figure 3.4) are Delaunay triangles in DTn+1 because their circumcir-
cles neither contain any point of Sn (DTn is a Delaunay triangulation) nor contain
pn+1 because they do not belong to C (Tn , pn+1). This implies that edges σiσi+1 are
locally Delaunay because the circumcircle ofσiσi+1, p j do not contain pn+1. The lo-
cal Delaunaynesss being symetric, it implies that circumcircle of triangleσiσi+1, pn+1

do not contain p j which proves that every edge of DTn+1 is locally Delaunay. Then,
DTn+1 is the Delaunay triangulation.

3.2 The Bowyer-Watson algorithm

The Bowyer-Watson algorithm is a method for computing the Delaunay triangula-
tion of a finite set of points S in any number of dimensions. It uses the Delaunay
kernel in an incremental fashion: starting with an initial triangulation DT0, points
of S are inserted one by one in the triangulation

DTi = DTi−1 −C (DTi−1, pi)+B(DTi−1, pi), i = 1, . . . ,n.

The choice of an initial triangulation DT0 has to be made.

3.2. THE BOWYER-WATSON ALGORITHM 35

3.2.1 Super-triangles

The initial Delaunay triangularion DT0 is composed of 1 or 2 or more “super-triangles”.
The super-triangles cover the entire convex hullΩ(S). Super triangles contain points
S0 = {p−1, p−2, . . . , p−m} that do not belong to S (see Figure 3.5).

Points p j , 1 ≤ j ≤ n are inserted one after the other in the triangulation using the
Delaunay kernel (3.1). The final result is a Delaunay triangulation DT(S ∪S0) of

S ∪S0 = {p−1, p−2, . . . , p−m , p−1, p1, p2, . . . , pn}.

A naive way to recover DT(S) would be to remove from DT(S∪S0) every triangle that
contains oints of S0. In reality, the remaining triangles do dot always form the DT(S).
On Figure 3.6, triangle pk p j pl should be present in DT(S). Yet, its circumcircle con-
tains point p−1 which does not belong to S.

The easiest way of addressing that problem is simply not to fix it. In many situa-
tions, DT(S∪S0) is a valid input for further use. The is the case for mesh generation.

Yet, one may be interrested in building DT(S). In this case, some modifications
to the algorithm have to be made. On Figure 3.6, triangle pk p j pl has its circum-
circle that contains p−1 and so edge p j p−1 belongs to the Delaunay triangulation.
Disappointingly, triangle pk p j pl belongs to DT(S). Triangle pk p j pl would be a De-
launay triangle if p− j was sufficiently far i.e. out of the circumcircle of pk p j pl . In
this specific case, increasing slightly the size of the super-triangles would do the job
but it is not clear how to chose a priori the size of the super-triangles that would
ensure that any triangle that has an edge on the convex hull has its circumcircle that
do not contain any of the p− j ’s. Some triangles may be arbitrary flat and their cir-
cumcircle arbitrary large. it is indeed impossible to decide a priory the right size of
the super-triangles.

The easiest solution to recover DT(S) is to start from DT(S ∪ S0) and to apply
edge flips in a specific fashion. Assume here that every point p− j is far enough
so that it does not fall into any circumcircle. Consider every edge p−i p j that con-
nectes a point of negative index to a point of positive index. Edge p−i p j is flippable
if it intersects pk pl . If p−i p j is flippable, then it should be flipped because triangle
pk p j pl ’s circumcircle does not contain p−1. The principle is to replace an edge of
inifinite length with points of finite lenhgth. Note that an edge like pi p−2 should
not be flipped because it would create another edge of infinite length. Applying flips
successively in that fashion, allows to recover DT(S).

Figure 3.5: A set of 9 points and the two “super-triangles” that contains them all
(left). Next Figures show the state of the triangulation after the insertion of 1, 2, 3
and 4 points.

36 CHAPTER 3. CONSTRUCTION OF 2D DELAUNAY TRIANGULATIONS

p j

pi

pk

pl

Ω(S)

p−1p−4

p−3 p−2

Figure 3.6: Left Figure shows the final triangulation DT(S0∪S). The convex hullΩ(S)
is shaded and triangles DT(S0 ∪S) do not cover it: DT(S) ∉ DT(S0 ∪S).

3.2.2 What if pn+1 ∉Ω(Sn)?

TODO: explain gift wrapping stuff.

3.3 A robust implementation in O (n logn) complexity

Algorithm 1 describes a basic implementation of the Bowyer-Watson algorithm. It
has actually two major flaws.

Algorithm 1 is slow: it has a O (n2) complexity: at each iteration i , every trian-
gles of DTi−1 j is asked if pi is inside its circumcircle. There is about 2i triangles
at iteration i which leads to a O (n2) complexity. Centers of circumcircles could be
computed in advance and stored in the datastructure in order to accelerate the pro-
cess. Nevertheless, this approach remains quadratic in complexity.

Algorithm 1 suffers from another more subtle flaw that is essentially due to round-
off errors. We have assumed that points were in general positions so that no quadru-
plets of points are cocircular. This hypothesis is indeed not verified in practice: there
are numerous applications where circles are involved and where way more than 4
points sit on the same circle. Algorithm 1 could be in trouble because some point
may neither be inside nor outside a circulcircle. One solution is to randomly per-
turbate the position of the points in order to enforce them to be in general position.
Here, the question is what is the smallest perturbation that ensures the triangulation
process terminates with success.

The first issue can be solved choosing some adequate datastructures and algo-
rithms. The second issue can be addressed by designing essentially two robust pred-

3.3. A ROBUST IMPLEMENTATION IN O (N LOG N) COMPLEXITY 37

Algorithm 1: Bowyer and Watson’s algorithm that creates DT(S)

input : A set of n +4 points S = {p−4, p−3, p−2, p−1, p1, . . . , pn} ⊂R2

output: The Delaunay triangulation DT(S)

initialize a triangulation data structure DT0 with 2 super-triangles
p−1, p−2, p−3 and p−2, p−1, p−4.;

for i = 1 to n do
for j = 1 to size(DTi−1) do

τ j is the j th triangle of DTi−1;
if τ j ’s circumcircle contains pi then

Add τ j to Delaunay cavity C (DTi−1, pi);
Remove τ j from DTi−1;

for j = 1 to size(C (DTi−1, pi)) do

τ j is the j th triangle of C (DTi−1, pi).;
for k = 1 to 3 do

e j k is the kth edge of the τ j . ;
if e j k is not shared by any other triangles of C (DTi−1, pi) then

Add a new triangle e j k , pi into DTi−1;

icates.

3.3.1 Robust predicates

Consider three points a(xa , ya), b(xb , yb) and c(xc , yc). The orientation test

O?(a,b,c)

determines whether a lies to the left of, to the right of, or on the line Lbc defined
by points b and c. The orientation test O? consist in computing the orientation of
triangle abc i.e. to compute:

O?(a,b,c) = sign O (a,b,c)

= sign

∣∣∣∣∣∣
1 1 1

xa xb xc

ya yb yc

∣∣∣∣∣∣ (3.2)

The orientation test is useful in many situations. First, it allows to compute the
orientation of a triangle, which is useful by itself. It also allows to verify if two edges
ab and cd intersect, which is the case if

O (a,b,c)×O (a,b,d) < 0 and O (c,d , a)×O (c,d ,b) < 0.

The computation of the orientation test O?(a,b,c) looks very simple: it consist
in computing the determinant of a 3×3 matrix. Some interresting issues appear yet

38 CHAPTER 3. CONSTRUCTION OF 2D DELAUNAY TRIANGULATIONS

Figure 3.7: Strange behavior of the orientation test. Left figure shows O?(a,b,c) for
b(12,12), c(24,24), and a(1/2+ iε),1/2+ jε), ε= 2−53 and 0 ≤ i , j ≤ 28. Right figure
shows O?(c,b, a). .

when a is sufficiently close to line bc. As an example [?], consider

b(12,12), c(24,24), and a(1/2+ iε),1/2+ jε),

ε = 2−53 and 0 ≤ i , j ≤ 28. Note that 2−53 is the significand precision of a double-
precision.

In Figure 3.7 the 2562 results of the O? were reported on a 2D graph. Green
dots are for O?(a,b,c) = −1, red dots are for O?(a,b,c) = 1 and yellow dots are for
O?(a,b,c) = 0. We should only see yellow dots only on the diagonal of the square.
This is obviously not the case: the orientation test behaves randomly when points
are close to be aligned. The result of O? is wrong even for points that are at 20 times
the significand precision away from the diagonal. Even worse: results obtained with
O?(c,b, a) should be the same as the ones for O?(a,b,c). The second graph proves
that this is far from being true. This strange behavior is due to roundoffs. A robust
way of computing the orientation test requires more precise (and more expensive)
floating-point arithmetics. It is of course too expensive to compute every predicate
in an exact fashion. Static filtering consist in assuming that O? gives the right answer
if

|O (a,b,c,d)| > ε× (max(xa , ya , xb , yb , xc , yc))2.

In [?], authors show that ε= 10−15 is considered as secure for the 2D orientation test.
This value is verified experimentally on Figure 3.7. If |O?| is too small, arbitrary preci-
sion arithmetic on floating-point numbers is applied (we use here the GNU Multiple
Precision Floating-Point Reliable Library [?] that allows to to choose the precision
of the computations). Double-precision floating point numbers have a precision
of 53 bits (16 significant digits). We have implemented O? using 200 bits i.e. with
about 60 significand digits! High precision floating point arithmetics coupled with

3.3. A ROBUST IMPLEMENTATION IN O (N LOG N) COMPLEXITY 39

Figure 3.8: O?(a,b,c) using a robust predicate. Right Figure is a zoom.

a static filter (ε= 10−15) allow to produce the excpected results (see Figure 3.8). The
strange behavior of the orientation test of Figure 3.7 has completely disappeared.
Only points on the diagonal of the square are considered to be on line bc.

The incircle test is a critical piece in the implementation of Delaunay triangula-
tions. Consider three points a(xa , ya), b(xb , yb), c(xc , yc) and d(xd , yd). The incircle
test computes

C?(a,b,c,d) = sign C (a,b,c,d)

= sign

∣∣∣∣∣∣∣∣
1 1 1 1

xa xb xc xd

ya yb yc yd

(x2
a + y2

a) (x2
b + y2

b) (x2
c + y2

c) (x2
d + y2

d)

∣∣∣∣∣∣∣∣ . (3.3)

Equation (3.3) determines whether d lies inside the circle defined by points a, b, and
c. The incircle test has the same robustness issues as the orientation test. Bowyer-
Watson algorithm 1 that uses a non robust circle test can possibly produce invalid
meshes.

A strategy that couples static filtering (ε = 10−11) and high precision floating
point arithmetics result in a robust incircle test.

In the Delaunay kernel, predicate C? should predict wether a point d is inside
or inside the circle defined by points a, b, and c. If d lies exactly on the circle, the
points are not in general position and the Delaunay triangulation is not unique. This
situation should never happen. The most common way to avoid that situation is
to perturbate the set of points. A naive approach consist in slightly modifying the
position of the initial point set, doing the triangulation and then moving back the
points to their original positions. This perturbation method is not robust: there is
no guarantee that triangles remain valid after repositioning the nodes.

In [?, ?], authors propose to perturbate the points in a symbolic fashion. We first
acknowledge that predicate (3.3) inR2 can indeed be seen as an orientation predi-

40 CHAPTER 3. CONSTRUCTION OF 2D DELAUNAY TRIANGULATIONS

cate O? inR3 where the third coordinate of a is r 2
a = x2

a + y2
a . The idea of a symbolic

perturbation is to perturbate this third coordinate by a factor εa . The perturbate
predicates writes:

C?
ε(a,b,c,d) = sign

∣∣∣∣∣∣∣∣
1 1 1 1

xa xb xc xd

ya yb yc yd

r 2
a +εa r 2

b +εb r 2
c +εc r 2

d +εd

∣∣∣∣∣∣∣∣ . (3.4)

Expending that determinant with respect to its last row, we get

C ε(a,b,c,d) =C (a,b,c,d)+εaO (b,c,d)−εbO (a,c,d)+εcO (a,b,d)−εd O (a,b,c).

This perturbation test is only used when C (a,b,c,d) = 0. This leads to

C ε(a,b,c,d) = εaO (b,c,d)−εbO (a,c,d)+εcO (a,b,d)−εd O (a,b,c). (3.5)

The four terms of (3.5) are examined in order of increasing εi . When a non zero
value is found, it determines the sign of C?

ε. A simple choice for the perturbation is
to choose εi = i i.e. the index of the point is chosen as pertubation. One can also use
the lexicographic ordering. Note finally that the last term of C ε is non zero because
O (a,b,c) is the area of triangle abc which is positive. Using εi = n − i assumes that
the last point that is inserted in the triangulation is the most perturbed. In this case,
C (a,b,c,d) = 0 implies C?

ε(a,b,c,d) =−1 and the point d is considered exterior.

3.3.2 Choice of a datastructure

Figure 1.5 illustrate equation (1.6). The average number of adjacencies per entity in
the triangulation is know in advance. Yet, as it is seen on Figure (1.5), this number
varies from one vertex to another. This number may also change locally: an edge flip
removes one triangle of the adjacency of the two vertices of the edge that is flipped
and adds one triangle tho the adjacency of the two vertices of the new edge (see
Figure (1.5)). The number of upward adjacencies of a given vertex may change which
implies that datastructures that would keep track of such adjacencies should be of
variable size.

When the size of data may vary, memory allocation has to be used, which im-
plies indirect memory access and extra data storage. Datastructures of fixed size are
always preferred. Yet, some kind of upward adjacencies should exist in the datas-
tructure in order to accesss neighborhood of a mesh entity withoud traversing the
whole triangulation.

There exist one type of upward adjacency that is of fixed size: there is either 1 or 2
adjacent triangle to an edge. Note that this hypothesis implies that the triangulation
is manifold i.e. each edge is shared by no more than 2 faces. This is a common as-
sumption for many algorithms and we will assume the triangulation to be manifold
for now.

At this point, we’d like to choose how we will represent our triangulation on a
computer. The problem of choosing a datastructure is crucial. A good datastructure

3.3. A ROBUST IMPLEMENTATION IN O (N LOG N) COMPLEXITY 41

is has a low memory footprint but allows to compute local adjacencies in constant
time.

Technically, an adjacency is implemented as a pointer (the address of the adja-
cent entity). Moreover, if a given entity (point, edge or face) is explicitely represented
in a datastructure, it also requires one pointer (the address of the entity).

It is interresting to cout the total amount of pointers Np that are required in a
given mesh representation (i.e. for a given datastructure). In what follows, we as-
sume that n À nh and n À 1 which implies that ne ' 3n, n f ' 2n, nve ' 6, nv f ' 6
and ne f ' 2.

A naive choice could be to store all entities and all their adjacencies. This datas-
tructure is said to be full for obvious reasons. The number of pointers that is required
is

Np = n(1+nve +nv f)+ne (2+1+ne f)+n f (3+3+1) ' 42n.

The full datastructure is clearly overkill in term of memory. Moreover, using such
a datatrsucture in algorithms requires complicated updates which makes that ap-
proach totally ininterresting.

Another choice is the bidirectional datastructure [?]. In this datastructure, ver-
tices keep track of their adjacent edges, edges know about their adjacent vertices and
faces and face know about their edges. This datastructure is complete in the sense
that all entities are represented explicitely and that any adjacency information can
be recovered using local searches. The number of pointers that is required is

Np = n(1+nve)+ne (2+1+ne f)+n f (3+1) ' 30n.

This is again a very heavy datastructure that requires complex updates while used in
algorithms.

In many cases, the only information that is required in a representation is the list
of vertices of a triangle. This is the case in most of the finite element formulations or
to draw the mesh. Here, the number of pointers that is required is

Np = n +n f (3+1) ' 9n.

This is clearly the minimum amount of information possible. No upward adjacenci
is available here so that it is impossible to devise efficient meshing algorithms with
such a datastructure.

Most popular data structures for storing adjacency information of polygonal meshes
are edge-based. Winged-edge [?] and half-edge [?] datastructures apply to manifold
meshes while Winged-edge and half-edge data structure uses edges to keep track
almost everything. In a winged-edge datastructure, each edge stores 8 pointers to
neighboring edges, faces and points. Faces and points store one pointer, so that the
number of pointers that is required is

Np = n(1+1)+ne (1+8)+n f (1+1) = 33n.

The advantage of such a datatrsucture is that it is easy to update when local opera-
tions are performed. Yet, it is quite heavy.

42 CHAPTER 3. CONSTRUCTION OF 2D DELAUNAY TRIANGULATIONS�
struct Vertex {

double x , y , z ;
Vertex (double X , double Y , double Z) :

x (X) , y (Y) , z (Z) { }
} ;
� �

Listing 3.1: Vertex Datastructure

Those datastructures are suboptimal for algorithms like the Delaunay triangula-
tion. Representing edges explicitely is not mandatory here and edges are the entities
that are the most numerous in a triangulation. In this text, we use a datastructure
that is face-based: each triangle knowns about its 3 vertices and its 3 neighboring tri-
angles. Each vertex knows about its coordinates. That’s pretty much all. The number
of pointers that is required is

Np = n +n f (1+6) = 15n.

This datastructure is way lighter than edge-based ones. With 8 bytes pointers, the
memory footprint of a mesh with n = 106 is 120 Mb. Another advantage is that it can
be extended in 3D, which is not the case for edge-based datastructures.

Vertex datastructure

The vertex datastructure is quite simple: a vertex knows about its coordinates (see
Listings 3.1.

Edge datastructure

Even though we do not maintain edges of the triangulation in our algorithms, it is
sometimes necessary to build edges for a subset of triangles of the triangulation.
The edges that we consider are nort oriented: they are equal if they connect the
same two vertices. The datastructure shown in Listings 3.2 allows to construct an
edge with two vertices and to compare two edges (edges are compared comaring
their vertex pointers in a lexicographic manner).

Face datastructure

The triangles are maintained in the triangulation. Each triangle maintains its three
vertices and its three neighbors. We assume that neighbor F[k] is the triangle that is
on the other side of edge with vertices V[k] and V[(k+1)%3]. We also assume that
we have a function inCircle that predicts if vertex V is inside the circumcircle of
the Face and a function centroid that computes the centroid of the face. The Face
datastructure is shown in Listings 3.3.

3.3. A ROBUST IMPLEMENTATION IN O (N LOG N) COMPLEXITY 43

�
struct Edge {

Vertex *vmin , * vmax ;
Edge (Vertex *v1 , Vertex * v2)

vmin = std : : min (v1 , v2) ;
vmax = std : : max (v1 , v2) ;

}
bool operator < (const Edge &other) const {

i f (vmin < other . vmin) return true ;
i f (vmin > other . vmin) return f a l s e ;
i f (vmax < other . vmax) return true ;
return f a l s e ;

}
} ;
� �

Listing 3.2: Edge Datastructure

�
struct Face {

Face *F [3] ;
Vertex *V [3] ;
bool deleted ;
Face (Vertex *v0 , Vertex *v1 , Vertex * v2) {

V[0] = v0 ; V[1] = v1 ; V[2] = v2 ;
F [0] = F [1] = F [2] = NULL;
deleted = f a l s e ;

}
Edge getEdge (int k) {

return Edge (V[k] ,V [(k+1) %3]) ;
}
bool i n C i r c l e (Vertex * c) ;
Vertex centroid () ;

} ;
� �
Listing 3.3: Face Datastructure

44 CHAPTER 3. CONSTRUCTION OF 2D DELAUNAY TRIANGULATIONS

Figure 3.9: A cavity (left figure in light pink) is removed from the meh. It is remeshed
(left figure in light pink). Adjacencies (double arrows) are updated (red double ar-
rows) for all new triangles (light pink) as well as for all neighboring triangles of the
cavity (dark pink).

3.3.3 Algorithms

A local mesh modification works as follows. A cavity of triangles is removed from the
mesh (see Figure 3.9). The cavity is remeshed and mesh datastructures are updated
in order to take into account the modification. More specifically, each new Face of
the remeshed cavity has to be connected to its neighboring faces. Those neighboring
faces may be new as well or may be neighboring triangles of the cavity.

Algorithm depicted in Listings 3.4 is the building block of all other algorithms
that are performing local mesh modifications: computeAdjacencies computes ad-
jacencies of a list of N triangles. It has a O (N log N) complexity (one search/insert on
a std::map per triangle). We use here some associative containers from the stan-
dard template library.

Another important building block in our implementation is the computation of
the Delaunay cavity. We assume here that one initial triangle t has been found that
has its circumcircle containing a given vertex. Algorithm in Listings 3.5 allows to
compute the Delaunay cavity using a depth-first search technique. The theory en-
sures that the Delaunay cavity is simply connected: triangles that form the Delaunay
cavity are neighbors of t , neighbors of the neighbors of t and so on. The neighbor-
hood of t is searched recursively until a triangle is found that is valid i.e. that does
not violate the empty circumcircle property. Triangles that have been checked are
marked as deleted to avoid infinite loops. Two other outputs are computed that will
serve us in constructing the Delaunay ball and in computing adjacencies. The set
of edges that form the boundary of the cavity is also computed. The corresponding
valid triangles that are on the other side of the boundary of the Delaunay cavity are
also computed.

3.3. A ROBUST IMPLEMENTATION IN O (N LOG N) COMPLEXITY 45

�
void computeAdjacencies (std : : vector <Face*> &cavity) {

std : : map < Edge , std : : pair < int , Face * > >edgeToFace ;
for (int iFace=0 ; iFace < cavi ty . s i z e () ; iFace++) {

for (int iEdge=0 ; iEdge < 3 ; iEdge ++) {
Edge edge = cavity [iFace]−>getEdge (iEdge) ;
std : : map < Edge , std : : pair < int , Face * > > : : i t e r a t o r i t =

edgeToFace . find (edge) ;
i f (i t == edgeToFace . end ()) {

/ / edge has not y e t been touched , so c r e a t e an entry
edgeToFace . i n s e r t (std : : make_pair (edge ,

std : : make_pair (iEdge , cavi ty [iFace]))) ;
}
else {

/ / Connect the two neighboring t r i a n g l e s
cavity [iFace]−>F [iEdge] = i t −>second . second ;
i t −>second . second−>F [i t −>second . f i r s t] = cavi ty [iFace] ;

/ / Erase edge from the map
edgeToFace . erase (i t) ;

}
}

}
}
� �

Listing 3.4: An algorithm for connecting triangles in a cavity

�
void delaunayCavity (Face * f , Vertex *v , std : : vector <Face*> &cavity ,

std : : vector <Edge> &bnd , std : : vector <Face*>
&otherSide) {

i f (f−>deleted) return ;
f−>deleted = true ; / / Mark the t r i a n g l e
cavi ty . push_back (f) ;
for (int iNeigh =0; iNeigh <3 ; iNeigh ++) {

i f (f−>F [iNeigh] == NULL) {
bnd . push_back (f−>getEdge (iNeigh)) ;

}
else i f (! f−>F [iNeigh]−> i n C i r c l e (v)) {

bnd . push_back (f−>getEdge (iNeigh)) ;
i f (! f−>F [iNeigh]−>deleted) {

otherSide . push_back (f−>F [iNeigh]) ;
f−>F [iNeigh]−>deleted = true ;

}
}
else delaunayCavity (f−>F [iNeigh] , v , cavity , bnd , otherSide) ;

}
}
� �

Listing 3.5: An algorithm for computing the Delaunay cavity

46 CHAPTER 3. CONSTRUCTION OF 2D DELAUNAY TRIANGULATIONS�
Face * lineSearch (Face * f , Vertex * v) {

while (1) {
i f (f == NULL) return NULL; / / we should NEVER return here
i f (f−>i n C i r c l e (v)) return f ;
Vertex c = f−>centroid () ;
for (int iNeigh =0; iNeigh <3 ; iNeigh ++) {

Edge e = f−>getEdge (iNeigh) ;
i f (orientationTest (&c , v , e . vmin) *

orientationTest (&c , v , e . vmax) < 0 &&
orientationTest (e . vmin , e . vmax, &c) *
orientationTest (e . vmin , e . vmax, v) < 0) {

f = f−>F [iNeigh] ;
break ;

}
}

}
� �
Listing 3.6: An algorithm that finds a invalid triangle

Computing the Delaunay cavity requires a seed triangle i.e. a triangle t of the
triangulation that is invalid. The last bit algorithm that is provided here allows to
perform a search in a mesh along a given direction and find the desired triangle.
Triangulations we are dealing with cover the convex hull Ω(S) of the set of points
S. So, if c is the centroid of a given triangle t and if p ∈ S is a target point, line cp
is entirely inside the triangulation and it is possible to find a path of triangles that
connect t to the triangle t ′ that contains p. Algorithm in Listings 3.6 strats from a
given triangle and traverses the mesh until an invalid triangle is found. It assumes
that a robust orientation test O? function is available. Assume a triangulation with n f

triangles, the complexity of algorithm lineSearch is at most linear. Asymptotically,
it is not absurd to guess that only O (

p
nh) triangles will be touched by lineSearch

which reduce its complexity in practice.

Algorithm in Listings 3.7 is a C++ version of 1. It has clearly a worst complexity
of O (n2) but could possibly behave better i.e. like O (n3/2). It starts with an initial tri-
angulation made of some super triangles that cover the convex hull of S and inserts
the points incrementally.

The code that is provided here is actually working as is. We have used it to com-
pue Delaunay triangulations of random points. The following table presents results
of the algorithm for a set of n random points in the plane that have been inserted in
a random order.

In Table 3.1, Nsear ch is the average number of serarches that have been per-
formed in lineSearch and Ncavi t y is the average size of the Delaunay cavity. Even
though this implementation may not be optimal, it shows the basic features of the
algorithm. First, the average cavity size is asymptotically optimal: a cavity of size 4
produce 6 new triangles adjacent to a vertex which is what the theory predicts. Then
the number of walks that the lineSearch algorithm increases approximatively like

3.3. A ROBUST IMPLEMENTATION IN O (N LOG N) COMPLEXITY 47

�
void delaunayTrgl (std : : vector <Vertex *> &S , std : : vector <Face*> &T) {

for (int iP=0 ; iP < S . s i z e () ; iP++) {
Face * f = lineSearch (T[0] , S [iP]) ;
std : : vector <Face*> cavi ty ;
std : : vector <Edge> bnd ;
std : : vector <Face*> otherSide ;
delaunayCavity (f , S [iP] , cavity , bnd , otherSide) ;
i f (bnd . s i z e () != cavi ty . s i z e () + 2) throw ;
for (int i =0; i < cavi ty . s i z e () ; i ++) {

/ / reuse memory s l o t s of invalid elements
cavity [i]−>deleted = f a l s e ;
cavi ty [i]−>F [0] = cavi ty [i]−>F [1] = cavi ty [i]−>F [2] = NULL;
cavi ty [i]−>V[0] = bnd[i] . V [0] ;
cavi ty [i]−>V[1] = bnd[i] . V [1] ;
cavi ty [i]−>V[2] = S [iP] ;

}
unsigned int cSize = cavi ty . s i z e () ;
for (int i =cSize ; i <cSize +2; i ++) {

Face *newf = new Face (bnd[i] . V[0] , bnd[i] . V[1] , S [iP]) ;
T . push_back [newf] ;
cavi ty . push_back (newf) ;

}
for (int i =0; i <otherSide . s i z e () ; i ++)

i f (otherSide [i]) cavi ty . push_back (otherSide [i]) ;
computeAdjacencies (cavi ty) ;

}
}
� �

Listing 3.7: An algorithm for computing the Delaunay triangulation

n 103 104 105 106

Nsear ch 19.8 56.8 161 503
Ncavi t y 3.85 3.97 3.99 3.99
t (sec) 0.012 0.198 4.85 172

Table 3.1: Results of the delaunayTrgl algorithm applied to random points.

48 CHAPTER 3. CONSTRUCTION OF 2D DELAUNAY TRIANGULATIONS

the square root of n: 56.8×
p

10 = 179.6 which is close to 161. The complexity of the
algorithm written as is is close to O (n3/2). For large meshes, the O? predicate takes
about 50% of the CPU time so that the most significant part if the time is spend in
searching for an initial triangle.

The bottleneck of the Delaunay triangulation as it is written in delaunayTrgl
is the increasing effort that has to be done at each point insertion to find a triangle
seed for building the Delaunay cavity.

Assume now that we are able to sort the set of points S in such a way that two suc-
cessive points in the list would be close to each other. In Algorithm delaunayTrgl,
we take as initial guess the first triangle of the list and search into the domain. We
could chage that by choosing one of the triangles of the cavity that is associated to
the vertex that was inserted previously in the list.

3.3.4 Hilbert Curves

A curve x(t) is defined as the mapping

x(t) , t ∈ [0,1] → x ∈R3.

Curves are perceived as one dimensional objects. Yet, it can be shown that a contin-
uous curve can pass through every point of a unit square. The Hilbert space filling
H (t) curve is a one dimensional curve which visits every point within a two dimen-
sional space. It may be thought of as the limit

H (t) = lim
k→∞

Hk (t)

of a sequence of curves Hk (see Figure 3.10).

Figure 3.10: Sequense of Hilbert curves Hk .

3.3. A ROBUST IMPLEMENTATION IN O (N LOG N) COMPLEXITY 49

(3)

b

rx0

(1)

(0)

(2)

(0,3)

(0,0) (0,1)

(0,2)

Figure 3.11: Curves H1 and H2.

Curves H1 and H2 are depicted on Figure 3.11. There are lots of references that
show how to actually draw Hilbert curves: this is a distraction from the essential
property of the curve, and its importance to mesh generation.

Hilbert curves provide an ordering for points on a plane. Forget about how to
connect adjacent sub-curves, and instead focus on how we can recursively enumer-
ate the quadrants.

A local frame is associated to each quadrant: it consist in its center x0 two or-
thogonal vectors b and r (see Figure 3.11). At the root level, enumerating the points
is simple: proceed around the four quadrants, numbering them

(0) = x0 −
b + r

2
(1) = x0 +

b − r

2
(2) = x0 +

b + r

2
(3) = x0 −

b − r

2
.

We want to determine the order we visit the sub-quadrants while maintaining the
overall adjacency property. Examination reveals that each of the sub-quadrants
curves is a simple transformation of the original pattern. Figure 3.11 illustrate the
first level of that recursion.

Quadrant (0) is itself divided into four quadrants (0,0), (0,1), (0,2) and (0,3). Its
center is simply set to (0) and two vectors b and r are changed as

b ← r /2 and r ← b/2.

For quadrant (0,1) and (0,2) we have

b ← b/2 and r ← r /2.

and finally for quadrant (0,3):

b ←−r /2 and r ←−b/2.

50 CHAPTER 3. CONSTRUCTION OF 2D DELAUNAY TRIANGULATIONS�
void HilbertCoord (double x , double y , double x0 , double y0 ,

double xRed , double yRed , double xBlue , double yBlue ,
int d , int b i t s []) {

for (int i = 0 ; i <d ; i ++) {
double coordRed = (x−x0) * xRed + (y−y0) * yRed ;
double coordBlue = (x−x0) * xBlue + (y−y0) * yBlue ;
xRed/=2; yRed/=2; xBlue /=2; yBlue /=2;
i f (coordRed <= 0 && coordBlue <= 0) { / / quadrant 0

x0 −= (xBlue+xRed) ; y0 −= (yBlue+yRed) ;
swap (xRed , xBlue) ; swap (yRed , yBlue) ;
b i t s [i] = 0 ;

}
else i f (coordRed <= 0 && coordBlue >= 0) { / / quadrant 1

x0 += (xBlue−xRed) ; y0 += (yBlue−yRed) ;
b i t s [i] = 1 ;

}
else i f (coordRed >= 0 && coordBlue >= 0) { / / quadrant 2

x0 += (xBlue+xRed) ; y0 += (yBlue+yRed) ;
b i t s [i] = 2 ;

}
else i f (coordRed >= 0 && coordBlue <= 0) { / / quadrant 3

x0 += (−xBlue+xRed) ; y0 += (−yBlue+yRed) ;
swap (xRed , xBlue) ; swap (yRed , yBlue) ;
xBlue = −xBlue ; yBlue = −yBlue ;
xRed = −xRed ; yRed = −yRed ;
b i t s [i] = 3 ;

}
}

}
� �
Listing 3.8: An algorithm for computing Hilbert coordinates

creates 4 sub quadrants. If we consider a maximal recursion depth of d , each of the
final subquadrants will be assigned to a set of d “coordinates” i.e. (k0,k1, . . . ,kd), k j

being 0,1,2 or 3.
Algorithm in Listings 3.8 compute the Hilbert coordinates of a given point x, y ,

starting from an initial quadrant define by its center x0, y0 and two orthogonal di-
rections.

Each point x of R2 has its coordinates on the Hilbert curve. Sorting a point set
with respect to Hilbert coordinates allow to ensure that two successive points of the
set are close to each other. In the context of the Bowyer-Watson algorithm, this kind
of data locality could potentially decrease the number of local searches Nsear ch that
were required to find the next invalid triangle.

Algorithm 3.8 was used to sort sets of 1000 and 10000 points. The results are
presented on Figure 3.12. On the Figure, two successive points in the sorted list are
linked with a line.

3.3. A ROBUST IMPLEMENTATION IN O (N LOG N) COMPLEXITY 51

n 103 104 105 106

Nsear ch 2.34 2.46 2.50 2.50
Ncavi t y 4.06 4.13 4.16 4.17
t (sec) 0.0097 0.090 0.92 9.2

Table 3.2: Results of the delaunayTrgl algorithm applied to random points. Points
were initially sorted through using a Hilbert sort.

The main cost of sorting points is on the sorting algorithm itself and not on the
computation of the Hilbert curve coordinates: sorting over a million points takes
less than a second on a standard laptop. Table 3.2 present timings and statistics for
the same point sets as in table 3.1, but while having sorted the points S using the
Hilbert curve. The number of serarches is not increasing anymore with the size of
the set. This is important: the complexity of the Delaunay triangulation algorithm
now is linear in time. Of course, sorting points has a n logn complexity so that the
overall process is in n logn as well. Yet, the relative cost of sorting the points is neg-
ligible with respect to the cost of the triangulation itself.

Figure 3.12: Hilbert sort of sets of 1000 and 10000 random points.

Explain brio : The trick is to organize the point set in random buckets of increas-
ing sizes, Hilbert sort being used only inside a bucket. I observe that this is useless in
my implementation that do not really care a lot of memory allocation optimization
strategies.

3.3.5 Edge flip

TODO: rite the edge flip algorithm and write the algorithm that recovers the Delau-
nay triangulation DT(S) starting from DT(S0 ∪S).

52 CHAPTER 3. CONSTRUCTION OF 2D DELAUNAY TRIANGULATIONS

CHAPTER 4

Finite Element Mesh generation in the plane

Up to now, we have considered the problem of triangulating a given point set S
which output is a set of non-overlapping triangles that cover the convex hullΩ(S).

The problem of planar mesh generation is different. Meshing takes as input a
domain G ⊂R2 that has to be triangulated. The most common way to describe G is
to use a boundary-based scheme where the geometric domain is represented as a set
of topological entities together with adjacencies. Model vertices and model edges of
G from a boundary representation of G . Each model edge is topologically oriented: it
has a starting and a ending model vertex. Model faces of G are bounded by oriented
model edges. As an example, Figure 4.4 presents a model that is composed of two
model faces, 20 model edges and 25 model vertices. Mode edge E13 is bounded by
model vertices V3 and V2. The problem of planar mesh generation consist in filling
the different model faces of G with triangles. This problem is significantly different
from the problem of triangulating a set of points:

• the input data is the geometrical model,

• the point set is to be determined.

Model faces are bounded by model edges. In the mesh, triangles are bounded by
mesh edges. The input data of a planar mesher is therefore a set of mesh edges. The
problem of discretizing the model edges is the problem of one dimensional mesh-
ing.

The mesh generation procedure aims at building triangles that have controlled
size and shape. For addressing those aims, we have to clarify what is right for an
element, both in terms of size and shape.

4.1 Triangle shape or quality measures

It is not simple to talk about mesh quality because there is no clear definition of
what is a “good triangle”. Here, we will take the point of view of finite elements: we
are going to define triangle quality using arguments of the finite element theory.

53

54 CHAPTER 4. FINITE ELEMENT MESH GENERATION IN THE PLANE

-0.075 -0.05 -0.025 0 0.025 0.05 0.075
0

0.025

0.05

0.075

0.1

0.125

0.15

17

12 8
3

18

10

6

19

20

16

4

1

13

11 9

14 2

15

5

7

19 20

15

25

13

6

5 8

23

14 11

9

24

10

22

4

17

18

7

12

32 16

1

21

Figure 4.1: A simple 2D model (conge.geo).

4.1.1 The famous angle condition

Angle conditions play an important role in the analysis of the finite element method.
In this section, we will show the influence of triangle shapes on the quality of a finite
element interpolation using (mostly) geometrical arguments.

A finite element is a set with three components: (i) a reference element with a
simple shape (the canonical triangle T̂ in this case, with vertices (ξ,η) = (0,0), (1,0)
and (0,1)), (ii) a finite-dimensional space of polynomial functions P defined on T̂
(the space of shape functions) and (iii) a basis N for P ′, the dual of P . We note p
the polynomial order, k = (p +1)(p +2)/3 the dimension of P and N = {N1, . . . , Nk } is
the set of nodal variables that are the actual basis of P ′. The set of shape functions
ψ1, . . . ,ψk is chosen in such a way that

Ni (ψ j) = δi j .

It is easy to see that, with such a definition, the ψ j ’s form a basis of P .
Shape functions are defined in the reference or canonical triangle Finite ele-

ments are meant to interpolate functions. Consider a function û(ξ,η) ∈ H s (T̂) where
H s (T̂) is the (Sobolev) space of functions defined on T̂ that have their sth derivatives

4.1. TRIANGLE SHAPE OR QUALITY MEASURES 55

in L2(T̂). Its finite element interpolation on T̂ is

Û (ξ,η) =
k∑

i=1
Ni (û)ψi (ξ,η).

This interpolant Û differes from û and it is interresting to measure the interpolation
error by computing some (Sobolev) norm of the difference between Û and û:

∥∥û −Û
∥∥

s,T̂ =
(∑
|α|≤s

∥∥Dαû
∥∥2

L2(T̂)

) 1
2

(4.1)

where α is a multi-index of order |α| = s and

Dαû = ∂|α|û
∂ξα1∂ηα2

For example, the L2 norm is defined as

‖û‖2
L2(T̂)

= ‖û‖2
0,T̂

=
∫

T̂
û2dξdη.

and the H 1 semi-norm and the H 1 norm are defined as

|û|2
1,T̂

=
∫

T̂

(
∂û

∂ξ

)2

+
(
∂û

∂η

)2

dξdη , ‖û‖2
1,T̂

= ‖û‖2
0,T̂

+|û|2
1,T̂

.

The Bramble-Hilbert lemma is a classical result of the interpolation theory []. It pro-
vides bounds to the interpolation error:∥∥û −Û

∥∥
s,T̂ ≤C (s, p) |û|p+1,T̂ , s = 0,1, . . . , p. (4.2)

Lemma (4.2) is quite intuitive: the interpolation error at order p of a smooth func-
tion (s times derivable in a weak sense) is dominated by some norm of the (p +1)st
derivative of the function. Expression (4.2) assumes that T̂ has a unit diameter (or
size), which is the case for reference triangle T̂ .

The finite element interpolation can be used on general triangles. For that, we
consider a linear mapping of a reference unit right triangle T̂ in the (ξ−η)-plane to
an element T in the (x, y)- plane (See Figure ??). More complex higher order map-
pings will be studied in further section §??. This linear mapping can be explicitely
written as

x(ξ,η) = (1−ξ−η)x1 +ξx2 +ηx3 , y(ξ,η) = (1−ξ−η)y1 +ξy2 +ηy3. (4.3)

The question that is asked here is how does result (4.2) extend when the affine
transformation (4.3) is applied to the triangle. Here, we now assume that a function
u(x, y) should be interpolated on the mesh. Consider a triangle T ⊂R2 with its three
coordinates (x1, y1), (x2, y2) and (x3, y3). We’d like to compute an estimate of

|u −U |21,T = |w |21,T =
∫

T

(
∂w

∂x

)2

+
(
∂w

∂y

)2

d xd y.

56 CHAPTER 4. FINITE ELEMENT MESH GENERATION IN THE PLANE

We have ŵ(ξ,η) = w(x(ξ), y(η)) and

‖w‖2
0,T =

∫
T

w2d xd y =
∫

T̂
ŵ2 |det J | dξdη= |det J |

∫
T̂

ŵ2dξdη= |det J |‖ŵ‖2
0,T̂

(4.4)
where

J =
[

∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

]
=

[
x2 −x1 x3 −x1

y2 − y1 y3 − y1

]
and |det J | = |(x2−x1)(y3− y1)−(x3−x1)(y2− y1)| = 2|T | is twice the area |T | of T Let
us now find a bound on |det J |. Consider that triangle T has with its anglesα≤β≤ γ
and its three sides 1

a ≤ b ≤ c. (4.5)

The area of T is equal to |T | = 1
2 bc sinα with α the smallest angle of T as defined.

Triangle inequality a +b ≥ c combined with (4.5) gives b ≥ c/2. On the other hand,
b ≤ c which gives the following useful upper and lower bounds to |det J | as:

c2 sinα

2
≤ |det J | ≤ c2 sinα.

This, combined with (4.4) leads to the bounds

‖w‖2
0,T

c2 sinα
≤ ‖ŵ‖2

0,T̂
≤

2‖w‖2
0,T

c2 sinα
. (4.6)

Transformation of derivatives requires the inverse J−1 of J

J−1 =
[∂ξ

∂x
∂ξ
∂y

∂η
∂x

∂η
∂y

]
=

[∂y
∂η − ∂x

∂η

− ∂y
∂ξ

∂x
∂ξ

]
|det J | =

[
(y3 − y1) −(x3 −x1)

−(y2 − y1) (x2 −x1)

]
(x2 −x1)(y3 − y1)− (x3 −x1)(y2 − y1)

.

Let us now define the symmetric metric tensor

G = J−T J−1 =
 (

∂ξ
∂x

)2
+

(
∂ξ
∂y

)2 ∂ξ
∂x

∂η
∂x + ∂ξ

∂y
∂η
∂y

∂ξ
∂x

∂η
∂x + ∂ξ

∂y
∂η
∂y

(
∂η
∂x

)2
+

(
∂η
∂y

)2

=
[

g1 g2

g2 g3

]
.

Applying Young’s inequality 2ab ≤ a2 +b2 allows to write(
∂w

∂x

)2

+
(
∂w

∂y

)2

= g1

(
∂ŵ

∂ξ

)2

+2g2

(
∂ŵ

∂ξ

∂ŵ

∂η

)
+ g3

(
∂ŵ

∂η

)2

≤ g1

(
∂ŵ

∂ξ

)2

+ g2

((
∂ŵ

∂ξ

)2

+
(
∂ŵ

∂η

)2)
+ g3

(
∂ŵ

∂η

)2

≤ max(|g1 + g2|, |g2 + g3|)
((
∂ŵ

∂ξ

)2

+
(
∂ŵ

∂η

)2)
.

1In a triangle,
sinα

a
= sinβ

b
= sinγ

c
.

4.1. TRIANGLE SHAPE OR QUALITY MEASURES 57

The elements of J−1 can all be bounded as∣∣∣∣ ∂ξ∂x

∣∣∣∣ ,

∣∣∣∣ ∂ξ∂y

∣∣∣∣ ,

∣∣∣∣∂η∂x

∣∣∣∣ ,

∣∣∣∣∂η∂y

∣∣∣∣≤ c

|det J | .

This last result together with (4.6) allow to find bounds to the elements of the metric
tensor

g1 , g2 , g3 ≤
2c2

|det J |2 ≤ 8

c2 sin2α
.

Then,

|w |21,T ≤ 16

sinα
|ŵ |2

1,T̂
. (4.7)

Another inequality can be established using the other side of the bounds (4.6). Here,
we invert the transformation i.e. we compute(

∂ŵ

∂ξ

)2

+
(
∂ŵ

∂η

)2

= ĝ1

(
∂w

∂x

)2

+2ĝ2

(
∂w

∂x

∂w

∂y

)
+ ĝ3

(
∂w

∂y

)2

≤ max(|ĝ1 + ĝ2|, |ĝ2 + ĝ3|)
((
∂ŵ

∂ξ

)2

+
(
∂ŵ

∂η

)2)
.

with

Ĝ = J T J =
 (

∂x
∂ξ

)2
+

(
∂x
∂η

)2
∂x
∂ξ

∂y
∂ξ + ∂x

∂η
∂y
∂η

∂x
∂ξ

∂y
∂ξ + ∂x

∂η
∂y
∂η

(
∂y
∂ξ

)2
+

(
∂y
∂η

)2

=
[

ĝ1 ĝ2

ĝ2 ĝ3

]
.

Elements of Ĝ can be bounded as

|ĝ1| , |ĝ2| , |ĝ3| ≤ 2c2

which leads to

|ŵ |2
1,T̂

≤ 8

sinα
|w |21,T . (4.8)

Finally,

sin1/2α

4
|w |1,T ≤ |ŵ |1,T̂ ≤ 2

p
2sin−1/2α|w |1,T . (4.9)

Expressions (4.9) and (4.6) can be easily generalized to

γ(s)sins−1/2αc s−1|w |s,T ≤ |ŵ |s,T̂ ≤ Γ(s)sin−1/2αc s−1|w |s,T . (4.10)

In (4.6), we have Γ(0) =
p

2 and γ(0) = 1. In (4.9), we have Γ(1) = 2
p

2 and γ(s) = 1/4.
It is now possible to demonstrate a very important result of the finite element theory.
We know by (4.10) that

|u −U |2s,T ≤ γ(s)−2 sin−2s+1αc−2s+2|û −Û |2
s,T̂

.

58 CHAPTER 4. FINITE ELEMENT MESH GENERATION IN THE PLANE

Next, use (4.2) to have

|u −U |2s,T ≤ γ(s)−2 sin−2s+1αc−2s+2C |û|2
p+1,T̂

.

Finally, use the right inequality of (4.10) to find

|u −U |2s,T ≤ γ(s)−2 sin−2s+1αc−2s+2CΓ2(p +1)sin−1αc2p |u|2p+1,T .

Combining the constants into C , we find the desired result

|u −U |s,T ≤ C (s, p)

sins α
cp+1−s |u|p+1,T . (4.11)

There are other ways to get result (4.11). Here is one. We call δ (resp. δ̂) the
diameter of the inner circle of T (resp. T̂) and c (resp. ĉ) its largest edge measure.
The affine mapping (4.3) maps a vector x̂ 7→ x = x0 + J x̂. The norm of J defined as

‖J‖ = sup
v̂∈R2

‖J v̂‖
‖v̂‖ .

tells us how much a vector x̂ can be magnified by an affine mapping. This definition
is equivalent to

‖J‖ = sup
v̂∈R2, ‖v̂‖=δ̂

‖J v̂‖
δT̂

.

Indeed, we like to compute this norm using vectors ‖v̂‖ = δ̂ that have a known norm
equal to the innercircl radius of T̂ because it allows a very simple geometrical in-
terpretation of ‖J‖ (see Figure ??). Every vector of norm δ̂ correspond to one diam-
eter of the inner-circle of T̂ . Each diameter of the inner-circle of T̂ is transformed
through J on a vector that is indeed completely inscribed into T . There is no vector
that is totally inside T and that has a length larger than c, which leads to the bound

‖J‖ ≤ c

δ̂
.

Inverting the role of T and T̂ , we get the following result

‖J−1‖ ≤ ĉ

δ
.

Combining both bounds on ‖J‖ and ‖J−1‖ gives

‖J‖‖J−1‖ ≤ cĉ

δδ̂
.

The diameter of the inner-circle of a triangle T is given by the formula

δ= 4|T |
a +b + c

.

4.1. TRIANGLE SHAPE OR QUALITY MEASURES 59

In the specific case of the canonical triangle T̂ , we have

δ̂= 2

2+
p

2
and ĉ =

p
2 → ‖J‖‖J−1‖ ≤

(
2p

2+1

)
c

δ
=C

c

δ
.

Now, it is easy to see [?] that

‖ŵ‖s,T̂ ≤ c‖J‖s |det J |−1/2‖w‖s,T .

Inverting again the role of T and T̂ , we get the following result

‖w‖m,T ≤ c‖J−1‖s |det J |1/2‖ŵ‖m,T̂ .

We can now re-compute bounds on discretization errors as

‖u −U‖s,T ≤ c‖J−1‖s |det J |1/2‖û −Û‖s,T̂ .

Next, use (4.2) to have

‖u −U‖s,T ≤ c‖J‖−s |det J |1/2C‖û‖p+1,T̂ .

Then we finally get

‖u −U‖s,T ≤ C (‖J‖‖J−1‖)s‖J‖p+1−s‖u‖p+1,T

≤ C (s, p)
(c

δ

)s
cp+1−s‖u‖p+1,T .

Equations (4.11) and (4.12) tell very much the same thing. More precisely,

c

δ
= a +b + c

2b sinα
≤ a +b +a +b

(a +b)sinα
= 2

sinα

≥ c + c

2c sinα
= 1

sinα

which means that c
δ and 1

sinα are two equivalent measures (one cannot blow up
while the other remains finite).

Result (4.11) was proved in 1968 by Milos Zlamal [?]. The consequense is the
following one: when a mesh is refined, i.e. when c → 0, then ensuring that the sine
of the smallest angle of the triangulation does not go to zero ensures the optimal
convergence of the interpolation error. In a triangle, sinα→ 0 forα→ 0 or forα→π.
In the case α → π , the two other angles β and γ will inevitably go to zero. It all
cases, results (4.11) and (4.12) indicate the importance of not generating triangles
with small angles. This is the famous angle condition.

Seven years after Zlamal’s paper, a famous paper of Babuska and Aziz [?] showed
that the minimum angle condition was not the right condition: even though Zla-
mal’s condition sinα bounded away from zero is a sufficient condition for conver-
gence, it is actually not necessary. What Babuska and Aziz point out in their famous
paper is that bounding the maximum angle γ away from π while refining the mesh
is the right condition in order to ensure optimal convergence properties of the finite
element approximation.

60 CHAPTER 4. FINITE ELEMENT MESH GENERATION IN THE PLANE

4.1.2 Discrete maximum principle

Consider a domain Ω ⊂R2 with its (smooth) boundary ∂Ω. The Dirichlet-Laplace
problem consist in finding u(x, y) ∈ H 2(Ω) solution of

∇2u = 0 on Ω,

u = ū(x, y) on ∂Ω.

It is possible to show that, for any disk D of center (x0, y0) and of radius δ that is
totally insideΩ, we have

u(x0, y0) = 1

πδ2

∫
D

u(x, y)d xd y.

The solution of the Dirichlet-Laplace problem at any interior point (x0, y0) of the
domain Ω is equal to the average of u on any disk centered at (x0, y0) that is totally
inside Ω. This implies that the solution u cannot have maximas or minimas inside
Ω. The maximum value of u is therefore on Ω. For example, if u is a temperature,
ū is a fixed temperature at the boundary, then our Dirichlet-Laplace describes the
steady-state thermal equilibrium inside Ω and the temperature cannot be higher
inside the domain than on ∂Ω. This is the maximum principle.

FInite elements are certainly the most common tool to solve such a Dirichlet-
Laplace problem numerically. It is often important that the numerical scheme em-
ployed is endowed with a discrete maximum principle. Consider a triangular mesh
and a standard finite element discretization of the Laplace operator using P1 con-
forming finite elements.

Another interresting result is the following one: it can be shown [?] that discrete
maximum principles hold for P1-conforming finite element approximations of the
Laplace problem when a triangulation has no obtuse angles. Continuous solutions
u of the Laplace problem do not possess local extrema [?] which means that the
maximum and the minimum of u are always on the boundary of the domain. This
strong maximum principle is often very important to be fullfilled by the numerical
scheme (see the reparametrization Chapter §?? of this book). The P1-conformal fi-
nite element formulation of the Laplace proble consist in writing one equation per
vertex q of the mesh (see Figure 4.2) that is

cq uq +
m∑

i=1
ci q uqi = 0.

This value uq should be bounded by above and by below by the qi ’s in order to fullfill
discrete maximum principle:

min
i

uqi ≤ uq ≤ max
i

uqi .

Any consistent method that discretizes the Laplace operator is such that

cq +
m∑

i=1
ci q = 0.

4.1. TRIANGLE SHAPE OR QUALITY MEASURES 61

q3

α
β

q1

q

qm

q2

Figure 4.2: A simple configuration.

This is simply due to the fact that the Laplace operator is a derivative. Assume that
every ci q is negative. Then, cq is obviously positive and

|cq | > |ci q | ∀i

which also means that 1 < ci q

cq
<−1. Then we re-write,

uq =−
m∑

i=1

ci q

cq
qi .

The vaue of uq is bounded by its neighbors uqi if 0 < ci q

cq
<−1. which is true if ci q < 0.

It is possible to prove [?] that

c1q =− sin(α+β)

2sinαsinβ
.

Then, a mesh for which α+β< π for all pairs of elements is such that it verifies the
discrete maximum principle. It is of course true if no obtuse angle is present in the
mesh. For measuring the quality of elements, various element shape measures are
available in the literature [?, ?]. In a finite element point of view, one should choose
a mesh quality that penalize elements with obtuse angles.

Finally, one can argue that equilateral triangles are optimal triangles they are the
only ones that are able to fill the entire space with edges of constant size.

On good candidate for mesh quality is certainly the ratio between the inscribed
radius and the circumradius of the triangle. We scale that quantity in order that an
equilateral triangle has a quality of 1. Consider a triangle t with its three inner angles
â, b̂ and ĉ. We define the triangle quality as

γt = 4
sin â sin b̂ sin ĉ

sin â + sin b̂ + sin ĉ
,

62 CHAPTER 4. FINITE ELEMENT MESH GENERATION IN THE PLANE

With this definition, the equilateral triangle has a γt = 1 and degenerated (zero sur-
face) triangles have a γt = 0.

4.1.3 Triangle quality measures

Results (4.11) and (4.12) clearly tell that angles should be bounded away from 0 and
π. A triangle quality measure should then detect a triangle that has one angle close
to π (we call it a cap) and a triangle with one angle close to zero (we call it a needle).
The best possible triangle is the equilateral one with all its angles being equal to
α = β = γ = π/3. Let us then define the shape measure of triangle T as a number
κT ∈ [−1,1] such that

1. κT = 1 if and only if the triangle is equilateral.

2. κT = 0 if and only if the triangle has a zero area.

3. κT < 0 if and only if the triangle is inverted.

4. κT is smooth i.e. it is derivable with respect to the position of the vertices.

The following choice

κT,1 =
2p
3

sinα

is directly related to interpolation result (4.11) . Yet, this quality measure is not
smooth due to the fact that α is the minimum angle and the derivative of α is not
smooth. Quality measure κT,1 is therefore not usable if its gradient is used for op-
timizing a mesh. Note that this measure is naturally improved by Delaunay refine-
ment algorithms for mesh generation (see §??). This other choice

κT,2 =
p

3
δ

c

is related to and (4.12). It is also not smooth.
Some common shape measure for triangles involve D , the outer diameter T i.e.

twice its circum-circle radius. The circumdiameter of a triangle T can be computed
using the simple relation

D = abc

2|T | .

The following measure

κT,3 = 2
δ

D
= 16|T |2

abc(a +b + c)
(4.12)

that correspond to twice the ratio of inner and outer diameters (factor 2 is there
in order to have κT,3 = 1 for the equilateral triangle as well) is the most common
triangle measure that is used in practice. It is smooth, easy to compute (no min or
max) but it does not detect inverted elements. Its square root

κT,4 =p
κT,2 =

4|T |p
abc(a +b + c)

(4.13)

4.2. MESH SIZE 63

has all the good properties and is very useful in practice.
We have seen in previous sections that caps i.e. triangles with one very obtuse

angles should be avoided. Previous quality measures do not distinguish between
needles and caps. The following measure

κT,5 =
4p
3

|T |
(abc)2/3

(4.14)

4.2 Mesh size

A mesh size field is a tool that aims at controlling the mesh size. We define the mesh
size function h(x, y) as a function the defines at every point of the planar domain a
target size h for the mesh edges at the point. Consider an edge e of the mesh. We
define the adimensional length of the edge with respect to the size field h as

le =
∫

e

1

h(x, y)
dl . (4.15)

The mesh generation being a discrete process, it is in general impossible to have
exactly le = 1 for all the edges of the mesh. We say that edge e the size criterion if its
adimensional size verifies

1−ξ≤ le ≤ 1+ξ.

A long edge is such that le > 1+ξ and a short edge is such that le < 1−ξ. Here, we
choose ξ in such a way that splitting a long edge in two equal parts does not create a
short edge:

1+ξ
2

= 1−ξ → ξ= 1

3
.

To quickly evaluate the adequation between the mesh and the size field, we de-
fined an efficiency index τ [?] as

τ= exp

(
1

ne

ne∑
e=1

τe

)
(4.16)

with τe = le−1 if le < 1 and τe =
1

le
−1 if le ≥ 1. The efficiency index ranges in τ ∈ [0,1]

and should be as close as possible to τ= 1.

4.3 One dimensional meshing

Let us consider a point p(t) on a curve C , t ∈ [t1, t2]. The number of subdivisions N
of the curve is its adimensional length:∫ t2

t1

‖p ′(t)‖
h(x, y)

d t = N . (4.17)

64 CHAPTER 4. FINITE ELEMENT MESH GENERATION IN THE PLANE

The N +1 mesh points on the curve are located at coordinates {T0, . . . ,TN }, where Ti

is computed with the following rule:∫ Ti

t1

‖p ′(t)‖
h(x, y)

d t = i . (4.18)

With this choice, each subdivision of the curve is exactly of adimensional size 1, and
the 1-D mesh exactly satisfies the size field δ. In Gmsh, (4.18) is evaluated with a
recursive numerical integration rule.

It is sometimes useful to limit mesh size variations in order to have a mesh that
is smoothly varying in size. Two edges of the mesh which are connected by a vertex
should not have a size that varies more than α, with a typical value α= 1.3.

Let us call l the curvilinear abscissa

l (t) =
∫ t

t1

‖p ′(t)‖.

Let us call h(l) the size field at point p(l (t)). on the curve and h(l) the size field. Now,
assume that we want to control the variation of the size of the 1D mesh, i.e. we want
that

h(l +∆l)−h(l) < (α−1)∆l

or
∂h

∂l
= ∂h

∂t

1

‖p ′(t)‖ <α−1.

In Gmsh we use a Gauss-Seidel iteration (iterate forward and then backward). The
convergence is usually very fast.

An issue that may occur during during the 1D mesh procedure concerns possi-
ble self-intersections of 1D mesh edges. This may happen even if in the case when
model edges of the geometry do not self intersect: Figure 4.3 shows two model edges
that are very close to each other. Yet, even the geometry is itself not self-intersecting,
it is indeed possible that a 1D discretization intersects itself. This kind of issue will
definitively happend at some point in the life of a mesh generator. It is therefore
mandatory to define a systematic procedure that fixes the issue. In Gmsh, the mesh
flow is modified in the following fashion. Mesh edges that intersected with each
other are found using the Bentley-Ottmann Algorithm. Every intersecting edges ek

is split into 2 segments and the new point is snapped onto the geometry. Then, we
go back to the first step until the list of intersecting edges is empty. If an intersect-
ing edge is smaller than the geometrical tolerance, then an error message is thrown
claiming that the geometry is itself self intersecting.

4.4 The general 2D Meshing procedure

Let us start by defining a simple planar surface in Gmsh (Figure 4.4). This model is
contained in the Gmsh distribution and is called conge.geo. This model is com-
posed of two planar surfaces, 20 model edges and 25 model vertices. We consider
a uniform size field δ = 0.005. The first step for doing the mesh is to discretize (or

4.4. THE GENERAL 2D MESHING PROCEDURE 65

Figure 4.3: A geometry with two islands that are very close to each other. The first
image shows the initial 1D mesh that respects mesh size field. The second image
shows the first iteration of the recovery algorithm. The third image shows the final
mesh that was possible to realize after 2 recovery iterations

-0.075 -0.05 -0.025 0 0.025 0.05 0.075
0

0.025

0.05

0.075

0.1

0.125

0.15

17

12 8
3

18

10

6

19

20

16

4

1

13

11 9

14 2

15

5

7

19 20

15

25

13

6

5 8

23

14 11

9

24

10

22

4

17

18

7

12

32 16

1

21

0
0.075

0.05

-0.05

0.075

-0.025

0.15

-0.075 0.050.025

0.025

0.1

0.125

0

Figure 4.4: A simple 2D the model conge.geo (left) and the 1D mesh (right)

66 CHAPTER 4. FINITE ELEMENT MESH GENERATION IN THE PLANE

mesh) the edges of the model. This operation is done computing the primitive (4.18)
for every edge of the model. The result is presented in Figure 4.4. Then, each of the
two model faces is triangulated.

At first, all the mesh vertices S = {p1, . . . , pn} that bounds the model face are
considered. Four extra mesh vertices S0 = {p−4, p−3, p−2, p−1} are added to the list.
These four vertices are the corners of a rectangle that encompasses the model sur-
faces (Figure 4.8).

The set of points S0 ∪S is then triangulated using the Delaunay algorithm (see
§3.3). Two possible issues have to be addressed at that point.

4.4.1 Recovering the boundary edges

Building a Delaunay triangulation of the set of points that consist in all vertices of the
1D mesh S = {p1, . . . , pn} plus the 4 additional infinite points S0 = {p−4, p−3, p−2, p−1}
do not give any guarantee that all edges of the 1D mesh are present in DT(S0 ∪S).
Delaunay triangulations deal with points and triangles, not with edges.

In a mesh generation context, it is mandatory that every mesh edge pi p j of the
1D mesh belong to the triangulation. There are two ways to recover the boundary
edges: (i) the first one ensures that the 1D mesh enforces the conformity of the De-
launay triangulation a priori and (ii) the second one modifies topologically the mesh
using edge flips, leading to a constrained Delaunay mesh.

A priori Delaunay conformity

Let us recall the definition of a locally Delaunay edge: given a triangulation T (S)
and an edge pi p j in the triangulation that is adjacent to two triangles ∆I = pi p j pk

and ∆J = pi pl p j . We call edge pi p j locally Delaunay if pl lies on or outside the
circumcircle of ∆I .

We have shown in §2.2 that a triangulation T (S) is a Delaunay triangulation if
and only if all its edges are locally Delaunay. There is indeed a very simple way to
enforce that every edge pi p j of the 1D mesh belongs to DT(S)

Consider an edge pi p j and the circle centered at 1
2 (pi + p j) of diameter D =

‖p2 −p1‖. If this circle is empty, then this edge is a Delaunay edge. If it is not empty,
then a new point pi j = 1

2 (pi + p j) is inserted at the center of edge pi p j . The two
new edges pi pi j and pi j p j are twice shorter so that the area 2×π(D/4)2 covered by
the union of ther respective circles is twice smaller than the area π(D/2)2 coverd by
the initial circle. This algorithm applied sequentially to every edge that is not locally
Delaunay will converge to a 1D mesh that have all its edges in the Delaunay trian-
gulation. Figure 4.5 shows an example where only one edge has to be refined. Edge
pi p j does not belong to the Delaunay triangulation. There exis indeed no circle
passing through pi and p j that is empty. After a first refinement, the circle centered
at 1

2 (pi j + p j) is not empty even though the Delaunay triangulation is conforming
to the 1D mesh. In that case, there exist a circle passing through pi j and p j that
is empty, but it is not the one that is centered at 1

2 (pi j + p j). This empty circle is
represented in dashed red lines on Figure 4.5 . Obviously, this a priori Delaunay

4.4. THE GENERAL 2D MESHING PROCEDURE 67

pi

p j

pi j

p j

pi

pi j

p j

pi

Figure 4.5: A priori Delaunay conformity.

conformity algorithm may overrefine the 1D mesh. Finally, step 3 allows to have ev-
ery circle empty. Such an approach has the advantage of maintaining a Delaunay
mesh in the whole meshing process. The main issue here is that there exist no con-
trol on the number of points that should be added to the 1D mesh to enforce this
a priori conformity. For example, when two boundary curves are very close to each
others, the 1D mesh could be refined in such a way that the 1D spacing is equal to
the distance between the two curves, which could be arbitrary small (see Figure 4.6).

Boundary edges recovery using local edge flips

The a priori approach is not the one that is used in enginnering applications. The
main reason has of not using the a priori approach is that mesh size cannot be con-
trolled. It is indeed possible to recover the missing 1D edges using edge swaps. In
general, any edge pi p j of any triangulation T (S) can be recovered using edge flips.
The algorithm work as follows.

• Create a list of edges E = {e1, . . . ,em} that intersect pi p j (see Figure 4.7).

• For i = 1, . . . ,m

– If flip edge ei is flippable then flip edge ei . If the new edge issued from
the flip intersects pi p j , then put this new edge at the end of the list: m =
m +1.

– Else put ei at the end of the list: m = m +1, em = ei .

This algorithm always terminates. Yet, if the initial mesh was a Delaunay mesh,
then the constrained mesh may not be Delaunay anymore. In what follows, we will
exted the Delaunay cavity procedure to constrained meshes.

68 CHAPTER 4. FINITE ELEMENT MESH GENERATION IN THE PLANE

Figure 4.6: Three steps of the a priori Delaunay conformity in the case of two curves
that form a crack. At the third stage, the edges close to the crack tip (left) are still
refined because the distance between the upper and the lower lip of the crack is
getting closer.

4.4.2 The empty mesh

At that point, a mesh T (S0∪S) is available that is conforming to the boundary which
means that it contains all the edges of the 1D mesh (see Figure 4.8). At that point, a
mesh that Triangles that are outside the domain have to be removed to form what
is called the empty mesh. This can be done simply by choosing one triangle that
contains one of the four infinite and to walk through its edge-neighbors, recursively,
stopping the process when crossing an edge that belongs to the boundary of the do-
main. The element that is on the other side of this edge is inside the domain. Then,

4.4. THE GENERAL 2D MESHING PROCEDURE 69

e2

pi p je3

e4

e6
e7

e5e8
e1

e9pi p j

e4

e6
e7

e5e8

e10

pi p je6
e7

e5e8

e9

e10

pi p je6
e7

e8

e9

e11pi p je9

e10

e12
e13pi p j

e12
e11

e14pi p je13 p jpi

Figure 4.7: Recovering edge pi p j . Edges e1 and e2 are flipped. Edge e3 that is not
flippable is changed to e9. Then, edge e4 is flipped but this flip does not reduce the
number of intersections. Edge e10 is then added to the list. Edge e5 is then flipped
and removed from the list. Edge e6 is then flipped and edge e11 is added. Edge e7 is
not flippable and e12 is added. Edge e8 is flipped and removed. Edge e11 is flipped
and e14 is added. Edge e12 is then flipped and removed. Edge e13 is flipped and
removed. Finally, e14 is flipped and pi p j is recovered.

70 CHAPTER 4. FINITE ELEMENT MESH GENERATION IN THE PLANE

Figure 4.8: Mesh T (S0 ∪S) of conge.geo that is conforming to the boundary.

we walk again through the neighbors allow to get all element that are inside the do-
main: this is the empty mesh (Figure 4.9, left) in the sense that it has no interior
points.

4.4.3 Mesh refinement

Points are inserted in the empty mesh in order to obtain elements of desired shape
and size (Figure 4.9, right). Different strategies are possible to refine the empty
mesh. Here, we describe the three approaches that are available in Gmsh’s native
2D meshers.

Local mesh modifications

One first approach for refining the empty mesh is the use of local mesh modifica-
tions. In 2D, there exist 3 operators that can locally modify a the topology of a trian-
gular mesh (see Figure 4.10):

Edge splits are applied to long edges i.e. edges with adimensional lengths (4.15)
le > lup where lup is a threshold that will be defined shortafter. The new point
is usually located at the adimensional middle of e with the aim of creating two
new edges of adimensional size equal to le /2.

Edge collapses are applied to short edges i.e. edges with adimensional lengths le <
llow . An edge cannot be collapsed if one of the remaining triangles after the
collapse is inverted.

An edge flip is applied if the flipped configuration is composed of triangles of better
quality than the initial configuration.

4.4. THE GENERAL 2D MESHING PROCEDURE 71

0.05-0.075 0.0750-0.05

0.125

0

0.15

-0.025

0.1

0.025

0.075

0.05

0.025 -0.025

0.1

0.025

0.075

0.05

0.025 0.05-0.075 0.0750-0.05

0.125

0

0.15

Figure 4.9: The empty mesh of conge.geo (left) and. final mesh (right).

A long edge that is split should not become a short edge: lup /2 ≥ llow . A reason-
able choice for the admissible edges size interval [ll ow , lup] is to center it on 1. The
latter two condition lead to the choice [llow , lup] = [2/3,4/3]. This is of course not
the only possible choice. For example, choosing [llow , lup] = [

p
2/2,

p
2] is a choice

that enables longer edges and that essentially leads to meshes with less nodes and
triangles.

Another local mesh modification is the Vertex Re-positioning: a vertex can be
moved optimally inside the cavity made of all its surrounding triangles. The optimal
position is chosen in order to maximize the worst element quality.

1. Each edge that is too long is split;

2. Each edge that is too short is removed using an edge collapse operator;

3. Edges for which a better configuration is obtained by swapping are swapped;

4. Vertices are re-located optimally.

One first idea would be for example to insert a new vertex in the middle of the
longest edge pi p j (using, of course, its adimensional length). This is the default sur-
face meshing algorithm of Gmsh. We are aware that this point insertion algorithm
has a fundamental flaw. There is indeed no guarantee that there exist no point in
the mesh that is closer to the middle point than p1 and p2. This point insertion al-
gorithm may then generate a new edge that is indeed too short and that will have to
be removed afterwards through edge collapsing.

A variant of the previous technique is used in BAMG [?]. It consist in saturating
the edges of the mesh with points, using e.g. the 1D technique described in §??. A
bucket tree datastructure is used to remove points that are too close. Thanks to that
filtering operation, no point removal has to be performed afterwards.

72 CHAPTER 4. FINITE ELEMENT MESH GENERATION IN THE PLANE

11

H

!

h

e
z

0

Fig. 1. Shallow water notations for water depthH with a time-independent bathymetry h. Notice that the relative elevation η is usually several
orders of magnitude smaller than the unperturbed depth.

e1

e6e5

e4e3

e2

y

e4

e1 e2

e3

Fig. 2. Local mesh modifications. Edge split (top), edge collapse (middle) and edge swap (bottom). The zone depicted in bold represents the

cavity that is modified by the local mesh modification.

Figure 4.10: Illustration of local mesh modifications.

An optimal point insertion procedure should be able to insert points that will
not have to be removed afterwards. In other words, one should not insert points
that are too close to other points. An alternative to edge splitting would be insert
the new point at the circumcenter of the largest triangle [?]. We could define the
adimensional size of a triangle t (a,b,c) as the ratio between its circumradius and
the mesh size at its circumcenter. The circumcenter C of a planar triangle t can be
computed as follows:

(ax −Cx)2 + (ay −Cy)2 = (bx −Cx)2 + (by −Cy)2

(ax −Cx)2 + (ay −Cy)2 = (cx −Cx)2 + (cy −Cy)2.

This leads to the system:[
(bx −ax) (by −ay)
(cx −ax) (cy −ay)

][
Cx

Cy

]
= 1

2

[
b2

x −a2
x +b2

y −a2
y

c2
x −a2

x + c2
y −a2

y

]
.

Circumradius Rt and inner radius rt of a triangle t are nicely related as

Rt = ‖C −a‖ = 1

2rt

‖b −a‖‖c −a‖‖a −b‖
‖b −a‖+‖c −a‖+‖a −b‖ .

The adimensional size lt of triangle t is computed as

lt =
p

3
Rt

δ(C)
. (4.19)

The
p

3 factor in (4.19) is explained by the fact that the circumradius of an equilateral
triangle with edges of size 1 being Rt = 1/

p
3.

4.4. THE GENERAL 2D MESHING PROCEDURE 73

Figure 4.11: Illustration of the Bowyer-Watson algorithm with a point insertion
scheme based on the circumcenter of the largest triangle

Triangles are sorted with respect to this adimensional length. A new point is in-
serted at C and the Bowyer-Watson algorithm is used to locally recreate a new Delau-
nay triangulation with the additional point. The algorithm stops when lt < lmax with
lmax ≥ 1. It is indeed NOT a good idea to take lmax > 1. Imagine that triangle t has an
adimensional length of lt = 1.1. Inserting a new point at its circumcenter would gen-
erate edges that are about two times smaller than the existing ones that are of size
1.1. We define a range of acceptable sizes [lmi n , lmax] in a way that splitting a large
triangle edge lt > lmax would not generate a triangle that is too small i.e. for which
lt < lmi n . This can be translated in lmax = 2lmi n . An usual choice for the acceptable
range is to center it around 1 i.e. lmax + lmi n = 2. This gives [lmi n , lmax] = [2/3,4/3].
Figure 4.11 gives an example of the Bowyer and Watson algorithm with a point in-
sertion based on the circumcenter of the largest triangle. Points on the final mesh
are nicely distributed so that only a very light optimization (laplace smoothing) is
necessary for obtaining the final mesh.

All point insertion algorithms that we have described before do not converge
to a mesh that is composed of a majority of equilateral triangles. Frontal methods
have the advantage of generating nicely shaped triangles. Yet, those latter meth-
ods are less robust and slower than Delaunay meshers. It is possible to build a hy-
brid method that uses the Bowyer and Watson algorithm that guarantees always to
play with a valid mesh but where points are inserted in a “frontal fashion”. Such a
frontal-delaunay method should remain fast, which means that a point that is in-
serted should never be removed afterwards.

74 CHAPTER 4. FINITE ELEMENT MESH GENERATION IN THE PLANE

CHAPTER 5

Quadrangulations

5.1 Topology of quadrilateral meshes

5.1.1 Euler Characteristic

Assume a closed orientable surface S . The genus g of S is an integer represent-
ing the maximum number of cuttings along non-intersecting closed simple curves
without rendering the resultant manifold disconnected. Consider a sphere. There
exist no closed curve on the sphere that does not divide it into two disconnected
parts: its genus is g = 0. A simple torus has a genus of one. The genus of a surface
S can be defined in terms of its Euler characteristic χ (see §1.1). Both g and χ carry
the same topological information and their relationship (valid for orientable closed
surfaces) is

χ= 2−2g . (5.1)

The Euler characteristic of a sphere is therefore χ= 2 and the one of a torus is χ= 0.
Formula (5.1) is valid for closed surfaces. Assume that surface S has b bound-

aries, then the Euler-Poincare characteristic changes to

χ= 2−2g −b (5.2)

Which correspond to the topology of a sphere with g handles and b holes. For ex-
ample, a cylindrical topology can be constructed by opening two separated holes in
a sphere. Then χ= 2−2×0−2 = 0.

5.1.2 Poincaré-Hopf Theorem

In a mesh with n nodes, ne edges and n f faces, Euler characteristic can be computed
as

χ= n −ne +n f .

Assume a quadrangulations of S made of n vertices, ne edges and n f quadrilaterals.
An internal vertex in a quadrilateral mesh is regular if it has exactly 4 adjacent quads.

75

76 CHAPTER 5. QUADRANGULATIONS

Figure 5.1: A fully regular quadrilateral mesh of a torus

Its it said to have a valence of 4. A regular quadrangulation is a quadrangulation with
regular vertices only.

At that point, let us see wether a quadrangulation made of regular vertices only
is possible. In the quadrangulation of a closed surface, each quadrilateral is made of
4 edges while each edge has two adjactent quadrilaterals. This means that ne = 2n f

which leads to
n −n f =χ.

If every vertex is regular, then each vertex has 4 quadrilateral neighbors and each
quadrilateral has 4 vertices. Then, n f = n which means that only torus-like closed
surfaces with χ = 0 can be covered with a regular quadrangular mesh (see Figure
5.1).

Poincaré-Hopf Theorem is stated as follows: let be a vector field on S with K
isolated zeroes zi (a zero is an isolated singularity of the field). Then we have the
formula

K∑
i=1

index(zi) =χ.

The index of the singularity is +1 for a source singularity and −1 for a saddle singu-
larity. It is possible to develop a discrete version of this theorem.

If χ 6= 0, irregular vertices have to be present in the mesh, i.e. vertices of valence
different than 4. Let us now how irregular vertices affect the Euler-Poincaré char-
acteristic. Assume nk vertices of valence 4−k and n −nk vertices of valence 4. We
have

4n f = 4(n −nk)+ (4−k)nk

which means that
4n −4(n −nk)− (4−k)nk = 4χ

5.1. TOPOLOGY OF QUADRILATERAL MESHES 77

or

χ= knk

4
.

Each irregular vertex of valence 4−k counts for k/4 in the Euler characteristic. Each
irregular vertex of valence 3 adds 1/4 to the Euler-Poincare characteristic of the sur-
face: its index is 1/4. Each irregular vertex of valence 5 adds −1/4 to the Euler-
Poincare characteristic of the surface and its index is −1/4. More generally, we ob-
tain the following discrete version of Poincaré-Hopf Theorem:

∑
k

knk

4
=χ. (5.3)

A sphere can then be quadrilateralized using n1 = 8: the simplest version of this
mesh is the cube with its 8 corners of valence 3.

5.1.3 Poincaré-Hopf theorem for triangular meshes

For a triangular mesh, the regular valence is 6. Taking into account that 3n f = 2ne ,
we have

n f = 2(n −χ).

If we assume a mesh with regular vertices only, then 3n f = 6n and the conclusion
is similar: only torus-like surfaces with χ= 0 can be covered with a perfecly regular
triangular mesh. Introducing nk irregular vertices of valence 6−k leads to

3n f = 6(n −nk)+ (6−k)nk .

and the discrete version of Poincaré-Hopf Theorem for triangular meshes is:

∑
k

knk

6
=χ. (5.4)

Twelve irregular vertices of valence 5 are require to triangulate a sphere. The sim-
plest version of this mesh is the icosaedron with n f = 20, ne = 30 and n = 12, each of
the vertices being of valence 5.

5.1.4 Poincaré-Hopf theorem with boundaries

When surface S of genus g has b boundaries, χ= 2−2g −b. Some vertices are situ-
ated on the boundaries of S : assume that their number is nh . Then, we can use the
usual trick:

4n f = 2(ne −nh)+nh

combined with
n −ne +n f =χ

leads to
n −n f =χ+

nh

2
.

78 CHAPTER 5. QUADRANGULATIONS

Figure 5.2: A quadrilateral mesh of a circle. Four singularities of index 1/4 (in red)
are required to obtain such a mesh. The singularities may be inside the disk (left) or
on its boundary (right)

If boundaries are considered, nh has to be an even number for allowing a fully quadri-
lateral mesh regardless of the topology of S .

In order to extend Poincaré-Hopf to meshes of a domain with boundaries, the
regular valence of a vertex on a boundary has to be defined. For quadrilateral meshes,
the regular valence of a vertex on the boundary is 2. This is easily justified by the fact
that the boundary of the mesh is along one of the two vector fields so the vertex
is not a singularity. Assume that S is a disk. A disk has the topology of a sphere
g = 0 with one hole in it b = 1 so χ= 2−2×0−1 = 1. Four singularities of index 1/4
are needed to build a quad mesh on the disk. Those 4 singularities may be located
anywhere in the disk, eventually on its boundary (see Figure 5.2). A vertex of the
boundary has an index 1/4 if it has only one adjacent quadrangle and −1/4 if it has 3
adjactent quadrangles. Figure 5.2 (right) shows a quadrilateral mesh of a circle with
all 4 singularities on the boundary. There, the unique quadrilateral adjactent to each
singularity is ill shaped so it’s not a good idea to have irregular vertices on smooth
boundaries.

If the boundary is non smooth, it may be a good idea to locate some irregular
vertices on the boundary. More precisely, we distinguish external (or reentrant) cor-
ners which external angles are about 90 degrees and internal corners which internal
angles are about 90 degrees. Irregular vertices of degree −1/4 are suitable for reen-
trant corners while irregular vertices of index 1/4 are suitable for internal corners.
Figure 5.3 shows two quadrilateral meshes of a domain with 4 internal corners and
1 reentrant corner. The mesh on the left is the one that has 6 non regular vertices
on all corners of the boundary. The right mesh has the minimum amount of non
regular vertices. Here, one internal corner and the reentrant corner have been regu-
larized. The two meshes are both valid: choosing either one or the other depends on

5.2. INDIRECT GENERATION OF QUADRILATERAL MESHES 79

Figure 5.3: Quadrilateral meshes of a non smooth domain. Five singularities of index
1/4 (in red) and one singularity of index −1/4 (in blue) are required to have the sum
of the indices to be one (left). It is also possible to use 4 irregular nodes only (right),
leading to a different result.

the underlying application. More specifically, those two configurations are typical of
boundary layer meshes.

Up to now, we have assumed that it is possible to build a quadrilateral mesh
with a minimum amount of irregular vertices. Even though this is the ideal situa-
tion, building such a “perfect” mesh is usually difficult. Figure 5.4 shows a quadri-
lateral mesh that has been generated using a standard technique. It has 8 vertices of
valence 5 and 12 vertices ov valence 3.

5.2 Indirect generation of quadrilateral meshes

Let us first briefly recall which kinds of methods can be used to build quadrilateral
meshes in an automatic manner. There are essentially two categories of methods.

In direct methods, the quadrilaterals are constructed at once, either using some
kind of advancing front technique [?] or using regular grid-based methods (quadtrees).
Advancing front methods for quads are considered to be non robust and quadtree
methods usually produce low quality elements close to the boundaries of the do-
main and are unable to fulfill general size constraints (anisotropy, strong variations).

In indirect methods, a triangular mesh is built first. Triangle-merge methods then
use the triangles of the initial mesh and recombine them to form quadrangles [?, ?].
Other more sophisticated indirect methods use a mix of advancing front and triangle
merge [?].

80 CHAPTER 5. QUADRANGULATIONS

Figure 5.4: Quadrilateral mesh with 8 vertices of index −1/4, and 12 of index 1/4,
leading to χ= 12/4−8/4 = 1.

5.2.1 A greedy algorithm for quad-meshing

Consider a quadrilateral element q and its the four internal angles αk , k = 1,2,3,4.
We define the quality (q) of q as:

(q) = max

(
1− 2

π
max

k

(∣∣∣π
2
−αk

∣∣∣),0

)
. (5.5)

This quality measure is 1 if the element is a perfect quadrilateral and is 0 if one of
those angles is either ≤ 0 or ≥π.

Consider a triangular mesh made of nt triangles ti , i = 1, . . .nt . In what follows,
we consider internal edges ei j of the mesh that are common to triangles ti and t j .
We define a cost function c(ei j) = 1− (qi j) that is associated to each graph edge ei j

of the mesh and that is defined as the mesh quality of the quadrilateral qi j that is
formed by merging the two adjacent triangles ti and t j . Usual indirect quadrilat-
eralization procedures work as follows [?]. Edges ei j of the graph are sorted with
respect to their individual cost functions. Then, the two triangles that are adjacent
to the best edge ei j of the list are recombined into a quadrilateral. Triangles ti and
t j are tagged in order to prevent other edges that are adjacent either to ti or to t j

to be used for another quadrilateral forming. Then, the algorithm processes the or-
dered list of edges, forming quadrilaterals with triangles adjacent to an edge as long
as none of those adjacent triangles are tagged. Fig. 5.5 shows an illustration of this
procedure for a rectangular domain of size 1×3 and a mesh size field defined by

h(x, y) = 0.1+0.08sin(3x)cos(6y).

Isolated triangles inevitably remain in the mesh and the resulting mesh is not made
of quadrilaterals only. The mesh is then said to be quad-dominant. In the example
of Fig. 5.5, the resulting mesh is made of 836 quads and 240 triangles.

A mesh composed of quadrilaterals can be build subsequently using a uniform
mesh refinement procedure [?]. Every quadrilateral of the quad-dominant mesh is

5.2. INDIRECT GENERATION OF QUADRILATERAL MESHES 81

Figure 5.5: Illustration of the quad-dominant algorithm. Left mesh is the initial tri-
angular mesh and right mesh is the quad dominant mesh, after smoothing (triangles
are in grey).

split into four sub-quadrilaterals and every triangle is split into three sub-quadrilaterals
(see Fig. 5.6). In order to fulfill the size criterion h(~x), the initial triangular mesh
should thus be built using a size field with twice the value (i.e. 2h) that is expected
in the final mesh.

The recombination process just described is sub-optimal. It does not provide
the best set of edges to be recombined with respect to some general cost function.
Indeed, the only optimality property of this algorithm is that it ensures that the best
triangle pair will be recombined.

The second part of the algorithm, namely the mesh refinement step, also has
some drawbacks. Splitting every element of the mesh produces a mesh that has half
the size of the initial mesh. It is of course possible to generate an initial mesh with
double the required size. Yet, with real geometries, the new vertices will have to be
added on the geometry, which is not trivial. On the other hand, the refinement step
does not allow a sharp control of the mesh size. On Fig. 5.6, the procedure ends with
an efficiency index of 79%, which cannot be considered as good.

In [?] the authors propose a scheme for recombining triangular meshes that does

82 CHAPTER 5. QUADRANGULATIONS

Figure 5.6: A quad dominant algorithm using halgo = 2h followed by a one mesh
refinement procedure.

not always require the refinement step, using a kind of advancing front technique.
The merging of triangles starts at the boundary; when a front closes, the algorithm
attempts to maintain an even number of triangles on any sub-front. Again, this ap-
proach is sub-optimal because the result depends on the ordering of elements and
on the choice of the initial front.

5.2.2 The Blossom-Quad algorithm

Here, our aim is to build a mesh generation scheme that starts with a triangular
mesh and attempts to find the set of pairs of triangles that form the best possible
quadrilaterals with the constraint of not leaving any remaining triangle in the mesh.

5.2.3 Blossom: a minimum cost perfect matching algorithm

Let us consider G(V ,E ,c) an undirected weighted graph. Here, V is the set of nV

vertices, E is the set of nE undirected edges and c(E) =∑
c(ei j) is an edge-based cost

function, i.e., the sum of all weights associated to every edge ei j ∈ E of the graph. A
matching is a subset E ′ ⊆ E such that each node of V has at most one incident edge
in E ′. A matching is said to be perfect if each node of V has exactly one incident
edge in E ′. As a consequence, a perfect matching contains exactly nE ′ = nV /2 edges.

5.2. INDIRECT GENERATION OF QUADRILATERAL MESHES 83

A perfect matching can therefore only be found for graphs with an even number
of vertices. A matching is optimum if c(E ′) is minimum among all possible perfect
matchings.

In 1965, Edmonds [?, ?] invented the Blossom algorithm that solves the problem
of optimum perfect matching in polynomial time. A straightforward implementa-
tion of Edmonds’s algorithm requires O (n2

V nE) operations.
Since then, the worst-case complexity of the Blossom algorithm has been steadily

improving. Both Lawler [?] and Gabow [?] achieved a running time of O (n3
V). Galil,

Micali and Gabow [?] improved it to O (nV nE log(nV)). The current best known result
in terms of nV and nE is O (nV (nE + lognV)) [?].

There is also a long history of computer implementations of the Blossom al-
gorithm, starting with the Blossom I code of Edmonds, Johnson and Lockhart [?].
In this paper, our implementation makes use of the Blossom IV code of Cook and
Rohe [?]1, which has been considered for several years as the fastest available imple-
mentation of the Blossom algorithm.

5.2.4 Optimal triangle merging

Consider now a mesh made of nt triangles and nv vertices. Consider a specific
weighted graph G(V ,E ,c) that is build using triangle adjacencies in the mesh. Here,
every vertex of the graph is a triangle ti of the mesh and every edge of the graph is
an internal edge ei j of the mesh that connects two neighboring triangles ti and t j .
Fig. 5.7 shows a simple triangular mesh with its graph and one perfect matching.

Let us come back first to the non-optimal triangle merging algorithms of §5.2.1.
In term of what has just been defined, the subset E ′ of edges that have been used
for triangle merging in the approach of [?] is a matching that is very rarely a per-
fect matching. The one of [?] is usually a perfect matching, but not necessarily the
optimal one.

Here, we propose a new indirect approach to quadrilateral meshing that takes
advantage of the Blossom algorithm of Edmonds. To this end we apply the Blos-
som IV algorithm to the graph of the mesh. We intend to find the optimum perfect
matching with respect to the following total cost function

c =
∑

e∈E ′
(1− (qi j)), (5.6)

that is, the sum of all elementary cost functions (or “badnesses”) of the quadrilater-
als that result in the merging of the edges of the perfect matching E ′.

An obvious requirement for the final mesh to be quadrilateral only is that the
initial triangular mesh contains an even number of triangles (i.e., an even number
of graph vertices). Euler’s formula for planar triangulations states that the number
of triangles in the mesh is

nt = 2(nv −1)−nb
v , (5.7)

where nb
v is the number of mesh nodes on its boundary. So, the number of mesh

points on the boundary nb
v should be even. Here our algorithms are applied to gen-

eral solid models that have a boundary representation (BRep) [?]. This means that

1Computer code available at http://www2.isye.gatech.edu/w̃cook/blossom4/.

84 CHAPTER 5. QUADRANGULATIONS

ei j

ti

t j

Figure 5.7: A mesh (in black) and its graph (in cyan and red). The set of graph edges
colored in red forms a perfect matching.

5.2. INDIRECT GENERATION OF QUADRILATERAL MESHES 85

model surfaces are bounded by connected model edges that form edge loops and
that the model edges are bounded by model vertices. The mesh vertices of a model

edge nbi
v are defined as the mesh vertices on that edge minus the model vertices.

The total number of mesh points on the boundary nb
v can thus be written as:

nb
v =

NE∑
i=0

(1+nbi
v). (5.8)

It is then easy to see that for nb
v to be even, it is sufficient for nbi

v to be odd. This
means that a sufficient condition for having an even number of triangles in the mesh
is to have every model edge bi discretized with an odd number of mesh vertices.

Fig. 5.8 shows the same illustrative example as Figures 5.5 and 5.6 using the Blos-
som algorithm for recombining the triangles together with the optimization proce-
dure that will be described in §??. The final result is not only much better with re-
spect to the efficiency index (with τ = 83%), but also with respect to worst element
quality (w = 0.405 instead of w = 0.310 for the mesh of Fig. 5.6). The average quality
is better as well.

rectTri.png rectBlossom.png

τ= 88.9% τ= 83.9%

Figure 5.8: Illustration of the Blossom-Quad algorithm.

