
LMECA2300: Homework 1
An event-driven method for a granular gas

In this first homework, we are going to model a two-
dimensional granular gas in a square box with the help
of an event-driven method.
Granular gases correspond to an agitated state of gran-
ular materials. They mainly differ from classical gases
by the fact that the interactions between the grains are
dissipative, while the interactions between molecules are
usually elastic. Because of this, the gaseous state of gran-
ular materials is unstable, and requires a constant sup-
ply of energy to be sustained, for example in the form of
vibrations. These dissipative properties can be of great
interest in damping devices, as they are not dependent
on temperature and suffer less from aging compared to
classical viscous fluid dampers.

As the event-driven method is a Lagrangian method, the positions x and velocities v of the grains are
tracked in time and the contacts between the grains are solved. As explained in the lecture, the time
step is not fixed, but changes during the simulation. The basic principle of the method is to find the
minimum time to a contact tc given a set of grains and walls. The simulation then jumps to the moment
of the contact, updating the positions of the grains. The corresponding contact is solved based on the
conservation of momentum and on a coefficient of restitution r describing the amount of dissipated kinetic
energy. The velocities of the grains implied in the contact are then updated and the simulation proceeds
as before.

Contact between two frictionless grains

n

v1

v2

The contact between two grains can be solved by applying the principle
of conservation of momentum and by using the coefficient of restitution
to relate the velocities of the grains before and after the contact.
As the grains are considered frictionless here, the two-dimensional prob-
lem can be reduced to a one dimensional problem in the normal di-
rection. A normal vector associated to the contact can be defined as
n = (x1 − x2)/|x1 − x2|. The equations for the contact in the normal
direction are as follows:

(m1v1 +m2v2) · n = (m1v1
′ +m2v

′
2) · n

(v′
1 − v′

2) · n = −r(v1 − v2) · n.

Solving these equations, the velocities after the contact v′
1 and v′

2 can be expressed as:

v′
1 = v1 −∆vnn

v′
2 = v2 +∆vnn,

with ∆vn the normal velocity correction due to the contact.

Contact with a boundary wall

t

x1
w

x0
w

s

n

st

In a two-dimensional configuration, a wall can be represented as a line segment,
defined by two points x0

w and x1
w. In order to compute the time of a contact

between a grain and the wall and solve it, it is necessary to compute a normal
vector n to the wall. To do so, the vectors t = x1

w − x0
w and s = xg − x0

w are
first constructed. The projection of s on t is then computed as st = (s · t)t/|t|.
Finally, the normal vector is obtained as n = s− st. The norm n = |n| of n gives
the distance between the grain and the wall. The contact time tc between the
wall and the grain, if it exists, is the solution of the following equation:

n2 + (vg · n)tc = nRg,

with vg the velocity of the grain and Rg its radius.

The resolution of the contact is similar to the case between two grains, except
that the wall is considered to have an infinite mass.

A regular data writing

The fact that the time step is variable makes the event-driven method fast and efficient. However, it can
be more convenient to write the data on a regular basis for a visualization purpose. A data writing time
step dt can then be defined so that the relevant data will be written every dt. In between those writing
operations, the event-driven method goes by as usual.

This can be done by defining a time variable δ that represents the time left until the next data writing.
Its initial value is set to δ = dt. The minimum contact time tc is then found. It can be either smaller or
larger than δ. If tc < dt, the simulation jumps in time to tc and the contact is solved. The value of δ is
updated: δ ← δ − tc, and the next tc is computed. This process is repeated until tc > δ. If tc > δ, then
the simulation advances of δ in time, writes the relevant data and the value of δ is reset to dt.

What you have to do

You are asked to:

1. Write a function

tc = contact_time_grains(x1,x2,v1,v2,R1,R2)

that finds the contact time between two grains. Their positions x1,x2 and velocities v1,v2 are
arrays of size 2, while their radii R1,R2 are floats.
The function returns, if it exists, the contact time between the two grains. If this time does not
exist or is negative, the function should return the maximum possible value sys.float_info.max.

2. Write a function

tc = contact_time_walls(w,x1,v1,R1)

that finds the contact time between a grain and a wall. The positions of the points that define the
segment representing the wall are given in the two-dimensional array w of size 2×2. The position
x1 and velocity v1 of the grain are arrays of size 2, while its radius R1 is a float.
The function returns, if it exists, the contact time between the grain and the wall. If this time does
not exist or is negative, the function should return the maximum possible value sys.float_info.max.

3. Write a function

tc, index = minimum_contact_time(x,v,R,w,indexOld)

that finds the minimum contact time for the set of n grains and 4 walls. The positions x and
velocities v of the grains are two-dimensional arrays of size n×2, while their radii are given in the
unidimensional array R of size n. The array w is multidimensional and of size 4×2×2 and contains,
for each wall, the two points defining the corresponding segment. The array indexOld of size 2

contains the index of the objects implied in the previous contact.
The function returns the minimum contact time tc and an array index of size 2. The first entry of
index indicates the index of the first grain implied in the contact. If the other object implied in the
contact is another grain, then the second entry of index is positive and corresponds to the index
of the grain. If the other object implied in the contact is a wall, then the second entry of index
is negative and corresponds to the index of the wall in the array w. For example, if the nearest
contact in time implies the grain 3 and the wall 2, the value of index should be [3,-2].
The suggested approach is the naive one in O(n2) that check every possible pair of objects. Trying
a more efficient one may earn you some bonus points, but remember that you cannot make any
change to the general architecture of the program. The argument indexOld should be used to
ensure that the previous contact cannot be considered anymore, which could very well happen if
you don’t pay attention because of limited machine precision.

4. Write a function

dv1 = contact_solve_wall(wall,x1,v1,r)

that solves a contact between a grain and a wall with a restitution coefficient r. The two-dimensional
array wall contains the coordinates of the two points that define the segment representing the wall.
The position x1 and velocity v1 of the grain are arrays of size 2, while the restitution coefficient r
is a float.
The function returns the velocity increment dv1 to be added to the previous velocity of the grain
in the form of an array of size 2.

5. Write a function

dv1,dv2 = contact_solve_grains(x1,x2,v1,v2,m1,m2,r)

that solves a contact between two grains with a restitution coefficient r. The positions x1,x2 and
velocities v1,v2 of the two grains are arrays of size 2 while the masses m1,m2 and the restitution
coefficient r are floats.
The function returns the velocity increments dv1,dv2 to be added to the previous velocities of the
grains resulting from the contact in the form of arrays of size 2.
To obtain the formula for the velocity corrections, you must do a little bit of algebra and solve the
equations mentioned above.

You are given a first version of the function update, that updates the positions x and velocities v of the
grains for a time interval dt:

def update(x,v,R,m,w,indexOld,r,dt,t):

tc, index = minimum_contact_time(x,v,R,w,indexOld)

if tc > dt:

x += v*dt

t += dt

else:

x += v*tc

t += tc

if index[1] < 0:

dv1 = contact_solve_wall(w[-(index[1]+1)],x[index[0],:],v[index[0],:],r)

else:

dv1, dv2 = contact_solve_grains(x[index[0],:],x[index[1],:],v[index[0],:],

v[index[1],:],m[index[0]],m[index[1]],r)

v[index[1],:] += dv2

v[index[0],:] += dv1

indexOld = index

update(x,v,R,m,w,indexOld,r,dt-tc,t)

If you want to make your program more efficient, you are free to improve the body of this function, as
long as you do not change its specifications.

You have to implement those functions in the file granularGas.py. You are also given the script
granularGasTest.py so that you can test your functions. It is a good idea to start with the easy
initial conditions you will find in the script. This script will produce an animation of your simulation,
which can be written in a video file if you uncomment the corresponding line. You have until Thursday
February 29 23:59 to submit your program granularGas.py on the server.

