
LMECA2300: Homework 2
The formation of an asteroid with DEM

In this second homework, we are going to simulate the
formation of an asteroid in outer space with the Discrete
Element Method. Micro and meso-scale asteroids and
comets consist of rubble piles that aggregated over time
because of the gravitational forces acting between them.
This process can further lead to the formation of planets,
and its modelisation is a key aspect in the understanding
of the early formation of our solar system and other
similar ones. The explicit and lagrangian nature of the
Discrete Element Method allows to include any kind of
interaction between the considered grains, which makes
it particularly well suited to the study of gravitational
aggregation. Since this process can be quite long, even
for meter-scale objects, we will use tonnes and hours as
units for mass and time for our simulation, instead of
their SI counterparts kilograms and seconds.

Gravitational forces

Since the theory of general relativity proposed by Einstein, gravity is understood as a curvature in space-
time caused by objects with mass. However, for most purposes, Newton’s law of universal gravitation is
largely sufficient. Gravitational interactions are hence modeled as a force acting upon two bodies that
is directly proportional to their masses and inversely proportional to the square of the distance between
them. The force acting on a grain i because of a grain j is given as:

fij = −G
mimj

x3
ij

xij ,

with xij = xi − xj the distance vector between grain i and grain j and G the gravitational constant.

Nonlinear Kelvin-Voigt contact model

k

γ

The resolution of a contact between particle is based on the explicit
computation of a contact force, according to a chosen contact model.
In this homework, the selected contact model corresponds to a Kelvin-
Voigt representation of the contact, with a viscous dissipative term and
a Hertz law for the elastic term:

fn = min
(
0,

{
k|δ| 32 − γun, δ < 0

0, δ > 0

)
with k a spring constant with appropriate units, γ a viscosity and un = (ui − uj) · n the normal relative
velocity of the two grains.

What you have to do

You are asked to:

1. Write a function

x = random_initial_conditions(n,R,xmin,xmax,ymin,ymax)

that returns the positions x of n grains with maximum radius R uniformly randomly distributed in
a domain delimited by xmin,xmax,ymin and ymax.

2. Write a function

sRad, iM, mmG = compute_prefactors(rho,G,R)

that computes the prefactors used in the other functions. The radii of the grains R is an array of
shape n×1, while the grain density rho and the gravitational constant G are floats. sRad has a
shape of n×n and contains the pair-wise sum of the radii of the grains (duplicates included). iM is
of shape n×1 and contains the inverse mass of each grain. mmG is of shape n×n×1 and contains the
pair-wise product of the masses of the grains (duplicates included) times G.

3. Write a function

runge_kutta(x,v,sRad,iM,mmG,k,gamma,dt):

that updates the positions x and velocities v of the grains using a fourth order explicit Runge-Kutta
scheme.

4. Write a function

velocity_verlet(x,v,sRad,iM,mmG,k,gamma,dt):

that updates the positions x and velocities v of the grains using a velocity-verlet scheme.

5. Write a function

f = compute_gravity(x,mmG)

that computes the gravitational forces on the grains. f is an array of shape n×2 and contains the
resultant of the gravitational forces exerted by all the other grains on each grain.

6. Write a function

f = compute_contacts(x,v,sRad,k,gamma):

that computes the contact forces between the grains, given their positions x and velocities v, the
sum of their radii sRad, the spring constant k and the viscosity gamma associated to the nonlinear
Kelvin-Voigt contact model with a Hertz law. f is an array of shape n×2 and contains the resultant
of the contact forces on each grain.

7. Answer the following questions in a separate README file:

• Are the values of the parameters given in the test file relevant compared to real-life cases?
Justify.

• You have to implement two different time schemes. Both are explicit, but what are the main
differences between them? What are their advantages or inconvenients?

You have to implement the functions in the file asteroid.py. You are also given the script asteroidTest.py
so that you can test your functions. The test script will produce an animation of your simulation, which
can be written in a video file if you uncomment the corresponding line. You should pay attention to
writing fast functions : this time, the efficiency of your program will be an important part of the grading.
You have until Thursday March 14 23:59 to submit your program asteroid.py on the server in a .zip

file. You may add comments in your code.

