
LMECA2300: Homework 4
An hourglass

In this fourth homework, we will simulate the flow of fric-
tionless grains in an hourglass using Non-smooth Contact
Dynamics. Hourglasses based on granular materials have
been used as time measurement devices for centuries,
due to their many advantages. Compared to mechanical
clocks, they are much simpler and cheaper, although less
precise. Compared to clepsydras (or water clocks), they
exhibit a constant flow rate and are much less sensitive
to motion and temperature.

Solving contacts with Non-smooth contact dynamics

We will track the positions, velocities, and angular velocities of the grains through time using Newton’s
second law:

mi
dvi

dt
= mig +

∑
β

fβi

dxi

dt
= vi,

with mi the mass of grain i. The superscript β indicates all contacts β in which grain i is implied.

A frictionless, perfectly inelastic contact between two grains can be solved as follows:

vn = (vi − vj) · n
∆vn = max(0,−vn −max(0, d)/dt)

vi ← vi +
∆vn

Wnnmi
n

vj ← vj −
∆vn

Wnnmj
n

where n is the normal vector, d is the distance between the surfaces of the two grains and Wnn =
(mi +mj)/mimj is the component of the Delassus operator associated to the normal direction.

In order to solve the contacts, it is first necessary to detect them. Since interpenetration is proscribed
in non-smooth contact dynamics, the detection cannot be done based on the interpenetration distance.
Because the method is implicit, it is difficult to predict if two grains will actually be in contact during the
following time step because of all the other contacts in which each grain can be implied. The idea is to
consider potential contacts. Two grains are in potential contact if they are separated by less than an alert
distance1. All potential contacts are then solved with the above procedure. If two grains are sufficiently

1 Note that this distance is computed as the distance between the surfaces of both grains, not their centres

far or have a positive normal velocity so that they won’t come into contact when only considering their
current state (that is, ignoring other contacts), then the max operator ensures that ∆vn is zero.

Remember, Non-smooth dynamics is an implicit method: it is then necessary to iterate over all the
contacts and solve them repeatedly until we reach a given convergence criterion. Typically, this criterion
is represented by a tolerance tol on the interpenetration between grains. Convergence is reached when,
for every contact, the velocity correction ∆vn is smaller than tol/dt, with dt the time step.

Contacts with boundaries

t

x1
w

x0
w

s

n

st

As usual, boundary segments are defined by two points x0
w and x1

w. To compute
the normal vector n and the distance between a grain and a segment, one first
computes the vectors t = x1

w − x0
w and s = xg − x0

w. The projection of s on t

is then computed as st =
(s·t)
|t|2 t = stt. Finally, the normal vector is obtained as

n = s− st. The distance between the surface of the grain and the segment is then
given by |n| − rg with rg the radius of the grain. If this distance is smaller than
the alert distance, then the contact between the grain and the segment should be
added to the list of potential contacts.

However, this approach will result in considering infinitely long segments, i.e.
lines, in the sense that it will still work if the grain is outside the range (x0

w,x
1
w).

To avoid that undesired behaviour, it is necessary to check that 0 ≤ st ≤ 1 before
adding the contact to the list of potential contacts.

In addition to boundary segments, it can be relevant to add boundary disks at
the ends of the boundary segments. These disks have a radius of 0 and infinite mass. They are useful
to prevent the grains from going through the segments in the case where −rg/|t| ≤ st < 0 or 1 < st ≤
1+rg/|t|. The contact detection with disks is similar to the one between grains, and the contact resolution
is similar to the one with segments.

What you have to do

In this homework, we will use Python classes and objects. If you are not familiar with them, you can
easily find information about that on the internet2. The problem we will be solving will be represented
by an instance of the class grain_problem. Each instance of this class contains the positions, velocities,
radii and masses of the grains as class variables, as well a list of the boundary segments, a list of the
boundary disks, and a list of the contacts of the problem.

You are asked to:

1. Write a function

detect_contacts(self,alert)

that detects the contacts between the grains and between the grains and the boundaries based
on the given alert distance alert. Its first operation should be to clear the contact list from the
previous time step.

2. Write a function

solve_contacts_nlgs(self,tol,dt,itmax=1000)

that solves the contacts using a Non-Linear Gauss-Seidel iterative approach: every time a contact
is solved, the velocities of the corresponding grains are modified. tol is the geometric tolerance
used to define the convergence criteria, dt is the time step, and itmax is the maximum number of
iterations in case the solver does not converge.

3. Write a function

solve_contacts_jacobi(self,tol,dt,itmax=1000)

that solves the contacts using a Jacobi iterative approach: The velocities of the grains are not
modified until the end of each iteration, when all contacts have been solved.

In addition to the implementation of the above function, you are asked to answer the following question:

• Which method converges faster, Non-linear Gauss-Seidel or Jacobi? Which one is better suited to
the Python language?

You have to implement your functions in the file hourglass.py. You are also given the scripts hourglassRun.py
and hourglassAnimate.py so that you can test your functions. hourglassRun.py will run the simu-
lation and write the resulting data into the "result" directory, while hourglassAnimate.py will read
that data and display an animation of the result of your simulation. It is advised that you begin with
easy initial conditions, such as the ones set by default in hourglassRun.py. Once you are confident you
code is correct, try it on the "hourglass.msh" with more interesting initial conditions. You should pay
attention to writing fast functions: the efficiency of your program will be part of the grading. You have
until Friday April 19 23:59 to submit your program hourglass.py on the server in a .zip file. You may
add comments in your code.

2 https://www.w3schools.com/python/python_classes.asp

https://www.w3schools.com/python/python_classes.asp

