
LMECA2300: Homework 5
An avalanche...

In this fifth homework, we will simulate the collapse of a
column of grains – in other words, an avalanche – on a
rough surface with Non-smooth Contact Dynamics.
Notably because of its similarity with real life avalanches,
the column collapse experiment is recognised as a bench-
mark case to study the flowing behaviour of granular ma-
terials. The most important characteristic is the column
runout, i.e. the farthest distance reached by a grain still
in contact with the main grain mass. Basically, the runout
answers the question: will the village be destroyed by the
avalanche? Other characteristics include the collapse time
or the front velocity and kinetic energy, for example. How-
ever, we will focus on the runout in this homework.

Solving frictional contacts with Non-smooth contact dynamics

We will track the positions, velocities, and angular velocities of the grains through time using Newton’s
second law:

mi
dvi

dt
= mig +

∑
β

fβ

Ii
dωi

dt
=

∑
β

lβi × fβ ,

dxi

dt
= vi,

with mi the mass of grain i, Ii its inertia and lβi the cantilever associated to the contact force fβ for grain
i. The superscript β indicates the contacts in which grain i is implied.

To solve the contacts, we will use contact laws expressed in the local frame. We will hence work with
local variables, which can be obtained with the transformation matrix Hα:

Vα = Hαvα = Hα

vi

ωi

vj

ωj

where Vα is the relative velocity at the contact in the local frame of reference and vα is the relative
velocity at the contact in the global frame of reference. The superscript α denotes the contact in question,
but it will be omitted in what follows for the sake of conciseness. The local equation of dynamics can
then be written as:

V+ = V− +

W︷ ︸︸ ︷
HM−1HT P︸ ︷︷ ︸

∆V

,

where P is the impulse due to the contact. The matrix W is called the Delassus operator and is the

result of the following operations:1

W =

[
nx ny 0 -nx -ny 0
tx ty ri -tx -ty rj

]

1
mi

0 0 0 0 0

0 1
mi

0 0 0 0

0 0 1
Ii

0 0 0

0 0 0 1
mj

0 0

0 0 0 0 1
mj

0

0 0 0 0 0 1
Ij

nx tx
ny ty
0 ri
-nx -tx
-ny -ty
0 rj

 =

[
Wnn Wnt

Wtn Wtt

]

For disks, W is diagonal, meaning we can decouple the resolution of the normal and tangent components
of the contact. The normal component is solved as before:

∆Vn = max(0,−Vn −max(0, d)/dt)

The tangential component is solved as follows:

If |Vt|Wnn > µ∆VnWtt :

∆Vt = −µ∆Vn
Vt

|Vt|
Wtt

Wnn

Else :

∆Vt = −Vt,

with µ the friction coefficient. Once ∆V has been computed, the velocities of the corresponding grains
can be updated as follows:

v← v +M−1HTW−1∆V

Computing the runout

Since the runout is defined as the position of the farthest grain still in contact with the main mass (plus
its radius), it is necessary to analyse the contact network to find this farthest grain. It can be a good idea
to consider this contact network as an undirected graph: this way, it is possible to identify the connected
components and find the farthest grain associated to the largest connected component. Don’t forget to
only consider the contacts between the grains, and to discard the ones with the boundaries.

What you have to do

The problem we will be solving will be represented by an instance of the class grain_problem. Each
instance of this class contains the positions, velocities, angular velocities, radii, masses and inertias of the
grains as class variables, as well as the friction coefficient, a list of the boundary segments, a list of the
boundary disks, and a list of the contacts.

You are asked to:

1. Write a function

detect_contacts(self,alert)

that detects the contacts between the grains and between the grains and the boundaries based
on the given alert distance alert. Its first operation should be to clear the contact list from the
previous time step.

1 These were performed live during the lecture, so you may avoid doing all these operations if you paid attention :-)

2. Write a function

solve_contacts_jacobi(self,tol,dt,itmax=1000)

that solves the contacts using a Jacobi iterative approach: the velocities of the grains are not
modified until the end of each iteration, when all contacts have been solved. tol is the geometric
tolerance used to define the convergence criteria, dt is the time step, and itmax is the maximum
number of iterations in case the solver does not converge. This time, you have to solve frictional
contacts! On the contrary to the Non-Linear Gauss-Seidel method, the Jacobi method is vectoris-
able, which makes it more suited to languages like Python. This is why it is the only one we will
be coding in this homework.

3. Write a function

compute_runout(c,x,r)

that computes the current runout of the avalanche. c is the list of all contacts between the grains
and between the grains and the boundaries. x is an array of size n×2 containing the positions of
the grains. r is an array of size n×1 containing the radii of the grains. You are free to use any
external library you see fit, but don’t forget to add the import instructions in the file you submit
to the server.

You have to implement your functions in the file avalanche.py. You are also given the scripts
avalancheRun.py and avalancheAnimate.py so that you can test your functions. avalancheRun.py will
run the simulation and write the resulting data into the "result" directory, while avalancheAnimate.py
will read that data and display an animation of the result of your simulation. It is advised that you begin
with easy initial conditions, such as the ones set by default in avalancheRun.py. To validate you code, it
can be a good idea to check if the rolling without slipping of the two grains in the easy initial conditions
is simulated correctly. Once you are confident you code is correct, try it on the "avalanche.msh" mesh
with more interesting initial conditions. If you code is slow, probably by lack of proper vectorisation,
you can reduce the amount of grains by increasing their size size with Rmax and reducing the size of the
column with W and H. You should pay attention to writing fast functions: the efficiency of your program
will be part of the grading. You have until Tuesday May 7 23:59 to submit your program avalanche.py

on the server in a .zip file. You may add comments in your code.

