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SUMMARY 

This paper presents a numerical technique for solving three-dimensional free surface problems in extrusion 
applications. The method is fully implicit in the sense that a Newton-Raphson scheme is applied on all 
variables, and geometrically general. In particular, the die section shape may be complex and contains 
multiple corners; very few restrictions apply on the mesh generation because the method does not require the 
nodes to be located on straight lines (spines). A clear distinction is introduced between the directions 
associated with the kinematic condition and the remeshing rules. As a difference with respect to earlier 
publications, these concepts are handled separately. Only Stokes problems are solved in this paper and we 
have not introduced surface tension. Therefore corners in the die section propagate discontinuities in the 
extrudate shape, an a method for relocating corners without losing the quadratic convergence of the scheme 
is presented. Data structures used for the implementation are briefly discussed. 

We present results on the extrusion of various profiles, including a rectangular die (a benchmark problem) 
and various complex sections containing multiple corners. 
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1. INTRODUCTION 

Several numerical techniques have been proposed over the last few years to solve three- 
dimensional free surface problems. These methods are based either on boundary elements 
methods'.' or on finite element fo rm~la t ions .~ .~  The goal of the present paper is to present 
a numerical technique based on finite elements which extends to complex three-dimensional 
geometries implicit techniques used to calculate two-dimensional free  surface^.^ The iterative 
technique is called implicit when it couples the velocity-pressure unknowns to the position 
variables. In implicit techniques a Newton-Raphson scheme can be used to solve the system in 
order to avoid an outer iteration on the free surface position above the flow solver itself. 

However, most two-dimensional techniques used for simulating free surface flows cannot be 
extended as such to three dimensions. In particular, the presence of corners in the die section will 
introduce a new difficulty linked to the presence of discontinuities in the extrudate. This difficulty 
has been recognized by Karagiannis et aL3s4 In Reference 4, a technique based on pathlines has 
been introduced to relocate corners. This method has been successfully used to solve non- 
isothermal free surface problems where large deformations are inroduced by the temperature 
effects. However, the pathline method as described in Reference 4 requires explicit relocalizations 
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of the free surface before Newton-Raphson iterations. Our technique avoids those explicit 
iterations. 

We introduce discontinuities of the normal dkection in the formulation of the free surface 
problem itself. A finite element formulation is then consistently derived in Section 3. A model with 
multiple normals and multiple kinematic conditions is introduced. The technique is validated on 
the examples of Section 5. 

In order to preserve the geometrical generality of our method (we want to calculate complex 
dies), we introduce in Section 4 a remeshing technique based on the distance between interior and 
boundary nodes. Its major advantage over the ‘spine’ techniques is that the constraint of moving 
nodes in a single direction is dropped. 

A full Newton-Raphson scheme is used to solve the system. The number of additional variables 
and the increase in frontal width with respect to a fixed geometry calculation are small. Therefore 
solving a moving boundary problem does not require much more CPU time than the fixed 
boundary problem provided the flow non-linearities are solved by means of a Newton-Raphson 
scheme. The method is advantageous in terms of CPU time (not in memory) with respect to most 
decoupled techniques. For example, the CPU time of a single iteration with the current method is 
5%-10% higher than the CPU time for a fixed domain iteration. Our scheme converges in four 
or five iterations whereas an explicit technique typically requires 10-20 fixed domain 
iterations to converge. 

The last section present three examples, each involving one or several corners. Selection of 
position interpolation versus velocity-pressure interpolation is briefly discussed. In all cases the 
convergence of the results with mesh refinement has been checked. 

2. BASIC EQUATIONS 

Let us consider the isothermal flow of a Newtonian fluid in a three-dimensional geometry. All 
results presented in this paper have been obtained with a Newtonian fluid, although extending the 
method to generalized Newtonian fluids or non-isothermal flows is straightforward. 

Let R be the flow domain of boundary 80.  aR is partitioned into 

anD 
aRN 

dRF the free surface itself. 

Let v and p denote respectively the velocity and pressure fields defined on R and let h denote 
a scalar kinematic degree of freedom defined on anF, which describes the motion of the free 
surface. In the absence of inertia and body forces the free surface problem is formulated as follows. 

the boundary part on which Dirichlet boundary conditions apply; 
the boundary part on which Neumann boundary conditions apply; for the sake of 
simplicity all Neumann boundary conditions will be supposed homogeneous; 

Find (v, p ,  h) E V x P x H such that 

V-(qOv)-Vp=O on R, 

V . v = O  on Q 

v-n=O on aRF, 

together with 

v=9 on aRD, 

(qOv-pI)*n=O on aRNUan,, 
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where V v  denotes the symmetric part of the gradient of v, q is the fluid viscosity and n is the unit 
normal vector pointing out of the domain Q. The symbols V and P denote appropriate velocity 
and pressure function spaces defined on R; H is a function space for the displacement of the free 
surface defined on aQ,. 

Let us consider the boundary conditions on aRF in more detail. Assigning the force on a part of 
the boundary is a valid boundary condition for a Stokes problem in a fixed geometry;6 equation 
(3) can also be regarded as a Dirichlet datum in the normal direction. For a Stokes problem on 
afixed domain, imposing (3) together with (5 )  on dRF would define an ill-posed problem. Defining 
the flow boundary conditions in terms of (3) and (5) simultaneously on aRF requires the 
introduction of a kinematic degree of freedom h which describes the motion of the free surface in 
a given direction. However, the direction of motion of free surface nodes can be selected a priori (it 
does not change during the iteration process) as long as the free surface does not become tangent 
to this direction of displacement. If this happens, all data in the normal direction (force and 
velocity) can no longer be satisfied. Therefore the direction of the geometrical degree of freedom 
h is a non-tangent direction. It must be noted that the non-linearity introduced by the dependence 
of Q upon h is a serious difficulty for proving existence and uniqueness theorems for problem 
(1H5). 
As stated before, the direction d for the displacement of the free surface is defined a priori and is 

fixed during the iterative process, h being the amplitude of the displacement in this direction (see 
Figure 1). However, the direction d is allowed to vary from node to node. Physical considerations 
allow us to select directions d in such a way that there is no possibility for the free surface to 
become tangent to d during the iterative process. 

D fixed 
h variable 
onaRF, 6x = h D 

/ 
Face 1 

~ ._ ........... m m 
1 1 \ Face 2 

Figure 1. The geometrical degree of freedom h, the direction of displacement d and the corner strategy (multiple normals) 
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As in earlier publications on 2D or 3D free surface  problem^,^-^ the selection of directions d for 
each node of the free surface is the first step in our solution technique; here d will be selected as the 
normal direction at a node in the initial (first-iteration) mesh (in a discrete sense). However, the 
d-direction does not influence the remeshing of the interior nodes, unlike the case of the spine 
tehniques where projections on the line of direction d are used to evaluate weights. 

Most extrusion die sections contain sharp corners, as in Figure 1, and in the absence of surface 
tension the ability to properly handle corners is an essential ingredient of the simulation. The 
discontinuity of the slope in the cross-section propagates along the free surface itself and creates 
additional difficulties related to the definition of the normal, which have recently been recognized 
by Karagiannis et d4 

Our method relies on multiple normal definitions at singular points. Let us consider corner 
A in the die cross-section of Figure 1. Two normals are defined along the particle trajectory 
starting at point A in the lip section; one corresponds to face F, and the other to face F,. If we 
consider a free surface anF consisting of NF 'faces' on which the normal is continuous, equation 
(3) will be written as 

v - n i = O  on anFi, l< i<NF.  (6) 
Along lines of discontinuity of the normal, equation (6) implies that v - n vanishes on both faces. 

It must be pointed out that the presence of two kinematic conditions along some lines of the free 
surface is not generic to problem (1H5), in the sense that a single kinematic condition is the rule 
for all points on the free surface except for those points located along lines of discontinuity of the 
normal direction. The kinematic condition is a first-order transport equation for the free surface 
location (the position of the die lip being the initial condition) and discontinuities can be 
transported along characteristics. A problem in the formulation is expected only when the normal 
direction is discontinuous at all points on the free surface; this is obviously not the case in 
extrusion applications. Introducing discontinuities of the normal direction before finite element 
discretization shows that a discontinuity of n is compatible with the analytical formulation of the 
problem (no surface tension is included) and it will naturally come into the finite element 
formulation. 

The double definition of normals along lines of discontinuity obviously has an influence on the 
selection of the geometrical degrees of freedom h and the directions d. If one requires uniqueness 
of the normal direction on free surfaces, h and d will now be partitioned as 

hi€Hi i <  1 < N F ,  

di€l)i, i < l < N F ,  

where H i  and Di are space of continuous functions defind on anFi. 
The problem (1H5) will be reformulated as follows. 

Find (v, p ,  h i )€  V x  P x { H i ,  1 <l'<NF) such that 

V-(qVv)-Vp=O on n, 
V . v = O  on R, 

v-ni=O on anFi, l < i < N F ,  

together with 
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3. FINITE ELEMENT DISCRETIZATION 

The system (7Hll) has been discretized by means of a standard finite element technique. 
Approximation spaces V", P" and H :  (1 didNF)  have been selected for the velocity, the pressure 
and the kinematic degree of freedom on each face. 

On the basis of the Galerkin procedure the system (7Hll) leads to the following discrete 
problem. 

Find (v", ph, h l ) ~  V h  x P" x { H:, 1 < i<NF} such that 

(VVV-p1; Vw)=O V W €  vh, 
( V v ; q ) = O  V q € P " ,  

( v - n i ;  k i ) = O  V k , E H : ,  l < i < N F .  (1 2) 
The symbol ( ) represents the L2 scalar product on R or dR,; the space V "  takes the Dirichlet 

boundary condition (4) into account and a zero displacement hi is prescribed at the lip of the 
extrusion die. 

Triquadratic and trilinear functions on 'brick' elements have respectively been used for the 
velocity and pressure fields. For the geometrical degree of freedom hi we have used both 
biquadratic and bilinar shape functions. We have observed occasional divergences of the iterative 
scheme when a biquadratic representation is used in complex geometries for problems with sharp 
corners. However, for relatively simple geometries including a small number of corners (the 
rectangular section, for example), both quadratic and linear interpolations work. A comparison 
between bilinear and biquadratic free surface descriptions will be discussed in Section 5. 

The system (12) is a non-linear system of equations in (vh, ph, h?). All derivatives with respect to 
the velocity, pressure and position variables are calculated within a Newton-Raphson scheme. 
Since the system degenerates at the first iteration when the initial velocity field vanishes, the 
iterative scheme starts with a solution of the Stokes problem in a fixed geometry (generally a 
'stick-slip' problem). 

At this stage we have described a scheme for updating the boundary nodes; however, limiting 
the motion of the nodes to the sole free surface without updating the interior of the domain would 
lead to large element deformations in the vicinity of the free surface, which cannot be accepted in 
most simulations. There is a need for a remeshing rule which propagates the motion of the free 
surface in the domain interior. A major difference with respect to previous publications on free 
surface calculations for 2D problems5 or 3D problems3, is that the remeshing rule has been kept 
totally independent from the motion of the nodes on the free surface. In particular, we have not 
used a system of spines for relocating the interior nodes as in Reference 3. 

It must be noted that some difficulties have been encountered in Reference 4 in a geometry 
involving sharp corners and that an outer iteration (above the Newton-Rahson iteration itself) 
was introduced for handling the remeshing at the corner; this leads to a loss of quadratic 
convergence of the iterative scheme. 

4. REMESHING 

In problems where the boundary nodes are relocated a rule must be selected for moving the 
interior nodes as a function of the boundary node positions with a view to an acceptable mesh 
deformation. Remeshing is naturally formulated as a boundary value problem and it is not 
surprising that most efficient techniques which map a parent geometry to a deformed one are 
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based on PDEs of elliptic type.’ However, the problem has usually not been formulated as such in 
publications on three-dimensional free surfaces. 

Saito and S~r iven ,~  presented an implicit technique for computing two-dimensional free 
surfaces. The direction of extrusion is privileged; the domain is sliced in one-dimensional meshes 
on which a linear remeshing proportionality rule is applied. In a recent publication3 a similar 
one-dimensional spine technique is used for calculating three-dimensional free surfaces; in three 
dimensions such a method requires us to privilege two directions for relocating the nodes on 
straight lines in place of one. This puts a severe constraint on the mesh generation, with additional 
difficulties at corners where the direction of displacement cannot be a prior i m p ~ s e d . ~ . ~  

Using PDEs as a remeshing rule is attractive; it would, however, considerably increase the cost 
of the calculation (and 3D Navier-Stokes simulations are CPU-intensive) because all nodal 
positions in the domain would be treated as independent variables. If we want to limit the number 
of geometrical variables to the elements of H :  and still be able to derive a full Newton-Raphson 
scheme, we must select a rule where interior positions can be a priori computed as a linear 
function of the displacement on the boundary. All branching conditions must be excluded and 
corners strategies can generally not be used. 

For extrusions problems we can privilege the direction of extrusion without loss of generality. 
Therefore we have introduced a ‘slicing’ of the domain after the exit of the die. ‘Slicing’ means that 
we introduce a system of planes normal to the direction of extrusion, every node belonging to one 
and only one plane (see Figure 2). The remeshing rule operates in these planes and is two- 
dimensional. Silicing the domain lowers the geometrical dimension of the remeshing rule and 
reduces the dependence of the Newton-Raphson matrices at a given node to the hi belonging to 
the section of this node only. A truly three-dimensional remeshing rule taking the whole 
boundary of the three-dimensional domain into account would increase the cost of the computa- 
tion significantly because all geometrical variables would remain active throughout assembly of 
the system in a frontal solver. 

For selecting a two-dimensional remeshing rule, three methods have been examined: 
a Thompson transf~rmation;~ an elliptic transformation based on a Laplace equation for which 
an elementary solution can be obtained (in two dimensions) by means of Green functions; an 
algebraic rule based on the Euclidean distance between the interior nodes and the boundary 
nodes. 

4.1. Thompson transformation 

The Thompson transformation maps a ‘parent’ geometry described by co-ordinates X into 
a ‘deformed‘ geometry described by co-ordinates x through the solution of the following problem: 

A,X=O on RR, 

x=fi on as&. (13) 

D i r e c t i o n  of e x t r u s i o n  

Figure 2. ‘Slicing’ of the computational domain in the direction of extrusion 
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(a) (b) (4 
Figure 3. Remeshing of a rectangular die by (a) a Thompson transformation, (b) a Laplace transformation and 

(c) a Euclidean distance rule 

RR stands for the domain of each cross-section. Ax stands for the Laplace operator with respect to 
the co-ordinates x; the position P is prescribed on the domain boundary aRR. The fact that A, 
operates on the deformed geometry makes the problem non-linear. The system (13) can be 
transformed into a set of non-linear PDEs in the co-ordinate system of the parent X-geometry.' 

The Thompson transformation has been tested on several two-dimensional sections and 
usually produces smooth grids (see Figure 3(a)). A major disadvantage is the non-linearity of 
system (13) written in the parent domain, for which an elementary solution cannot be found. All 
nodal positions must be treated as independent variables, while the number of variables is 
significantly increased with respect to a method involving (vh, ph and hh) only. The method has 
been successfully tested in complex geometries, but we present only the results for the example 
described in Section 5.1. 

4.2. Laplacian transformation 

In regular domains and for small mesh deformations the operator A, can be replaced by Ax, 
i.e. the Laplacian with respect to the co-ordinates in the parent domain. The system (13) then 
becomes 

A,x=O on QR, 

x=zi on anR. (14) 

The elementary solution of (14) is a set of functions w defined on RR x doR such that 

x=JaQR W(X, P)d8 VXERR.  

The Green functions w evaluate the influence in the domain RR of a Dirichlet datum on the 
domain boundary anR. 

Evaluating Green functions a priori requires a large number of computations; for two-dimen- 
sional domain 80, (cross-sections) of sufficient regularity the Green functions can be easily 
evaluated by means of a conformal transformation.' It is not the objective of this paper to 
describe such a method in detail; let us say, however, that in its finite element discretization only 
two numerical solutions of a scalar Laplace problem on RR are required to calculate the influence 
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of every boundary node on any interior node. These computations are typically performed before 
starting the iterative process. 

Once the Green functions have been evaluated, all interior positions in a section can be 
eliminated as a function of the geometrical degrees of freedom hl of the section; see Figure 3(b) as 
an example of a deformed mesh based on an Laplace transformation. An important restriction is 
that the original mesh boundary must be C'-continuous for evaluating correctly the Green 
function by means of a conformal transformation. With grids containing sharp corners this 
usually leads to numerical error and to artificially distorted meshes. The requirement on the 
continuity of the boundary is a major drawback of this remeshing technique, although it can be 
used successfully in domains with a smooth boundary. 

4.3. Euclidean distance remeshing 

The concept at the origin of the method is that the closer an interior node becomes to 
a boundary node, the closer its displacement is related to the displacement of this boundary node. 
More precisely, the position of an interior node xi is written as 

xy=x:+ 1 Wij(Xyw -xjo), (15) 
j = l , N  

wherej is an index describing the N nodes of dnR and wij is a function of the Euclidean distance 
between node i and node j: 

An example of sections remeshed by the Euclidean distance rule is given in Figure 3(c). It has 
been observed that the Euclidean distance rule generally produces very good results in extrusion 
problems; the method has been selected for all applications described in Section 5. It must be 
pointed out that wij could have been evaluated differently. For example, using Green functions 
(elementary solutions of a Laplace equation) for evaluating wij also produces very good results. In 
this case the Laplace equation is used to evaluate variations of position, while rule (14) prescribes 
the position itself. 

In order to smoothly deform sections without relocating nodes out of the planes of symmetry of 
the section, we have introduced a hierarchy in the geometrical dimension of the rules that we are 
using. This is the object of Section 4.4. 

4.4. The remeshing cascade 

Using (15) requires knowledge of the motions of all nodes on dRR. This is usually not the case 
when some parts of the extrudate section boundary lie on planes of symmetry. In addition, there is 
also a need for a remeshing rule on the boundary dn, itself, because the motion of the free surface 
iX2R(F,,e introduces deformations in the tangential direction on dS2R(F,,e2) (see Figure 4). 
Therefore one-dimensional remeshing rules have been introduced on boundary segments of dRR: 
such that points are relocated tangentially as a linear function of the motion of the extremities of 
the segment. This naturally introduces a hierarchy between ID, 2D and 3D remeshing rules, 
where 1D positions on the boundary segments dictated by displacements of segment extremities 
act as boundary conditions for the 2D Euclidean distance rule, which are in turn data for 
relocating mid-side nodes located between the sections for trilinear co-ordinate fields (see 
Figure 4). 
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Face 1 / 

Figure 4. Remeshing rules along boundaries and the remeshing cascade 

Hierarchy does not mean that the rules are applied sequentially but that constraints between 
co-ordinates and geometrical variables coming from a 1D (2D) rule are preferred to those coming 
from a 2D (3D) rule. Consequently, constraints of high priority are substituted in subsequent 
rules. 

From a practical point of view, constraints between variables are manipulated symbolically 
and substitution occurs automatically once the hierarchy between constraints has been defined. 
This means that we execute linear combination on the lines and columns for each constrained 
variable during solution of the linear system. The code has been organized as follows. 

1. At the level of the local matrices all nodal positions xh are variables; this means that we do 
not substitute the geometrical variable h: as a primal unknown in the element matrices. 

2. Linear relationships between internal and boundary node displacements are expressed as 
constraints; once a variable has been constrained, it disappears from the list of variables of 
the problem and a duality technique reports all derivatives with respect to the constrained 
variable on the variables which are constraining it. 

3. On the free surfaces the displacement of the nodes is a function of the geometrical variable 
h: and the (known) direction of displacement di. 

4. Finally, the kinematic condition is a scalar PDE for the h:. 

This organization has a great flexibility in the sense that changing from one remeshing rule to 
another never requires one to modify the local finite element matrices. Writing the finite element 
matrices with position derivatives is the most tedious task in deriving a full Newton-Raphson 
scheme for problems with moving boundaries. Moreover, symbolic manipulation on the con- 
straints is essential to the modularity of the program. 

5. EXAMPLES 

The code has first been validated on three-dimensional flat and circular dies for which a two- 
dimensional solution is easily calculated. We do not report these results here because they are 
essentially identical to well-known two-dimensional results. Furthermore, in order to verify the 
convergence of our method and to compare our results, we have considered the square die 
problem. We report in Table I the swelling ratio Sw, in planes of symmetry. 
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Table I. Sw, for the square die 

Authors Unknowns Sw rn 

Karagiannis et al. 16500 18.4 
Wambersie and Crochet' 6917 18.5 
Present work 13616 18.5 

A 
Figure 5. Perspective plot of the deformed meshes for the rectangular die 

5.1. Rectangular die 

Extrusion of a Newtonian fluid through a rectangular die is a test problem for three- 
dimensional extrusion. The geometry is shown in Figure 5; symmetry of the problem with respect 
to he x=O and y=O planes has been used. 

The rectangular die has been used as a test problem to validate the introduction of multiple 
normals at corners and to evaluate bilinear and biquadratic shape functions for the free surface 
position. In Figure 6 we have used a single normal at corner A, whose direction is computed by 
means of a least squares formulation. The direction of displacement of nodes located at the 
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Figure 6. Profiles obtained by (a) single-normal model and (b) multiple-normal model 

Figure 7. Rectangular die: mesh refinement analysis 

corners is then prescribed. Since this direction does not in general correspond to the displacement 
of physical corners, the method will have a tendency to create a shape discontinuity at another 
place. Wiggles appear in the solution, as shown in Figure 6, or the Newton-Raphson scheme does 
not even converge. Solutions converged with mesh refinement could not be obtained with 
a single-normal model. 

When singular points are allowed to move in two directions, the problem disappears and 
a solution confirmed with mesh refinement is shown in Figures 7 and 5. These solutions were 
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obtained with bilinear geometrical varibles; they converge at a relative precision of 
six iterations. Biquadratic shape functions have also been used for the geometrical variables. 

in five or 

5.2. Cross-like die 

Extrusion of a cross-like profile involving 12 corners is considered, as described in Figure 8. We 
have used the symmetry of the problem with respect to the x=O and y=O planes and have 
introduced a discontinuity of the normal direction along corners A, B and C in Figure 8. 

Bilinear shape functions have been used for HT and quadratic convergence of the iteration 
scheme has been observed. We have also simulated the same cross die problem with biquadratic 
shape functions for Hf with die discontinuity of the normals at corners. Although convergence of 
the algorithm would be obtained on some meshes, wiggles were observed in the extrudate shapes. 
These wiggles were not observed with bilinear shape functions. On some refined meshes diver- 
gence of the iterative scheme has been observed. In such cases the bilinear h;,  however, converged 
towards a smooth solution, which was coherent with results obtained with a coarse mesh. For this 
reason biquadratic Hf-fields have been abandoned in all subsequent simulations. 

Two mesh refinements have been considered. Figure 8 presents cross-sections of these meshes 
at the die exit. A remeshing rule based on the Euclidean distance has been used in both cases. 
Quadratic convergence of the iteration scheme has been observed. Figure 9 presents perspective 
plots of the mesh boundaries and Figure 8 shows a comparison between the coarse and the fine 

Figure 8. Cross-like die: mesh refinement analysis 
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Figure 9. Perspective plot of the deformed meshes for the cross-like die 

62 1 

Figure 10. Comparison of the cross-like die section an extrudate profile 
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Figure 11. Velocity profile in the cross-like die 

Figure 12. Profile with 28 corners: mesh refinement analysis 
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mesh. The agreement between these two solutions is excellent. A comparison between the fully 
developed extrudate profile and the die section is presented in Figure 10. Figure 1 1  presents 
contour lines of the fully developed normalized velocity profile. 

Rearrangement of the velocity field causes large deformations in the extrudate, especially 
around the re-entrant corner B. Interestingly, these deformations are not caused by shear- 
thickening effects or by elasticity, as one could argue on the basis of two-dimensional extrusion 
simulations. As a reminder, the swelling ratio for a Newtonian fluid is 1.19 for a planar die and 
1.13 for an axisymmetric die. 

5.3. Profile with 28 corners 

Let us consider the die section described in Figure 12, which has four planes of symmetry. The 
use of normal-tangential boundary conditions allows us to reduce the computational domain to 
one-eighth of the section. The intersection between the mesh and the die exit plane is displayed in 
Figure 12. Discontinuity of the normal has been used for corners A, B and C and a remeshing rule 
based on the Euclidean distance has been used. As in previous examples, convergence of the 
iteration scheme has been obtained in five iterations. A comparison between the die section and 
the fully developed extrudate is shown in Figure 13. A perspective plot of the domain boundary is 
presented in Figure 14 (one-eighth of the domain). A comparison between two mesh refinements 
is shown in Figure 12. 

The effects of the rearrangement of the velocity profile are even more pronounced than in the 
previous example. The angle of corner B has increased significantly. It must be noted that this 
region corresponds to important axial velocities in the die itself, as shown in Figure 15, which 
presents contour lines of the fully developed normalized velocity profile. 

Figure 13. Comparison of the die with 28 corners and extrudate profiles 
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Figure 14. Perspective plot of the deformed meshes for the profile with 28 corners 

6. CONCLUSIONS 

We have introduced a velocity-pressure-position finite element technique to solve free surface 
flows in three-dimensional geometries. Discontinuity of the normal direction along corners has 
been used and a geometrically general remeshing technique based on the Euclidean distance has 
been introduced. A full Newton-Raphson scheme has been derived which allows us to compute 
the flow of a Newtonian fluid in a complex geometry in five iterations. For the problem of 
extrusion out of a rectangular die we have observed that no solution convergent with mesh 
refinement can be obtained if a single normal direction and a single kinematic condition are used 
for all nodes on the free surface. 

Extrusion of profiles involving several corners has then been considered. We have computed 
the extrudate shapes out of a cross-like die and have shown that important deformations occur 
around re-entrant corners. These deformations are caused by a rearrangement of the non- 
uniform velocity profile in the die channel. Convergence of the solution with mesh refinement has 
been verified and the agreement on the extrudate shape was excellent. 

Our last example is an extrudate profile involving 28 corners. As in previous simulations, the 
scheme converges quadratically to the solution and our remeshing algorithm is able to maintain 
the element deformation at an acceptable level. The extrudate shape exhibits large deformations 
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Figure 15. Velocity profile in the die with 28 corners 

in the vicinity of all re-entrant corners, which could not be predicted on the basis of two- 
dimensional planar or axisymmetric simulations. 

It is our intention to extend our technique to multifluid flows’’ in the near future. In this case 
distinct remeshing techniques in each fluid domain will be used. Early results show that the 
prediction of coupled interface and free surface positions is very promising. 
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