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Abstract

An adaptive hp��nite element method for free surface �ows of incompressible vis�

cous �uids is presented� Generalized Newtonian models and surface tension e�ects are

included� Principal components of our method are a reliable discretization of the free

surface� a moving grid algorithm� an a posteriori error estimator and an e�cient adap�

tive strategy� A full Newton�Raphson iterative scheme and an adequate data structure

are employed in the analysis� Numerical eperiments that illustrate applications of the

method to model free surface �ows are included�

� Introduction

Recently� adaptive hp��nite element methods have been used for the analysis of signi�cant

classes of incompressible �ows problems �������	 These techniques automatically adjust the

parameters h and p 
the mesh size and the degree of the polynomial� so as to deliver very

high rates of convergence	 The strategy can be compared with an optimal control paradigm

in which the computational error in an appropriate norm is controlled by an adaptive scheme

which orchestrates the distribution of h and p so as to deliver a preset level of accuracy	 A

rigorous a posteriori error estimate has been advanced ���
� which provides a measure of the

quantity to be controlled and a three�step adaptive strategy has been proposed ��� which

can signi�cantly reduce computer times required to adapt the mesh so as to achieve a target

error	

In the present paper� these adaptive hp�methodologies are extended to free surface �ows of

Generalized Newtonian �uids	 These extensions include the development of an a posteriori
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error estimator for h�p �nite element approximations of incompressible free surface �ows

of Generalized Newtonian �uids and a version of the so�called Texas�three�step adaptive

strategy for producing good h�p��nite element meshes based on a priori and a posteriori

error estimates	

Following this introduction� preliminary descriptions of the problem class under study are

given	 Discretization of the problem and a new moving grid algorithm are de�ned in Section

�	 A posteriori estimates of the Navier�Stokes problem with free surfaces boundaries and the

adaptive scheme are described in Section �	 Numerical results are collected in Section 
	

In this paper� we limit ourselves to two�dimensional steady �ows� although extending

the method to unsteady and three dimensional processes is straightforward	 Features for

considering three dimensional free surface �ows� such as described in ������ are completely

compatible with the present approach	

� The Free Surface Problem

��� Governing equations

Let us consider the steady �ow of a viscous incompressible Newtonian �uid in an open

bounded domain � � IRn� n � � or �	 The partial di�erential equations governing the

conservation of mass and momentum are the classical Navier�Stokes equations�


u �r�u�r � �
u� p� � f in �

r � u � � in �

�

��

where u � u
x�� x � 
x�� � � � � xn� � �� is the velocity vector �eld� f is the body force and

�
u� p� is the Cauchy stress tensor de�ned by

�
u� p� � � 
u�� p�

� 
u� � ��D
u�

D
u� �
�
ru�ruT

�
��

where p is the pressure� � is the unit tensor� � 
u� is the deviatoric part of the stress tensor�

� is the kinematic viscosity� and D
u� is the strain rate tensor	

In order to describe the boundary conditions for the free surface problem in Fig	 �� we

de�ne the following subsets of the boundary �� � IRn���

� ��D � the portion of the boundary on which Dirichlet boundary conditions are pre�

scribed�
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� ��N � the portion of the boundary on which Neumann boundary conditions are pre�

scribed�

� ��F � the free surface	

Here� �� � ��D � ��N � ��F � ��F � ��D � � and ��F � ��N � �	

On the surfaces ��D and ��N � the boundary conditions are speci�ed in the usual way�

u � bu on ��D

�
u� p� � n � bg on ��N

�

��

where bu is the prescribed velocity on ��D� bg is the given traction on ��N and n is the unit

normal vector pointing out of the domain �	 	

Considering the free surface ��F � it is convenient to parametrize this boundary by n��

curvilinear parameters and introduce a local frame of reference	 Using the symbol r� for

the gradient along the free surface in this frame of reference� the kinematic and dynamic

conditions can be written as

u � n � � on ��F

�
u� p� � n � �
pext � �trr� n�n on ��F

��� 
��

where pext is the exterior pressure and � is the surface tension coe�cient	 The classical

Euler�Lagrange formulation of the surface tension correlates the normal force with the main

curvature of the free surface de�ned by trr � n	

The Reynolds number Re and the capillary number Ca are respectively de�ned by

Re � UL��

Ca � ��
�U�

where U and L denote a characteristic velocity and length	

For a Newtonian �uid� the kinematic viscosity is a positive constant	 However� most

polymers present a shear�thinning behavior� which� within a range of shear rates can be

described by a dependence of the viscosity upon the shear rate ��	 One of the most commonly

used models for non�Newtonian viscosity is the power law model�

�
 ��� � K ��m��

where K is a constant and m is a power law index	 The shear rate �� is de�ned as the square

of the second invariant of the strain rate tensor	 The power law index lies between �	� and

�	� for many polymers	
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In order to demonstrate the robustness of our technique� we also consider Bingham �uids	

In this case� the viscosity law is de�ned as follows �

�
 ��� � K �
��
��
� when �� 	 ��crit

�
 ��� � K �
��
��

� �

��

��crit
�� when �� 
 ��crit

where ��crit is a critical shear rate and �� is the given yield stress	

��� Characterization of motion of the free surface

Before developing the weak formulation� it is �rst necessary to establish a procedure for char�

acterizing the motion of the free surface	 We begin by considering the boundary conditions

on ��F in more detail	

On one hand� assigning the surface force is a valid boundary condition for the Stokes�

problem in a �xed geometry ���	 On the other hand� the kinematic condition u �n � � may

also be seen as a Dirichlet boundary condition in the normal direction	 For a Stokes problem

on a �xed domain� imposing 
�	�� together with 
�	�� would de�ne an ill�posed problem	 To

de�ne these �ow boundary conditions simultaneously on ��F � we introduce a new unknown �

the kinematic degree of freedom h� which describes the shape of the free surface	 Finally� we

correlate the incremental displacement of the free surface w with h	 It is important to note

that w only describes an arbitrary Eulerian stretching of the free surface� in other words�

it de�nes a frame motion� but does not give the motion of material points	 Therefore� for

transient simulations� the frame velocity w��t has to be introduced in material derivatives

of the conservative laws	

In our method� the incremental displacement of the free surface is de�ned by the equation�

w � h � d on ��F 
��

where d is a given unit vector non tangent to ��F and h is the amplitude of the displacement

along this vector	 This procedure is illustrated in Fig	 �	 In other words� d can be selected

a priori and can be �xed during an iterative process� as long as the free surface does not

become tangent to this direction	 If this happens� conditions on the force and the velocity in

the normal direction can no longer be unambiguously prescribed	 Selection of the direction

d is the �rst step in the search for the solution	 This vector may vary from node to node	

�



This vector can be chosen as the normal to the surface ����� the direction of the velocity

across the free surface ���� or it can be oriented along given spines ��������	 In this paper�

d is calculated as the unit vector normal to the initial free surface and is �xed during the

iterative process	

Finally� if � does not vanish� some boundary conditions have to be de�ned for the ge�

ometric �eld h	 First� let us consider the boundary ���F of the free surface itself	 This

contains respectively the extremities of ��F or the curve bounding the free surface for n � �

or n � �	 This space may be partitioned into two subsets�

� ���FD � the portion of ���F on which the location of the free surface is imposed	 A

Dirichlet boundary condition is imposed for the geometric degree of freedom h	

� ���FN � the portion of ���F on which the direction of the vector tangent to the free

surface 
and normal to the curve ���F if n��� is imposed	 This type of boundary

condition is frequently called a contact angles condition and may be interpreted as a

Neumann boundary condition for the �eld h	

Note that as the capillary number Ca vanishes� the contact angles can no longer be imposed	

��� Weak formulation of the problem

Let V � Q and M denote respectively the spaces of admissible velocities� admissible pressures

and admissible degrees of freedom	

V �
n
v � 
H�
���

n
� v � bu a�e� on ��D

o

Q �
�
q � L�
�� �

Z
�
q dx � �

�

M � fm � H�
��F � � m � � a�e� on ���FDg

�������������������������


�

By formally multiplying the momentum equation by an arbitrary test velocity v and inte�

grating by parts� we obtain

Z
�

u �ru � v � � 
u� � D
v�� pr � v � f � v �dx

�
Z
��N

bg � v ds� Z
��F

pextn � v ds�
Z
��F

�tr
r � n�n � v ds


��






If we consider a two�dimensional domain �� use of the divergence theorem on the last term

of the right hand side of 
�� givesZ
��F

�tr
r � n�n � v ds �
Z
��F

�r� v ds� ���cm � v����F

where the unit vector cm is tangent to the free surface and is outwardly directed at the

extremities of the curve ��F and �� ����F denotes the jump on ��F 	 For the three dimensional

case ����� the divergence theorem introduces a line integral which involves the action of surface

tension along the curve ���F bounding the free surface�Z
��F

�tr
r� n�n � v ds �
Z
��F

�r � v ds �
Z
���F

�cm � v ds

The unit vector cm is now tangent to the free surface ��F � normal to the curve ���F and

outwardly directed	

Finally the two�dimensional weak form of the boundary�value problem for determining


u� p� h� is as follows�

Given body forces f � V � and surface tractions g � H
���
�� 
��N��

�nd 
u� p� h� � V �Q�M such that

Z
�

u �ru � v � � 
u� � D
v�� pr � v � f � v �dx

�
Z
��N

bg � v ds � Z
��F

�r� v ds � ���cm � v����F � v � V�

Z
�
qr � u dx � � � q � Q�

Z
��F

u � n mds � � � m �M�


��

Remark ���� Two points should be noted concerning the �nal weak form of the Navier�

Stokes equations	 First� the angle conditions along the interface boundary may be automat�

ically introduced by prescribing the direction of the vector cm	 Second� only �rst partial

derivatives of velocity and surface position with respect to x appear	
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Remark ���� An inherent di�culty remains in this classical weak formulation	 It is

impossible to impose simultaneously a Dirichlet velocity boundary condition and a natural

angle condition	

In order to illustrate this di�culty� suppose that we want to calculate the location A

of the intersection between the interface and a wall in Fig	 �	 On one hand� A being a

stagnation point� the velocity components become very small near it and the coe�cients of

the weak kinematic condition 
�	�� tend to vanish	 The position of A cannot be determined

from the kinematic condition	 On the other hand� imposing the essential velocity boundary

conditions along the wall prevents us from applying a natural angle condition on A	

Therefore� we must introduce a modi�ed weak formulation	 By combining 
�	�� and the

projection of 
�	�� along the vector d� and by multiplying by an arbitrary test function m�

we can obtain

Z
��F

�
u� p� � d mds �
Z
��F

�r�m � dds� ���cm � d m����F

�
Z
��F

u � n mds

��

This scalar equation includes the kinematic and the dynamic conditions and looks exactly

as an advection�di�usion equation for the geometric �eld h	 The �rst term on the right hand

side is the di�usion term while the last term is the transport part	 Finally� by replacing 
�	��

by the present equation 
��� we obtain the modi�ed weak formulation	

We are so able to impose natural angle conditions at any point	 The in�uence of the

contact angle will decrease as a function of the surface tension	 Such an e�ect is clearly in

agreement with the physics and the solution without capillarity may be reached as the limit

of solution with decreasing surface tension	 It is important to note that the imposition of

an essential contact angle 
by constraining the linear system� cannot preserve the weighting

by the surface tension coe�cient and leads to incorrect results for small capillary number	

Both weak formulations di�er only at contact points along wall� because 
�� can be

obtained by a linear combination of 
�	�� and 
�	�� and by the use of the divergence theorem	

In practical calculations� we take advantage of this property for evaluating the discrete form

of 
��	
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� Discretization of the Problem

��� hp�Finite Element approximations

We employ here the general hp�data structure with ��irregular meshes introduced in ���� and

exploited in ����� and elsewhere	 For completeness� we record its basic properties	 We begin�

as usual� by introducing a family P of partitions of � such that

� �
N�P�	
K

n
�K � �K � P

o
� �K � �L � �� K 
� L

We suppose the � and P are such that each element �K is the image of a master elementb� � ���� ��n under an invertible map	 On the master element b�� � nodes are de�ned�

these are classi�ed as vertex nodes� edge nodes� and interior nodes 
we assume n � � for

simplicity�	 If the functions �k are given by

�k
s� �

s
�k � �

�

Z s

��
Pk��
t�dt

where Pk�� is the Legendre polynomial of degree k � �� the shape functions are de�ned on

the master element as follows �

� At the vertex nodes� we use standard bilinear shape functions �

b	i

� �� � �

�

�� 
�
� � ��

with i � �� �� �� �	

� For the midpoints of each edge� we de�ne edge functions �

b�ij

� �� �

����������

�

�

� � ���j

�

�

�

� � 
��j
��

with i � �� �� �� � and j � �� �� � � � � pi	

� For the interior node� we consider bubble functions �

b
ij

� �� � �i

��j
��

with i � �� � � � � p�� and j � �� � � � � p��	
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The element shape functions de�ne a space

cM �b�� p�� p�� p�� p�� p��� p��� � span
nb	i� b�ij � b
kl � i � �� � � � � �

j � �� � � � �maxi pi
k� l � �� � � � �max
p��� p���

o
In general� for h�p �nite element calculations� it is common to use a subparametric map�

ping	 However� the �nal shape of the domain being unknown in free surface problem� a

isoparametric mapping FK from the master element b� to element �K is selected	

In order to develop an adaptive strategy� the following generalizations are introduced	

In one hand� the h�re�nement allows us ��irregular re�nements of the mesh	 Interelement

constraints are imposed to maintain continuity of basis functions across interelement bound�

aries	 In the other hand� the p�adaptivity consists of using polynomials of di�ering degrees

in the de�nition of edge functions and bubble functions	 Continuity of the global basis func�

tions is maintained by enriching the edge function to match highest�degree polynomial used

on a common interelement boundary	 This data structure allows us the construction of the

local and global hp�spaces

MK �
n
v � v
x� � bv � F��

K � bv � cM
b�� pK� � pK� � pK� � pK��� pK���o
NK �

�
v � v
x� �

�bv � F��
K

� 



�K���F

� bv � cM
b�� pK� � pK� � pK� � pK��� pK����

Shp
�� �
�
v � v
x� � C�

�
�
�
� vK � v





�K

�MK

�

Shp
��F � �
�
v � v
x� � C�

�
��F

�
� vK � v





�K���F

� NK

�
The spaces Shp
�� and Shp
��F � possess standard interpolation properties of hp��nite ele�

ment methods ��
�	 For element �K� if hK is the diagonal length and pK is the highest degree

of the complete polynomials contained in MK� then we have the following local interpolation

property�

���u� euhp���
s��K


 C
h
min�pK���s�r�s�
K

pr�sK

kukr��K 
��

where euhp is an appropriate hp�interpolant of u and k ks��K � s 	 �� denotes the usual Sobolev

norms for �K 	
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The hp��nite element approximation of 
�� is now characterized by the following problem

Given body forces f � V � and surface tractions g � H
���
�� 
��N��

�nd 
uhp� phep� hhp� � V hp �Qhep �Mhp such that

Z
�
uhp �ruhp � v � � 
uhp� � D
v�� phepr � v � f � v dx

�
Z
��N

bg � v ds� Z
��F

�r � v ds � ���cm � v����F � v � V hp�

Z
�
qr � uhp dx � � � q � Qhep�

Z
��F

uhp � n mds � � � m �Mhp�


���

where the spaces containing the hp��nite element approximations are

V hp
�� �
n
vhp �

�
Shp
��

�n
� V

o
Qhep
�� �

n
qhep � Shep
�� �Q

o
Mhp
��F � �

n
mhp � Shp
��F � �M

o
In general� the orders p and ep of velocity and pressure approximations cannot be selected

arbitrarily� but must be determined so that the well�known LBB condition 
see� e	g	 �����

is satis�ed to ensure stability of the scheme	 In subsequent calculations� pressures are in�

terpolated using ep � p � � while compatibility between V hp
�� and Mhp
��F � does not

seem to be a problem if equal order p�s are used	 Note there is no need to demand that the

approximate pressures qhp be continuous across interelement boundaries and we could also

use eQhp
�� � fqhp � Q � qhpK �MKg	

Remark ���� In the imposition of the kinematic condition� we note that without surface

tension e�ects� the equation characterizing the free surface reduces to a �rst�order 
hyper�

bolic� advection equation	 In such cases� the standard Galerkin formulation may be unstable	

We then resort to a characteristic approach involving marching by integrating along the ve�

locity direction	 If di�usion is introduced by capillarity forces in the global system� the

Galerkin technique is generally adequate for handling the kinematic condition	
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��� Moving grid algorithm

Moving the free surface nodes without changing the position of interior nodes positions

can lead to large and unacceptable element distortions in most situations	 Then� we must

propagate the motions of the boundary nodes into the domain by means of a moving grid

algorithm	 Its purpose is to avoid mesh distortion due to the free boundary motion and to

maintain the original element density in the deformed mesh	

To describe such an algorithm� we introduce additional de�nitions	 The boundary �� �

IRn�� is now partitioned into �

� ��F � the free surface on which the incremental nodal displacements are prescribed

for satisfying simultaneously the kinematic and the dynamic conditions for the �ow

problem�

� ��S � the stationary part of �� on which the nodes are �xed�

� ��T � the portion of �� on which only the normal displacement of each node has

to vanish	 This allows the grid to stretch along this boundary and to better balance

disturbances introduced by the motion of the free surface	

In general� a clear distinction between mesh generation algorithms based on PDE�s and

those on purely algebraic rules can be made	 First� we consider one of the most popular

algebraic rules for two�dimensional free surface problems �������	 The grid is sliced into one�

dimensional segments which begin at a node of ��S 
whose coordinates are �xed� and which

end at a node of ��F 
whose coordinates depend on h�	 These segments are called spines

or supports	 Interior nodes of the mesh lying on a support maintain their relative position

on the support as its length changes with the motion of the interface nodes	 Such linear

interpolation provides an optimal monitoring of the mesh in many cases� but puts severe

constraints on the mesh which has to be highly structured	

On the other hand� it is attractive to formulate the stretching algorithm as a boundary

value problem	 It is not surprising that the most e�cient techniques that map a parent

geometry to a deformed one are based on elliptic PDE generators 
e	g	 �����	 Unfortunately�

the most e�cient PDE which produce the best deformed meshes are highly non�linear and

their use would dramatically increase the cost of the calculation	 A good compromise between

cost and e�ciency consists in choosing a linear elliptic PDE generators	

One approach toward a reasonable linear elliptic moving grid algorithm is to use the

Laplacian operator� which has certain smoothing properties ����������	 The incremental

��



displacements w are obtained by solving the boundary value problems

r
�w � � in �

w � bhd on ��F

w � � on ��S

w � n � � on ��T

���������������

���

where bh is the prescribed amplitude of the incremental displacement along the given vector

d for satisfying simultaneously the kinematic and dynamic conditions	 For a smooth dis�

turbance and a smooth boundary ��� such a procedure is able to monitor the stretching of

the mesh and allows us to handle unstructured grids	 However� highly distorted grids may

appear for relatively small disturbances	 In other words� there is no constraint on the mesh�

but the e�ciency for maintaining smooth grids may be disappointing	 Therefore� we propose

a new stretching rule	

The basic idea consists in generating the linear operator which mimics the spine algorithm

at a continuous level	 The de�nition of h and d is extended to the whole domain � and the

virtual displacement of each point of � is described as �

w � h � d in � 
���

where d is given unit vector and h is the amplitude of the displacement along this vector	

The moving algorithm is based on both following strategy	

First� the following assumptions on the vector d are enforced �

� d � d
x� � C�
�
�
�
�

� d cannot be tangent to ��F

� d must be tangent to ��T �

� d cannot vanish�

Second� the amplitudes h associated to each node are obtained by solving the following

boundary value problem


d �r��h � � in �

h � bh on ��F

h � � on ��S

������� 
���

��



The critical step is clearly the de�nition of the vector d that can be interpreted as the

characteristic direction for the propagation of the disturbance from the free boundary into

the grid interior	 Note that for a suitable mesh� we can de�ne d tangent to each spine and

derive the spines algorithm	 However� in the present approach� the characteristic direction

for the disturbance propagation and the grid structure are de�ned as distinct concepts	

Therefore� we are now able to provide an e�cient moving algorithm for both structured and

unstructured grids	

In other words� the present algorithm de�nes a one�dimensional stretching that appears

to be much more robust than the two�dimensional stretching of the Laplacian operator	 A

comparison of results obtained by both techniques is shown in Fig �	

��� Iterative free surface �ows solvers

To compute 
uhp� phep� hhp�� we must also introduce an appropriate solver	 Let us de�ne� in

a classical way� explicit and implicit schemes �

� In explicit schemes� the strategy for obtaining free surfaces is to decouple the �ow

equations from the calculation of the free boundary	 More precisely� when a �ow

solution is obtained on an initial mesh� the velocity �eld is used for generating a new

free surface on the basis of the kinematic condition	 Such a strategy may be quite

expensive in view of the introduction of an outer iteration above the �ow solver itself	

However� a fully explicit time marching algorithm which decouples all equations can be

attractive	 Since we are interested in steady state cases� a low�order temporal accuracy

scheme may be adopted in order to reduce the cost of each iteration	 Unfortunately�

the number of steps becomes� in general� very important in view of the very low rate

of convergence of such procedures �������	

� In implicit schemes� all equations are simultaneously solved	 The kinematic degrees of

freedom h are calculated together with all other �eld variables� while the equations of

motion are supplemented by the kinematic condition	 Now� the global system can be

solved by a full Newton�Raphson iterative scheme	 The method is especially e�cient

when it is necessary to use an implicit approach for the �ow non�linearities	 Indeed�

solving the moving boundary problem requires essentially no more CPU time than

the �xed boundary problem� because the number of additional variables is small	 The

method is advantageous in terms of CPU time 
not in memory� with respect to most

decoupled techniques	 For example� the CPU time for a single iteration with the im�

plicit method is 
� higher than the CPU time required for a �xed domain iteration	

But� a full implicit scheme converges in � to 
 iterations 
���	 for relative variations��

��



where an explicit technique typically requires �� to �� �xed domain iterations to con�

verge	 Note also that the requirements on the initial guess are not so stringent as that

for explicit schemes ��������������	

Here� we consider an implicit scheme and we derive a full Newton�Raphson scheme which

allows us to obtain a quadratic rate of convergence	 However� a good initial guess is always

required for both formulations to converge� a piece of information which is not always avail�

able	 Without a priori knowledge of the free surface location� it is clear that the initial free

surface guess may be very far from the actual position	 This is indeed a weak point for all

methods published so far	

� Error Estimates and Adaptivity

��� A Posteriori Error Estimation with Equilibration

We are now ready to consider the issue of error estimation for free surface �ows	 The aim is

to compute rigorous� computable upper bounds to the approximation errors

uerror � u�uhp

perror � p� phep
herror � h� hhp

in appropriate norms	 Complete details of this theory for the Navier�Stokes equations are

given in a forthcoming paper ���	 If we can produce convergent hp�approximations and the

rate of convergence is a�ected by the regularity of the solution� the theory merely demon�

strates that we can provide a rigorous upper bound to the error	 Here� con�ning our attention

to the steady�state case� we generalize this approach to the free surface calculations	

First� we select an appropriate norm in which the error is to be estimated	 Toward this

end� we introduce the following norms �

jvj�V �
N�P�X
K
�

Z
�K

��D
v� � D
v�dx

jqj�Q �
N�P�X
K
�

Z
�K

q�dx

jmj�M �
N�P�X
K
�

Z
��F���K

r �m � r �mds

��



Corresponding to these choices� we have the energy�like norm�

jjj
v� q�m�jjj� � jvj�V � jqj�Q � jmj�M 
���

Without loss of generality� we restrict ourselves to the case without surface tension� although

subsequent results may be generalized for the surface tension in a similar way	 To obtain an

upper bound to the error in this norm� we calculate the local error estimates 
uest
K � pestK � hestK �

by solving local elementwise boundary�value problems on each element �loaded by the FEM

residuals	

Find 
uest
K � pestK � hestK � � VK �QK �MK such that

Z
�K

��D
uest
K � � D
vK�dx

�
Z
�K

�uhp
K �ruhp

K � vK � � 
uhp
K � � D
vK� dx

�
Z
�K

phepK r � vK � f � vK dx

�
Z
��K

D
nK � �est
uhpK � phepK �

E
� vKds � vK � VK�

Z
�K

pestK qK dx �
Z
�K

qKr � uhp
K dx � qK � QK�

Z
��F���K

hestK mK ds �
Z
��F���K

u
hp
K � nK mds � mK �MK �

� 
 K 
 N
P��


�
�

Here� subscripts K denote restrictions to element �K	 In particular� VK � QK�MK are spaces

of restrictions of functions in V�Q�M to �K	 Note thatMK is nonempty only for the elements

neighboring the moving boundary	

The last boundary term in 
�
	�� is of critical importance and is computed using a

�




equilibration technique �
�	 For each pair of neighboring elements �K and �L� piecewise

linear functions �KL
s� are de�ned on the interelement boundaries ��KL � ��K ���L such

that �KL
s� � �LK
s� � �	 The averaged approximate �ux on ��KL is then given by�

D
nK � �est
uhp

K � phepK �
E
� nK

n
�LK
s��K
uhp

K � phepK � � �KL
s��L
u
hp
K � phepK �

o

���

where s � ��KL and nK is a unit vector exterior and normal to ��K	 The functions �KL

are then selected so that the element residual and the boundary residuals on the right hand

side of 
�
	�� are balanced� rendering the local problem solvable	

In practical calculations� equation 
�
	�� is solved approximately over each element �K

using polynomial approximations of uest
K and vK which are� in general� of higher degree than

those used in the approximation uhp	 The resulting indicator is de�ned as follows �


� �
NX

K
�


�K� 
K � jjj
uestK � divuhp
K �uhp

K � nK�jjjK 
���

Remark ���� It is worth noting that other choices could be used for the energy�like

norm	 For example� weighting coe�cients can be introduced as follows

jjj
v� q�m�jjj�
�
� avjvj

�
V � apjqj

�
Q � ahjmj

�
M

Unit values for ai leads to the norm jjj jjj	 However for free surface problems� it may be

advisable to bias the accuracy of the geometric degree of freedom and to increase the value

ah	 Relative importance of the incompressibility constraint versus the error generated inside

the momentum equations can also be controlled by adjusting the values of av and ap	

It is obvious that considering a vanishing value of av will lead to a very cheap 
but not

accurate� estimate	 Such procedure can� however� be useful for driving an adaptive strategy

in very CPU expensive calculations	

��� The Three�Step hp Adaptive Strategy

Various adaptive strategies can be developed to control the numerical error by appropriate

re�nements and enrichments of the hp mesh	 Here� we outline a three�step scheme that

��



attempts to minimize the computational e�ort required to reach a target error	 The basic

idea consists in solving the system on three meshes �

� First� we consider a mesh P� that provides simply a rough and cheap approximation�

but gives critical information needed for later re�nements	

� Second� the intermediate mesh P� is produced with only h adaptive re�nements of the

�rst mesh	

� Finally� the target mesh P� is obtained by applying p adaptive enrichments	

To construct this scheme� we suppose that a global a priori estimate for a hp� approxi�

mation of 
��
��
�� in the energy�like norm is 
recall 
��� �

jjj
uerror� perror� herror�jjj� 

N�P�X
K
�

h��KK

p��KK

!�
K

where hK � pK are respectively the size and the order of the element K for the velocity inter�

polation� !K is a local unknown constant	 The exponents �K� �K are also generally unknown

and it is necessary to estimate them in some way	 In the present algorithm� we do not dis�

tinguish between the order ep � p � � of the pressure approximation and the order p of the

velocities�coordinates and we user the velocity order p throughout	

Now� the three�step scheme introduces two major assumptions	 This asymptotic estimate

is treated as an equality and the actual error is available to su�cient accuracy through an a

posteriori error estimate	 Then we have

jjj
uest� pest� hest�jjj� �
N�P�X
K
�

h��KK

p��KK

!�
K 
���

We also introduce an error index �

� �
jjj
uerror� perror� herror�jjj

jjj
u� p� h�jjj

The starting point of the algorithm is the choice of a required target error index �tgt	

� Introduce an initial mesh P� of N� elements su�ciently �ne to fall in the asymptotic

part of the convergence curve for h�re�nements	 Solve the problem on this mesh	

Calculate a local a posteriori error indicator 
�K to estimate the local error	

Now� setting respectively �K and �K to given ���� we can estimate the constant !K

by using 
���



��� �
N�X
K
�



�K�
� �

N�X
K
�


h�K�
��


p�K�
��

!K�

�

��



and passing to the element level


�K �

h�K�

�


p�K�
�
!K

From the orthogonality of the error to the space of approximation� we can estimate

both the energy like norm of the solution and the initial error index

jjj
u� p� h�jjj� � jjj
u�� p�� h��jjj� � jjj
uhp�� php�� hhp��jjj� � 

���

�� �

�

jjj
u�� p�� h��jjj

Select �int such that �� 
 �int 
 �tgt	

� Calculate the number nK of new sub�elements required in each element of P� in order

to obtain an optimal mesh P� of N� elements achieving the required error index �int	

From 
���� the predicted error estimate for the new mesh must satisfy



int�� �
N�X
K
�

nK

h�K�

��


p�K�
��

!K�

�

where h�K is the mean size of new elements created inside the initial element K	 If the

error has also to be equidistributed� we obtain



int�� � N� 
h�K���


p�K���

!K�

�

For uniform re�nements� the number of sub�elements can be correlated to their main

size nK � 
h�K�h
�
K���� where � � ��n and n is the dimension of the problem	 So� we

have the following system which allows to compute nK �

nK �

�
N� 



�
K�

�



int��

� �

��

N�X
K
�

nK � N�

�����������������

���

where the global error 
int is predicted by �int jjj
u�� p�� h��jjj	 This non�linear system

may easily be solved by an iterative scheme	 Having nK� we introduce h re�nements

to construct P�	

Now� solve the problem on this second mesh and compute the local a posteriori error

indicators 
�L	

��



� The third mesh P� is constructed by calculating a distribution of polynomial degrees

pL for each element of P� to reach the target error index �tgt	 At this stage� we have

the error indicator 
� and we now estimate !L on the h�adapted mesh P� as


�L �

h�L�

�


p�L�
�
!L

From eqn 
���� the target equidistributed error indicator must satisfy



tgt�� � N� 
h�L�
��


p�L�
��

!L�

�

Now� enrich p on each element to obtain P�	 The �nal order of each element is given

by

pL �

�
N� 



�
L�

�
p�L�
��



tgt��

� �

��


���

where the global error 
tgt is predicted by �tgt jjj
u�� p�� h��jjj	

Finally� solve the problem on P� and compute an estimate of the �nal error index ��	

If �� 
 �tgt the computation is terminated� otherwise the whole procedure is repeated	

This technique leads to good but suboptimal meshes on model problems but exhibits very

fast convergence characteristics with respect to CPU time	

Remark ���� However� the major weak points of the scheme is the selection of �� � and

�int which have a critical in�uence on the results	 These� at present� are heuristic choices	

The selection of �int close to �� leads to an essentially p�adapted mesh while a larger �int

results in more h�adaptivity	

In our present numerical experiences� we selected the following values of � � ��
 to � and

� � ��
 to �	 But� these values are clearly dependent on the problem	 This selection has to

be considered as a compromise between the robustness and the e�ciency of the strategy	

Remark ���� In order to reduce the CPU time required for the error estimates 
� and


�� we introduce the following rule	 The sets of uncritical elements of P� and P� are de�ned

as follows

P�
uncritical �

�
�K � P� � 

�K�

� 



tgt��

N�

�

P�
uncritical �

�
�K � P� � 

�L�

� 



tgt��



int��N�

�

In other words� the uncritical set contains all elements on which the error estimate is very

low	 These elements have not been modi�ed at the previous step of the adaptive strategy

��



and we do not expect that they will be modi�ed at the next step	 So� we may safely consider

the following approximations for the uncritical elements


�K � 
�K


�L � 
�L

when we are respectively estimating 
� and 
�	 On all others elements 
called critical�� the

whole error estimate procedure is performed	

� Numerical results

��� Test problem � � �D planar extrusion �ow

We �rst present the planar free surface calculation of the swelling problem	 We consider the

steady motion of an isothermal� incompressible Newtonian jet emerging from a slit as shown

in Fig	 �	 We impose no�slip conditions on the wall of the tube and a fully developed velocity

pro�le in the entry section	 Vanishing normal and tangential surface forces are imposed on

the surface of the jet and in the last section	 The lengths of the die and of the jet are

respectively equal to � and �	
 lengths of the in�ow section	

From an initial mesh with ��� degrees of freedom 
for a scalar unknown� and quadratic

interpolation� the estimated error index is ���	 Then� the ��step adaptive strategy is used

with an intermediate error index �int � ���� and a target error index of �tgt � ���
	 The

three meshes and the error index evolution are shown in Fig	 
	 It is noted that the element

are h�re�ned near the singularity and that orders of p � � and p � � are assigned near this

point	 Shaded elements re�ect nonuniform p�distribution in �nal mesh	

The local equilibrated error estimate 

���Estimated Error� is plotted in Fig	 �	 Fig	 �	

shows the local unbalanced error estimate 

��
��Estimated Error� which is not so expensive

in CPU and provides almost similar results	 Computed pressure and velocity components

distribution are shown in Fig	 �	 We also superpose the pro�les of the swelling ratio along

the �rst elements of the free surface for the three meshes of the adaptive procedure	 The

swelling ratio is de�ned as the relative increase of the extrudate to the in�ow section	 A

dramatic improvement of the accuracy is produced by the adaptive strategy	 We obtain a

swelling ratio of ��	��� on the �nal mesh which is in excellent agreement with the results

of the literature	

In order to illustrate the cost of the adaptive strategy� Table � provides the CPU time

used for each part of the calculation	 In particular� the equilibration doubles the cost of

��



Mesh CPU for the solution CPU for the error estimates
on all elements on all elements on uncritical elem	


�� 
�	
� 
�	
�

P� ��� ��� 

 


P� �
�� �
� ��� ���
P� ���
 ��� ��� ���

Total ��
�� ���� ��� ���
���� ��� �� ��

Table �� CPU time accounting for the planar extrusion problem

the error estimates although this cost can be divided by a factor � if the error is calculated

only on critical elements	 The numerical results reported in this work are obtained by a

full Newton�Raphson scheme which allows us to reach a quadratic rate of convergence	 For

the examples shown� a direct frontal solver is used in each time step	 The total number of

iterations to reach the solution for a given mesh is approximately equal to � to � 
relative

variations of �����	

Turning to the selection of �int� Fig	 �	 shows several alternative adaptive ways to reach

�tgt	 The CPU time as a function of �int is also provided in this �gure	 The average value

is the total CPU time used for solving the problem and estimating an unbalanced error	

The minimal value is the cost when the error is estimated only on critical elements and the

maximal value is reached when we calculate equilibrated error estimates on all elements	

Surface tension and inertia have been successfully included	 We consider the same prob�

lem with Re � ��� and Ca � �	 The presence of inertia e�ects requires that we modify the

mesh � the length of the jet is now equal to �
 lengths of the in�ow section	 The �nal mesh

is shown in Fig	 ��	 Closeup views of the � adaptive meshes� computed error distributions

and results are shown in Fig	 �����������	

We also present result of the planar extrusion problem for a Power�Law �uid of index ���	

The velocity distribution will be relatively �at across the die section with a large velocity

gradient near the wall of the die	 Such a velocity pro�le will reduces swelling e�ects	 For very

low values of the power law index 
�	� and lower�� sharp velocity boundary layers require

��



Mesh Number of DOF Swelling ratio Swelling ratio error Error index �

P� �
� ��	�� �
	�� �	����
P� ��� ��	�� �	�� �	����
P� 
�� ��	�� �	�� �	����

Table �� Axisymmetric extrusion problem � swelling ratio errors

�ner meshes and a Picard scheme to obtain the results	 The three meshes and the error

index evolution are shown in Fig	 �
	 In Fig	 ������ the distributions of calculated error

estimates are given	 Velocity contourlines and a pressure plot are shown in Fig ��	

��� Test problem � � �D axisymmetric extrusion �ow

Numerical simulations of the extrusion of a Newtonian �uid from a circular die have been

available for some time �����
����	 For creeping Newtonian �ow� the calculation gives a

swelling ratio of ����� with a highly re�ned mesh	 The swelling ratio is de�ned as the

relative increase of the radius of the extrudate to the radius of the die	 We solved the

same problem with the ��step strategy	 The three meshes and the error index are shown in

Fig	��	 Critical improvements in the accuracy of the swelling ratio are obtained by using an

adaptive strategy	 We obtain very accurate results with fewer degrees of freedom	 In Table

�� we compare the evolution of the error estimates and the true error of the swelling ratio	

Computed distributions of the error estimates and the results on the �nal mesh are

indicated in Figs	 ��������	

��� The rotating disk

We consider the axisymmetric problem described in Figure ��	 A disk is rotating in a

cylindric tank	 Inertia forces induce secondary motions in planes containing the axis of

symmetry� while the shape of the free surface located at the top of the domain is deformed	

The present swirling problem has  �	
 dimensions � i	e	 three velocity components are

calculated in a domain which is two�dimensional 
see the Appendix for detailed equations�	

It is assumed that the �uid does not slip along the wall nor along the rotating disk	 On the

free surface� capillarity forces and the kinematic condition are imposed	 The usual conditions

��



are imposed along the axis of symmetry	 Let us recall that the shape of the free surface is

unknown	 An horizontal angle conditions are imposed at both ends of the free surface	 The

results below have been obtained by a time marching procedure starting with the rest state

and a �at surface	

Let R denote the radius of the disk and � its rate of rotation	 The Reynolds number for

a Newtonian �uid� the Froude number and the Capillary number are respectively given by

Re �
� R�

�

Fr �
�� R

g

Ca �
�

��R

In the present solution of this problem� the domain located above the disk in Fig	 �� is

considered as a mobile domain� i	e	 its elements are stretched when the free surface position

is updated	

The �ow features include the shape of the free surface and the secondary vortices gener�

ated in the tank together with the rotating motion	 For Re � ���� F r � ����� Ca � ����
�

the three deformed meshes produced by the ��step adaptive strategy are shown on Fig	 ��	

Computed distributions of the error estimates are given in Figs	 �
���	 In Fig	 ��� one

observes an S�shaped free surface while the velocity contourlines exhibits secondary vortices	

The azimuthal velocity component which has its maximum on the outer boundary of the

disk	

Acknowledgment� This work was performed at the Texas Institute for Computational

Mechanics at the University of Texas at Austin	 The support of DARPA of one author


J	T	Oden� under Contract "DABT���������� is gratefully aknowledged	 V	 Legat wishes

to acknowledge the support from the Fonds National de la Recherche Scienti�que 
FNRS�

and from a NATO Research Fellowship	

References

�	 Oden� J	 T	�Kennon S	R	� Tworzydlo� W	W	� Bass� J	M	 and Berry� C	� Progress on

Adaptive hp�Finite Element Methods for the Incompressible Navier�Stokes Equations�

Journal of Computational Mechanics� 
in press�� ����	

�	 Oden� J	T	� Error Estimates and Control in Computational Fluid Dynamics�

��



Zienkiewicz Lecture of MAFELAP VIII� edited by J	 Whiteman� J	 Wiley and sons�

Strasbourg� 
to appear� � ����	

�	 Wu� W	� hp�Adaptive Methods for Incompressible Viscous Flow Problems� Ph	D	 Dis�

sertation� The University of Texas� Austin� ����

�	 Oden� J	 T	� Wu� W	� and Ainsworth� M	� A Posterori Error Estimates for the Navier�

Stokes Equations� TICOM Report ����
� Austin and� to appear in Computer Methods

in Applied Mathematics and Engineering	


	 Ainsworth� M	� and Oden� J	 T	� A Uni�ed Approach to A Posteriori Error Estimation

Using Element Residual Methods� Numerische Mathematik� ��� ����	

�	 Oden� J	 T	�Patra� A	 and Feng� Y	� An hp Adaptive Strategy� Adaptive� Multilevel

and Hierarchical Computational Strategies edited by A	K	 Noor� AMD�Vol �
��

ASME publications� pp	 ������ ����	

�	 Legat� V	 and Marchal� J	M	� Prediction of Three�Dimensional Shape Extrudates by

an Implicit Iterative Scheme� International Journal for Numerical Methods in Fluids�

��� pp	 ������
� ����	

�	 Legat� V	 and Marchal� J	M	� Die Design � an Implicit Formulation for the Inverse

Problem� International Journal for Numerical Methods in Fluids� ��� pp	 ������ ����	

�	 Ladyzhenskaya� O	A	� The Mathematical Theory of Viscous Incompressible

Flow� ����� Gordon and Breach Science Publishers� New�York	

��	 Berghezan� D	 and Dupret� F	� Numerical Solution of Strati�ed Coating Flow by a

Variational Method� Journal of Computational Physics� 
in press�� ����	

��	 Frederiksen� C	S	 and Watts� A	M	� Finite Element Method for Time�Dependent In�

compressible Free Surface Flows� Journal of Computational Physics� �	� pp	 ��������

����	

��	 Ruschak� K	J	� A Method for Incorporating Free Boundary with Surface Tension in

Finite�Element Fluid�Flow Simulators� International Journal for Numerical Methods

in Engineering� ��� pp	 �������� ����	

��	 Kistler� S	F	 and Scriven� L	E	� Coating Flows� inComputational Analysis of Poly


mer Processing� edited by J	R	A	 Pearson and S	M	 Richardson� Chap	 �� Applied

Science Publishers� London� ����	

��



��	 Demkowicz� L	 F	� Oden� J	 T	� Rachowicz� W	� and Hardy� O	� ����� Toward a Uni�ed

Approach to hp Adaptive Finite Element Methods� Part �� Constrained Approxima�

tion� Computer Methods in Applied Mechanics and Engineering� ��� No	 �� pp	 ������	

�
	 Babuska� I	 and Suri� M	� The p and hp Versions of the Finite Element Method� an

Overview� Computer Methods in Applied Mechanics and Engineering� �
� pp	 
����

����	

��	 Carey� G	F	 and Oden� J	T	� Finite Elements � A Second Course� Prentice Hall�

Englewood Cli�s� ����	

��	 Ruschak� K	J	� A Three�Dimensional Linear Stability Analysis for two�Dimensional

Free Boundary Flows by Finite Element Methods� Computers and Fluids� ��� pp	

�������� ����	

��	 Saito� H	 and Scriven� L	E	� Study of Coating Flow by the Finite Element Method�

Journal of Computational Physics� ��� pp	 
��##� ����	

��	 Thompson� J	F	� Warsi� Z	U	A	 and Mastin� C	W	� Numerical Grid Generation�

Foundations and Applications� North Holland� New York� ���
	

��	 Tworzydlo� W	W	� Huang� C	Y	 and Oden� J	T	� Adaptive Implicit�Explicit Finite

Element Method for Compressible Viscous Flows� Computer Methods in Applied Me�

chanics and Engineering� 	�� pp	 ��
����� ����	

��	 Huang� C	Y	 and Oden� J	T	� GAMMA�D A Multiregion�Multiblock Structured�

Unstructured Grid Generation Package for Computational Mechanics� Computers and

Structures� 
in press� � ����	

��	 Wambersie� �	 and Crochet� M	J	 Transient Finite Element Method for Calculating

Steady State Three�Dimensional Free Surfaces� International Journal for Numerical

Methods in Fluids� ��� pp	 �������� ����	

��	 Gresho� P	 M	� On the Theory of Semi�Implicit Projection Methods for Viscous In�

compressible Flow and its Implementation via a Finite Element Methods that Also

Introduces a Nearly Consistent Mars Matrix� Part �	 Theory	 In International Jour�

nal for Numerical Methods in Fluids� ��� pp	 
������� ����	

��	 Georgiou� G	C	� Schultz� W	W	 and Olson� L	G	� Singular Finite Element for the

Sudden�Expansion and the Die�Swell Problems� International Journal for Numerical

Methods in Fluids� �
� pp	 �
������ ����	

�




�
	 Nickell� R	E	� Tanner� R	I	 and Caswell� B	 Finite Element Solution of Viscous Jet Flow

with Surface Tension� Journal of Fluid Mechanics �� pp	 �������� ����	

��	 Han� C	T	� Tsai� C	C	� and Liu� T	J	� A Finite Di�erence Technique for Solving New�

tonian Jet Swell Problem� International Journal for Numerical Methods in Fluids� ���

pp	 �������� ����	

Appendix In this section� we give the complete weak formulation of axisymmetric

Navier�Stokes equations with three velocity components	 Time derivatives are included for

completeness	

In above formula� r and z denote the radial and axial coordinates	 Along the boundary�

we de�ne s as the curvilinear coordinate	 Using the comma for partial di�erentiation� we

introduce the three velocity components ur� uz� u� and the pressure p and their di�erentiates

ur�t� ur�r� ur�z 			 By multiplying the momentumequation by an test function v and by dividing

with a common factor ��� the use of the divergence theorem 
as described in section �	��

leads to the following equations

��



Z
�

ur�t � r�tur�r � z�tur�z�vrdrdz �

Z
�


urur�r � uzur�z�vr � u�u�v�drdz

�
Z
�
�

�ur�rvr � 
ur�z � uz�r�vz�r � �

ur
r
v�drdz

�
Z
�

pv�rr � pv�drdz �

Z
�
frvrdrdz

�
Z
��N

bgrvrds
�

Z
��F

�
v�sr�sr � v�ds� ���cmrvr����F

Z
�

uz�t � r�tuz�r � z�tuz�z�vrdrdz �

Z
�

uruz�r � uzuz�z�vrdrdz

�
Z
�
�

ur�z � uz�r�vr � �uz�zvz�rdrdz

�
Z
�
pv�zrdrdz �

Z
�
fzvrdrdz

�
Z
��N

bgzvrds
�

Z
��F

�v�sz�srds � ���cmzvr����F

Z
�

u��t � r�tu��r � z�tu��z�vrdrdz �

Z
�


uru��r � uzu��z�vr � uru�v�drdz

�
Z
�
�


u��r �

u�
r
�vr � u��zvz�r � 
u��r �

u�
r
�v�drdz

�
Z
��N

bg�vrds

��



where f and bg are respectively the body forces and the given traction on the Neumann

portion of the boundary	 The unit vectors cm de�ne the angle conditions for both ends of

the free boundary	 For transient processes� r�t and x�t are the velocity components of the

frame motion 
or grid motion� introduced by the motion of the free surface and the stretching

algorithm	 Finally� it should be noted that the axisymmetric formulation can be directly

derived by eliminating the third equation and the third velocity equation in these formula	

Introducing an arbitrary pressure q and an arbitrary geometric degree of freedom m� the

weak forms of the incompressibility constraint and the kinematic condition are given byZ
�


ur�r � uz�z�qr � urq�drdz � �

Z
��F


urnr � uznz�mrdrdz � �

where n is the unit normal vector pointing out of the domain	 We also give the components

of the strain rate tensor which are required for the calculation of his second invariant for

Non�Newtonian �uids	
drr � ur�r

drz � dzr �
ur�z � uz�r

�

dr� � d�r � u� �
u�
�r

dzz � uz�z

d�� �
ur
r

��


