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Abstract

Recently, a rigorous a posteriori error estimate, based on the element
residual method, for the steady state Navier-Stokes equations has been
derived. In this paper, by using this error estimate, we construct an h-
p adaptive strategy to minimize the total computation costs while achieving
a targeted accuracy for steady incompressible viscous flow problems. The
basic h-p adaptive strategy is to solve the approximate problem in three
consecutive stages corresponding to three different meshes, Le. an initial
mesh, an intermediate adaptive h-mesh, and a final adaptive h-p mesh.
Our numerical result shows that the three-step h-p adaptive strategy for
the incompressible flow problems indeed provides an accurate approximate
solution while keeping the computational costs under control.

INTRODUCTION
The goal of h-p adaptive finite element methods is to obtain an accurate ap-

proximate solution within a preset error tolerance at the least possible compu-
tational cost, mainly measured in terms of the total CPU time and the total
computer memory used. There are two major questions that must be resolved
in order to reach this goal. One is how to estimate the accuracy of approximate
solutions when exact solutions are not available; the other concerns the control of
computational costs to obtain a the user-specified error tolerance. The issue of
estimating the error of approximate solution for the steady state Navier-Stokes
equations is discussed in [1] [2], while the issue of designing an h-p adaptive strat-
egy [4] is considered here.

To control computational costs, one needs to develop an efficient h-p adaptive
strategy for obtaining near-optimal adaptive h-p meshes. The payoff can be con-
siderable: exponential rates of convergence with respect to the computed error
can be achieved by using very few degrees of freedom, and this translates into the
meshes which deliver targeted accuracies with many fewer degrees of freedom than
traditional h- or p- version methods. On the other hands, the total computational
overhead in an unplanned adaptive h-p strategy can conceivably be greater than
the cost for conventional uniform h- or p- methods. To overcome this potential
complication, a prudently designed adaptive strategy is required.

The research in the design of efficient adaptive strategies is still in early stages.
The first general h-p adaptive strategy was proposed by Rachowicz, et al. [3] in
1989, which involved a scheme requiring many steps of solving linear system for
different stages of mesh in order to achieve an optimal mesh. Recently Oden, et al.



[4] developed an efficient three-step h-p adaptive strategy in which employs only
three stages corresponding to three different meshes. Initial numerical experiments
using the three-step h-p adaptive strategy are encouraging when the total CPU
time needed is compared with those of uniform h- or p- methods. The current
study extends this h-p adaptive strategy to the steady state Navier-Stokes flow
problem.

Following this introduction, the Navier-Stokes equations and the basic no-
tations used in this paper will be presented in Section 2. The finite element
approximations of the Navier-Stokes equations is described in Section 3. In Sec-
tion 4, two major theorems on the a posteriori error estimation for steady-state
Navier-Stokes equations are given. The three-step h-p adaptive strategy is pre-
sented in Section 5. Finally, results of numerical experiments are given in Section
6.
THE NAVIER-STOKES EQUATIONS

The steady state Navier-Stokes equations on the bounded Lipschitz domain
11E J/r, n = 2 or 3, is described as follows:

(u· v)u - v· u(u,p)
v·u

u

f in 11 }
o in 11
o on an

(1)

where u = u(x), x = (Xl"" ,Xn) E 11, is the velocity field, and f is the body
force. u(u,p), the Cauchy stress, is defined as 2I1D(u) - pI with the kinematic
viscosity II > 0, strain rate tensor D(u) = (vu + vuT) /2, pressure p, and the
uni t tensor 1.

To obtain the weak formulation of (1), we introduce the following spaces and
norms

V

H

Ivli

(HJ(n)t
{VEV:divv=O}
{ { n avo av.

Jf vv: vv dx = Jf L Ef-Ef- dx
n n i,j=l Xi Xi

{ q E L 2 (n) : k q dx = 0}

10 q2dx

where dx = dXldx2 ... dXn and the trilinear, bilinear, and linear forms,

c: V x V x V - lB, c(u,v,w) = 1u· Y:v· wdx

a:V x V - lB, a(u, v) = 12I1D(U): D(v)dx

b:Q x V - lB, b(q,v) = 1qY' v dx

f:V - lB, f(v) = If,VdX



Then the weak formulation of Navier-Stokes equations is

Find (u, p) E V x Q such that for all
(v, q) E V x Q,
c(u,u,v) + a(u,v) - b(p,v) = f(v)

b(q, u) = 0

(2)

The forms a(·, .), b(-, .), c(·,·, .), and fe) are continuous and b(-,.) satisfies
inf sup condition [5]. Also, we assume that there exists a constant I such that

Ic(u,v,w)1 3
I = sup 1 __ 1 I_I 1 1 ( )

U,V,11.'EH

the data body force f is defined such that it corresponds to a functional,

with norm being defined as

Ilfll- = sup If( v )1
VEH\O Iv!I,o

(4)

(5)

(6)

•

Under these conditions, the existence and uniqueness of solutions of (2) are
gIven as:
Theorem 1. (i) Under the above definitions and conditions, there exists at least
one solution (u, p) E V x Q to problem (2).

(ii) If, in addition,

then the solution (u, p) is unique.

Proof: See [6].
FINITE ELEMENT APPROXIMATIONS

To develop finite element approximations of (2), we introduce a partition P of
o into a collection of N = N(P) subdomains 11K:

N(1')

TI = U nK, OK n OL = 0 'V J( =/: L
K=l

\Ve may now write

N
a(u, v) - LaK(ti,v)

K=l

aK(u,'V) - i 2I1D(u): D(v)dx u,v E VI(
OK
N

b(q, v) - L bK(q,v)
K=l

bK(q,V) - 1 q\7. v dx q E QK, V E VK
OK



etc., with similar definitions for CK(·,·' .), fK(')' where VK = V (OK) and QK =
{q E L2(J() : q = PIK, P E Q} denote corresponding local spaces offunctions in V
and Q, respectively, restricted to OK'

Following the standard finite element approaches, let 0 and P be constructed
such that each subdomain nK is the image of a master element n under an
affine invertible map FK: n - OK, 1 ~ J( ~ N. If e = F~I(Z), x E 11K, we
approximate test functions v E VK, q E QK by functions v and qh such that
Vi(e) = v~oFKl(X), 1 ~ i ~n, q(e) = qhoFj(l(X) are polynomials or products of
polynomials in e. The resulting spaces of functions have the properties vi< C VK
and Q'k C QK'

The finite element approximations of (2) obtained using the spaces Vh and Qh
is characterized by the following discrete problem:

Find (uh,ph) E Vh x Qh such that for

every (vh, qh) E Vh X Qh,

C (uh, uh, vh) + a (uh, vh) - b (ph, vh) = f (vh)

(7)

Under proper conditions, one can construct convergent sequences of solutions
to (7). See [6] for details. Moreover, the following result can be established:
Theorem 2. Let n ~ 3 and the conditions of Theorem 1 hold. Let (u,p) be the
solution of (1). Then, for II sufficiently large, there exists an ho such that for all
h ~ ho, (7) has a unique solution (uh, ph) E Vh x Qh and

lim {Iu - uhll + lip - philo} = 0 (8)
h-O

If, in addition, the solution (u, p) of (3) E (Hk+l(o)n n V) x (Hk(O) n Q) for
k ~ l, then a constant C > 0 exists, independent of h, such that

\u - uhl
l
+ lip - philo ~ Chk (9)

Proof: See [6], in particular pp. 317-318. •
THE A POSTERIORI ERROR ESTIMATE FOR THE STEADY STATE
NAVIER-STOKES EQUATIONS

Now we shall construct the a posteriori error estimate for the Navier-Stokes
equations. Let (u,p) and (uh,ph) be the unique solutions to the problems (1) and
(7), respectively,

Define two bilinear forms as

A(u,v)

B(p, q)

in 2I1D(u) : D(v) dx

10 p' q dx
(10)



and the pair (<p, 1/J) E V x Q which are solutions of

A(<p,v)

B(1/J,q)

a(e, v) - b(E, v) + c(u, u, v) - c(uh, uh, v)

-b(q, e)

V (v, q) E V x Q
(11)

where e = u - uh and E = p _ ph.
The existence and uniqueness of the pair (<p, 1/J) in (11) follows immediately

from the definitions of A and B in (10). Next we define the "star norm" of error
to be

with

l<pl~ =A(<p,<p)

11/J15 = B( 1/J, 1/J)

( 12)

(13)

The "averaged" approximate flux on the boundary rKL is defined as

(nK' 0' (uh,ph)) = nK' [(1- CtK£(S))UK (uh,ph) + CtJ.:£(S)UL (uh,ph)] (14)

UK is the Cauchy stress in OK at S E rKL and UL is that in neighboring element
OL at s. Thus, (14) defines a linear combination of approximate boundary fluxes
on the interelement boundary. Note that if we take CtKL = 1/2, (14) reduces to
a simple average of fluxes. \Ve shall assume hereafter that the parameter func-
tions CtKL are constructed in such a way that the element residual and boundary
residuals are balanced in the sense of [7, 8], i.e., the residual fluxes are equilibrated.

The following theorem confirms that the star norm defined in (12) is actually
equivalent to the usual norm used for the Navier-Stokes equation.
Theorem 3. Let the conditions of Theorem 1 holds and Theorem 2 holds for
k > 0 and, moreover, there exists a constant L such that

IIluh ~ L < - (15)
'"Y

Then there exists two positive constants kl and k2 such that as h - 0,

k11l(e, E)II~ ~ lel~+ IIEII~~ k211(e, E)II~ (16)
where kl and k2 are positive constants.

Proof: See [1] [2]. •
The a posteriori error estimate for the Navier-Stokes equations is as follows:

Theorem 4. Let assumptions on Theorem 4 hold and AK(·'·) and BK(-,') denote
the element inner products corresponding to A(·,·) and B(·,·) of (10) and

let <p K E VK denote the solution of the local error residual problems,

AK(<PK,VK) = fK(vK)-aK(u~,vK)

(17)



for every VK E VK, 1 ~ J( ~ N. Then the error (e, E) of the finite element
approximations of the Navier-Stokes equations (1) satisfies the following bound:

N

II(e,E)II: ~ L: II(CPK' divu~)II:.K (18)
K=l

Proof: see [1]. •
THE THREE-STEP h-p ADAPTIVE STRATEGY

Here, we employ the three-step scheme introduced in [4] and exploited in [10]
and elsewhere. For completeness, we record its basic properties. The goal of the
three-step adaptive strategy is to reach a preset target error of the problem and
to minimize the computational effort required.

To develop the scheme, we suppose that a global a priori error estimate exists
in the star norm [9] :

(19)
N(1') h2IJK

2 ~ K 2II(e, E)II. ~ L- 211K AK
K=l PI(

where hK, PK are respectively the size and the order of the element K, and AK is
a local unknown constant. We also define an error indicator e and an error index
17:

N

()=.1 I:(()K?, ()K = II (lpK' divu7.:) II•. K
K=l

17 = II (e, E) II~
II (u,p) II:

(20)

(21)hi<
()K ~ -AK

PK
Now, we assign a target error index 17tgt and we are able to describe the three

steps as follows :

Now, we introduce several major assumptions. This asymptotic estimate is
treated as an equality and the actual error is approximated by the a posteriori
error estimate e. By setting, respectively, the unknown exponents µK and 11K to
given µ,II, and then passing to the element level, we write the basic equation of
the scheme:

• Introduce an initial mesh po of N° elements sufficiently fine to fall in the
asymptotic part of the convergence curve for h-refinements. Solve the prob-
lem on this mesh. Calculate a local a posteriori error indicator e~to estimate
the local error.
From the orthogonality of the error to the space of approximation, we can
estimate both the energy like norm of the solution and the initial error index



Select T}int such that T}0 ~ T}int $ T}tgt.

• Calculate the number nK of new sub-elements required in each element of
pO in order to obtain an optimal mesh pI of NI elements achieving the
required error index TJint.

For uniform refinements, the number of sub-elements can be correlated to
their main size nK = (hf}.; /h}.; )2/{J where /3 = 2/n and n is the dimension of
the problem. From (21), we can find the following system which allows us
to compute nK :

(22)

(23)

where the global error oint is predicted by T}int II(uO,pO, hO)II •. Having nK,
we introduce h refinements to construct pl.
Now, solve the problem on this second mesh and compute the local a pos-
teriori error indicators 01.

• The third mesh p2 is constructed by calculating a distribution of polynomial
degrees PL for each element of pI to reach the target error index 1]tgt. From
(21), we can calculate the final order of each element in order to reach an
equidistributed target error indicator on the next mesh:

I

_ [ I (01?(p1)211] ij;

PL - N (Otgtp

where the global error otgt is predicted by T}tgt II(Ul,pl,hl)II •.
Now, enrich P on each element to obtain P2. Solve the problem on p2 and
compute an estimate of the final error index 1]2. If T}2 $ T}t9t the computation
is terminated; otherwise the whole procedure is repeated.

This technique seems to be a good compromise between the cost of the adaptivity
and the quality of the final mesh. In fact, it leads to good (but suboptimal) meshes
and exhibits very fast convergence characteristics with respect to CPU time.
NUMERICAL RESULTS

Now, the results of the backstep channel solved with the three-steps adaptive
strategy is presented. We consider the steady motion of an isothermal incom-
pressible Newtonian fluid. We impose no-slip conditions on the walls and a fully
developed profile in the entry section. The lengths of both channels are respec-
tively 2 and 16 lengths of the outflow section. In order to compare our results
with [11], we select an inflow section equal to 0.51485 and a Reynolds number
of 300. The Reynolds number is defined by Re = U L/ll where U and L denote
the average inflow velocity and the inflow length. The geometry features of the
problem are defined in Fig. 1.

From an initial mesh of 877 scalar degrees of freedom and a quadratic interpo-
lation, we calculate an estimated error index of 0.14. Then, the three-step strategy



Mesh CPU for the solution CPU for the error estimates
(Number of iterations) (a) (0.5)

po 12246 (21) 1283 866
pI 3333 (4) 2073 1171
p2 9264 (5) 3845 2787

Total 24843 7201 4824
100% 28% 19%

Table 1: CPU time accounting for the backstep problem

Reattachement lengths Reference results [11] Present results
V 4.96 4.95
L2 4.05 4.13
L3 7.55 7.32

Table 2: Backstep problem: reattachement lengths

is used with an intermediate error index ,..,inl = 0.10 and a target error index of
,..,tgt = 0.08. The final mesh is shown in Fig. 2. Computed pressure is shown
in Fig. 3. Closeup views of the three meshes and the error index evolution are
shown in Fig. 4. It is expected that the elements are h-refined near the singularity
and that orders of p = 4 and p = 3 are assigned near this point. However, the
adaptive strategy also leads to refinements and enrichments in other areas. The
local equilibrated error estimates ((a)-Estimated Error) are plotted on Fig. 5. In
order to illustrate the cost of the adaptive strategy, Table 1. contains the CPU
time used for each part of the calculation. The numerical results reported in this
work are obtained by a full Newton-Raphson scheme. A continuation technique
is used for obtaining the solution on the first mesh. For each Newton's step, a
direct frontal solver is used. The total number of iterations t.o reach the solution
on each mesh (relative variation 10-9) is also provided.

Table 2 contains results seen to be in excellent agreement with the literature.
\Vith 1530 scalar degrees of freedoms, values for the reattachement lengths are
obtained which are agree with with those calculated with 12870 d.o.f.'s in [11].
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Figure 1: Geometry for the backstep problem.
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Figure 2: Backstep channel problem (Re=300), Newtonian fluid. Shaded elements
reflect nonuniform p-distribution in final mesh .
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Figure 3: Backstep channel problem (Re=300), Newtonian fluid. 3D plot of the
pressure
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