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Abstract

In 1986, Dupret and Marchal [1] determined two tensorial conditions in order
to analyze the loss of evolution and the change of type for Maxwell fluid flows.
We perform here a quasi-linear analysis of the characteristics in flows of FENE-
P fluids. Mathematical and easily computable conditions have been derived and
can be used as criteria in complex flows. A similar result is also available for the
Chilcott-Rallison model. The change of type is analyzed for flows through an abrupt
contraction. Numerical results show that the vortex enhancement mechanism may
be coupled with the change of type. A numerical simulation of the tree-like jet flow
has also been performed.
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1 Introduction

In 1986, Dupret and Marchal [1] presented a general study of the characteristics in three
dimensional flows of a Maxwell-B fluid. They determined a tensorial criterion that guaran-
tees the evolutionary character of the equations. In the case of a steady flow, the problem
is neither purely elliptic nor purely hyperbolic. However, the hyperbolic character of the
flow can change. This has been called a change of type by Joseph et al. [2]. Dupret and
Marchal [1] determined a general condition governing the change of type to a hyperbolic
supercritical regime.

In this paper, we extend the approach of Dupret and Marchal [1] to the case of a
FENE-P fluid. An evolution condition and a criterion governing the change of type for
the stationary problem are presented in tensorial form. In limiting cases, it is shown that
the conditions reduce to those of a Mawell-B fluid.

We then analyze numerically the change of type for flows through contraction and
expansion geometries. The calculations are mainly done with a Galerkin formulation of
the mixed finite element introduced by Marchal and Crochet [3] which allows to simulate
flows with strong interaction between viscoelasticity and inertia. We are first consider-
ing the simulation of flows of a 0.25% polyacrylamide aqueous solution through a 4:1
abrupt contraction described in Purnode and Crochet [4]. This study was based on the
experimental observations of Evans and Walters [5] for low concentrated polyacrylamide
aqueous solutions. The FENE-P model is used to describe the rheological behaviour of
the polymer solution. Numerical simulation allows us to show that the vortex enhance-
ment mechanism may be coupled with the change of type. We then wish to simulate
the tree-like jet flow observed experimentally by Giesekus [6] when a fluid flows from a
circular hole into a large reservoir. Giesekus [6] notes that this effect occurs beyond a
critical speed of the fluid, just as the delayed die swell. Using the same fluid data as
for the 4:1 contraction case and for some specific values of the flow parameters, we show
that the tree-like jet flow is associated with the change of type of the governing set of
equations.

In section 2, we recall the basic equations of the differential viscoelastic models. We
then briefly present the FENE-P model and we introduce the generic block-tensor notation
of the problem. In section 3, we present the quasi-linear analysis for the determination
of the characteristic sheets and we derive two tensorial conditions. Finally, in section
4, we present numerical simulations of the flows through contraction and the expansion
geometries.



2 Basic Equations and Notations

2.1 Differential Viscoelastic Models

For incompressible fluids, the conservation laws of momentum and mass yield the following
equations

Do
V- T-Vp+f = PDr

V.o = 0. (1)

Here, v is the velocity vector, T the extra-stress tensor, p the pressure, I the unit tensor,
f the body force per unit volume of fluid and p the fluid density. The operator D /Dt
denotes the material time derivative.

The set of governing equations (1) is closed by a constitutive relationship that relates
the extra-stresses T to the kinematic tensors. First, we often identify the presence of
a purely-viscous component which may be interpreted as the solvent contribution to the
stress in polymeric solution or as the stress response associated with a very fast relaxation
mode. Therefore, we can split the tensor T as follows

T = Ty+Ty,

where Ty is the Newtonian component and Ty denotes the viscoelastic extra-stress.

e On one hand, the Newtonian component is characterized by

TN = 277ND,

Vv + Vol

p - (%

where ny is the so-called Newtonian viscosity, and D is the rate-of-deformation
tensor.

e On the other hand, let us now consider the simplest and most popular differential
constitutive equation for Ty :

v
T+ )\Ty=2nD. (2)

Here, X is the relaxation time and ny is the viscoelastic viscosity coefficient. The
operator 3/ stands for the upper-convected derivative :
4 DTy

TV = D1 —TV'V’U—V’UT'Tv.




Depending on the occurence or not of a Newtonian component Ty, such a constitutive
viscoelastic equation characterizes an Oldroyd-B or an upper-convected Maxwell model.

In a Oldroyd-B model, the retardation time is defined by

A= A
(nv + nv)

In the case of a vanishing Newtonian extra-stress component T, Dupret and Marchal [1]
defined the tensor T'4 as:

v
Ti=Ty+% (3)
and showed that in the case of a Maxwell-B flow problem with well-defined boundary
conditions, the set of governing equations is no longer evolutionary where T 4 is non
positive-definite. When inertia is taken into account in the steady-state problem, the
vorticity equation changes from elliptic to hyperbolic type as the tensor T'g defined by:

Tg=T,— povL, (4)

loses its positive definiteness [2].

2.2 The FENE-P Model

However, these models do not provide a realistic description of polymeric fluids. As a
mathematical model, the Finitely-Extensible-Non-Linear-Elastic-Dumbbell (FENE) equa-
tion appears to be a reasonable compromise between simplicity and physical reality.

Let us briefly recall the origin of the FENE model. The polymer macromolecules
are considered as dumbbells suspended in a Newtonian solvent of a given viscosity ny.
Assuming that the solvent contribution is identified by Ty, this theory leads to the
following expression for the viscoelastic extra-stress tensor [7] [8].

Ty = n< F(R) RR> —nkTI, (5)

where the stress caused by the Brownian motion is characterized by —nkTI where n is
the number of dumbbells per unit volume, T' is the temperature and k the Boltzmann
constant. Finally, the term n < F'(R) RR > is the contribution from the tension F(R) R
in the connectors. The brackets indicate an average over the distribution and R is the end-
to-end vector for the dumbbells. In particular, the function F' characterizes the amplitude
of the connector force as a function of the length R of the vector R.

The kinetic theory assumes that the motion of dumbbells is the result of the hydrody-
namic force, the Brownian motion force and the connector force respectively. From the
equation of the motion of a dumbbell and a continuity relationship, one can derive the
following evolution equation [7]



4 v 4kT
E<F(R)RR>+<RR>:TI, (6)

where ( is a drag coefficient.

Now, we have to characterize the connector force law. Although a number of springs
can be used, we will consider only the Hookean dumbbell and the Warner force law lead-
ing respectively to Oldroyd-B and FENE models.

o Let us first consider that F'is just a constant H. One can eliminate < RR > from

equations (6) and (5) and obtain an Oldroyd-B fluid with :

v kT
Tv-l-iTv = ne

D.
411 Vi (7)
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e The Warner force law allows us to avoid the unphysical possibility of infinitely ex-
tending dumbbells. In fact, the FENE spring is considered as a non-linear connector

described by

H

BT 7} ®

where Ry represents the maximum allowable dumbbell length. The FENE model is
characterized by the equations (5) (6) and (8).

e Finally, let us consider the FENE-P model. First, we define a non-dimensional
configuration tensor A and a characteristic length R. as follows,

A = 3< RR >7
" ()
KT
© T FR)

Introducing the following Peterlin’s approximation:

H H
— __ RR >= RR
SO-mRY) T U—<RsR) ST

in (6) and taking advantage of (9), we obtain the following equations which govern
respectively the fields A and Ty :

v 1 —trA/L?
A+ N1 —-trA/LI2Y A= | ———~2— |1
a1 -rat A= (L

1 1 —trA/L*
Ty = pwid|———— ) (a-—"200 1),
vo= (1—trA/L2)( 1—3/12 )
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where L2 = 3R2/R? is a measure of the extensibility of the dumbbells. The relax-
ation time and the zero-shear viscosity are defined by:

S _ nCkT
“am VT an

The equations 10 exhibit stable numerical properties and appear to be very useful
for the numerical calculations. Chilcott and Rallison [9] introduced some further

modification in the evolution equation for A in order to obtain a fluid with a constant
viscosity in steady shear flow:

A

(1—3/L%). (11)

A+N(1—trA/I)) A =1T. (12)

2.3 Quasi-Linear Equations and Characteristics

In order to analyze the change of type, let us use the following generic block-tensor
notation introduced in [1] [10] :

Aiik(X)0k X; = Bi(X), (13)

where X = (X1, X3,...) is the set of unknowns. Each component X;, A;;x and B; may be
scalar, vector or tensor. The capital indice K vary from 1 to 4 in three-dimensional case
and denotes a component of space-time coordinates. Summation on repeated indices is
used and the symbol dx stands for a partial derivation in the appropriate space or time.

In other words, di can be defined as (V, d;).

Equations (13) are equivalent to the formulation

V)?i, )/(\iAin(X)aKXj = )/(\iBi(X)v (14)

F(X;, X, X, k)

where F (X, )?j, X, 0k) is a bilinear form.

Let us now recall that a space-time hypersurface is characteristic in a point when
the partial derivatives of the unknowns in the normal direction cannot be obtained from
the equations and the values of the unknowns on the hypersurface. If the direction ek
is a characteristic direction, i.e. the normal to the characteristic hypersurface, the form
f(anj,)?i, X, efc) degenerates, because the system to solve in X7 = 0. X is then singular.
This is equivalent to the condition :

EI)?Z' such that
VX7, )?Z'Aiﬂ((X)eKXj* =0, (15)

F(X7, X, X, ex)



Such a condition (15) can be conveniently written in terms of the determinant R(ex, X) of
the form F. This determinant needs to be factorized, in order to distinguish between the
different characteristic hypercone sheets. This hypercone is defined by the envelope of all
characteristic hypersurfaces passing through a fixed point &* at some ¢t*. The generating
lines of the hypercone sheets are the set {x space-time bicharacteristic directions :

(16)

Infinitesimal waves originating from (&*,t*) propagate in the {x direction. The system (13)
is evolutionary when the intersection of each characteristic cone sheet with the hyperplane
t = constant is a single point. Physically, a non evolutionary problem corresponds to
infinitesimal waves propagating at an infinite velocity or in negative time directions. This
situation is sketched in Fig.1c

Wave propagation is subcritical or supercritical depending on whether the intersection
of the dual hypercone generated by the set of ex characteristic directions with the same
hyperplane is or is not limited to a single point, as shown in Fig.la and Fig.1b. For
a steady-state problem, the set of equations changes type when the associted transient
problem changes from subcritical to supercritical.

3 Characteristic Sheets of a FENE-P Fluid

In the absence of body forces and Newtonian extra-stresses, the mass, momentum and
constitutive equations of a FENE-P fluid are written as follows :

v 1—irA/L?
A+ M1 —trA/L? - 0
AL —trA/LY) A 1—3/17 ’
nv 1 1 Do
Yy [ ——— A | -Vp—p— =0 17
A (1—trA/L2 1—3/L2) P= P ! (17
V-v = 0.

The weak formulation of equations (17) may be written in the generic formulation (14)



with the set of unknowns X defined as (A, v, p).

o~

VY. Xy [m —rAJL2) (B, +v- V) X,

M1 —trA/L?) ((VXz)T A+ A-VX,) )]

% v v
X, |— V.-X;— V(I:X;)-A
A l M —tan Y X T g s wayre Y XY
(18)
Fp(0+0 V) X+ VX
+X, V- X,
_ 2
_ X, AL,
1—-3/L2
where )/(\1 and X are symmetric.
Therefore, the characteristic directions ex = (€, €y, €., €;) can be obtained by the

degeneration condition (15). Hence, X7 = 0.X; must be substitued for X; and e; for Jj
when applying the definition of the bilinear form F.

3X; such that
VX X [A(1—trA/L2) SX

A1 —trA/1?) ((X; A-ete AX) )]

X, |- X
A l NI — AL ¢

NL2(1 — trA/L2)?

e-AI:X?

1pb X+ eX;
+Xse-X5=0
where the symbols e and ¢ are defined by :
e = (e ey€.),
(20)
¢ = v-e+e¢
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Finally, after some manipulations on condition (19), one finds :

EI)?Z' such that

X X' M1 —trA/LY) 60X, — v X
v i 1 l( rA/L%) X, A1 —trA/L?) 2 €

nv o~
- CA-X, 1
N1 — trA/ 122 © ? ]

+ X3 - [Pﬁbiz—l-e)?:a
(1= trA/L2) ((Xl Aete - A-X)) )]
— Xz [e-)?z] =0

This degeneration condition states that (e,e;) is a characteristic direction if the form
vanishes for some ()?1, )A(Q,)?g) and for all X7, X3 and X3. Then, it is easy to develop
a complete discussion of the characteristic hypercone sheets. Fig.2 illustrates the results
for the 2-dimensional case.

e Incompressibility sheet
If e = 0 and e; # 0, non trivial solutions with )?1 = 0 and )?2 = 0 proves the
existence of incompressibility waves. The characteristic sheet is a whole t = constant
hyperplane.

e Pathlines sheet
If ¢ = 0 and e # 0, non trivial solutions with X5 = 0 may be found. The
characteristic is well known and reduces to a space-time pathline direction.

e Shear waves sheet
Suppose now that ¢ # 0 and e # 0. Degeneration of the form F occurs only if the
symmetric tensorial factor of X7, the vectorial factor of X7 and the scalar vector of



X vanish simultaneously in condition (21). This leads to the following equations :

M1 —trA/L?) X1 — i X
(=t A/L5) o X0 = S Ay e

NL2(1— trA/L2)?

e-A-X,I=0

Pﬁbiz + 6)?3

(22)
A1 = trA/L2) (()?1-,4-6+6-A-)?1)) ~0
e - XQ =0
Neglecting the trivial case A = 0, one obtains from equation (22.1) :
X, = X
VT NG(1 — trA/Lre T
nv = (23)
A X T
TN — A2 © 2
Multiplying (22.2) by e and taking advantage of (23), (22.3), we also write :
Xs =
° (A¢(1 —trA/L?)
(24)

+ 2
L1 — trAJ L2

e-A-e —
)2 c e )G'A'XQ

Finally, equation (22.2) is satisfied if the products by the vectors X, and e x X,
respectively are zero. It is clear that a vanishing X, cannot be considered. The
second product yields an identity, and the first one gives the following condition

R(e,9,A)=0:
nv
A
ML —trajr2) © 0 C
2nv 2 (25)
A A-e— -0
O —waAje € e ro
R(e, ¢, A)

3.1 Evolution Condition for a FENE-P Fluid

First, let us define the tensor :

nv 2nv
T, = A A-A
4 NI —trA/2) TN — A/ T2 (26)
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Note that as the ratio L goes to infinity, the FENE-P fluid is only an Maxwell fluid
and one obtains the following expression of this stress tensor :

nv nv
T)="—A=T —
A 3 v-l-)\

It is exactly the same expression than the stress tensor defined by Dupret and Marchal [1].
If the positive-definiteness of the tensor T 4 is lost, the problem becomes non evolutionary.
The expression (26) is also valid for the flow of a Chilcott Rallison fluid.

3.2 Change of Type for a FENE-P Fluid

On one hand, let us define the tensor :

TB = TA—,O’U’U (27)

On the other hand, let us consider the steady flow of a FENE-P fluid. The problem
is neither purely elliptic neither purely hyperbolic. However, the hyperbolic character of
the flow sometimes increases in the sense that it contains additional characteristics other
than the streamlines. This happens in the supercritical case. One observes what has been
called a change of type by Joseph and al. [2]

In order to find a condition for this change of type, we have to consider the solutions
(e, e;) of (25) with a vanishing component e;. From equations (26) and (25), this leads to
the following equation for e :

e Tp-e=0 (28)

One can consider both following cases :

e Subcritical case
T g is positive definite, and equation (28) does not have any solutions. The waves
are propagating in all directions.

e Supercritical case
T'p is is not positive definite, and equation (28) has suitable solutions in the hy-
percone defined by e. Let us note that this supercritical case will happen only for
fairly non vanishing Reynolds numbers.

4 Numerical Results

Let us now consider the numerical simulation of the flow of aqueous solutions of poly-
acrylamide in contraction and expansion geometries.
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Changes of type described in the previous section can only occur when the fluid is able
to exhibit an instantaneous elastic response. However, in order to fit the rheometrical data
of the fluid, it is useful to add a small viscous component. Such a Newtonian component
also helps the iterative convergence of the numerical calculations. When the retardation
time A* is small, one may consider that the model with the small viscous component
is a singular pertubation and that the validity of the theory is directly related to the
magnitude of such a retardation time.

The calculation of the viscoelastic flow is based on the Galerkin formulation of the
mixed finite element developed by Marchal and Crochet [3]. Quadrilateral elements are
used with linear, quadratic and 4 x 4 linear sub-elements respectively for the pressure,
the velocity and the configuration tensor. Converged results are obtained for relatively
small values of L. However, when L? tends to infinity, we have to introduce streamline-
upwind technique(SU) for the constitutive equation. Such a technique introduces artificial
diffusivity along streamlines. For details about the sensitivity analysis of the numerical
parameters of the 4 x 4 SU method, the reader is referred to [11].

The flow is characterized by two dimensionless parameters:

A
Wee Y e PVL
nv + 1N

7 (29)

where V is the mean velocity in the narrow channel of height L (or radius, in the axisym-
metric case) .

4.1 Planar Four to One Contraction Flows

We first present the planar four-to-one contraction flows. We consider the steady isother-
mal motion of an incompressible fluid characterized by the FENE-P model. In fact, we are
considering the simulation of flows of a 0.25% polyacrylamide aqueous solution described
in Purnode and Crochet [4], based on experimental results of Evans and Walters [5] . The
material parameters of the FENE-P model are the following :

L* = 6

nn = .005Pas
nv = .065Pas
A = 0.6s

A* = 0.043s

We impose no-slip conditions on the wall, vanishing normal velocity at the plane of
symmetry and a fully developed velocity profiles in both entry and exit sections. The
configuration tensor is also imposed in the entry section. The lengths of the mesh before
and after the contraction are respectively equal to 20 times and 40 times the downstream
slit width. A close-up view of the mesh used is shown in Fig.3.
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Fig. 4a shows the most significant vortex enhancement features, for increasing values
of the Reynolds and Weissenberg numbers. In particular, a lip vortex is created; it then
envelops the salient corner vortex, grows in size before being strongly reduced to small
remnants. It is interesting to observe that, for high values of We and Re, the streamlines
remain unperturbed in the upstream slit, unless close to the contraction plane. It is shown
in [4] that this lip vortex enhancement is not a numerical artefact.

In Fig. 4b, the shaded areas correspond to the regions where the tensor T'g loses
his positive-definiteness property. In other words, the increase of both We and Re cor-
responds to an upstream extent of the hyperbolic region: the fluid seems to ignore the
discontinuity of the boundary condition at the corner and behaves like in a fully devel-
oped flow. Correlation between the change of the type and the lip-vortex mechanism is
demonstrated by the comparison of the streamlines of Fig. 4a and the shaded areas of
Fig. 4b. In Fig. 5, we also superpose the contourlines of the vorticity to the hyperbolic
area. In this closeup view, it is noted that the dark areas seem to correspond to the
regions of the hyperbolicity of the vorticity equation. At We = 4.6 and Re = 1.07, the
influence of the vorticity generated at the re-entrant corner extends far upstream. How-
ever, for We = 27.34 and Re = 6.37, this influence is not reaching as far, so that the
signal announcing the contraction is not transmitted far upstream.

In this problem, all results presented have Re and We numbers proportional to each
other and, hence one should see a way of telling what is related to change of type and
what is simply an elastic effect. In order to clarify the point, we take advantage of a
suggestion of a referee, and we compare in Fig.6 the result of the numerical simulation
with and without inertia. We conclude that inertia and change of type may be responsible
for the lip vortex enhancement mechanism.

In order to illustrate the influence of the model, we show in Fig. 7 the most signifi-
cant features of the flow when L? is varied. The streamlines and the hyperbolic regions
are shown at We = 5.83 and Re = 1.36 for L? equalling respectively 6, 100 and oo.
Streamline-upwinding is introduced only for the calculations with L? = 100 and L? = co.
It is noted that a large value of L* (which is equivalent to an Oldroyd-B fluid) leads both
to the upstream increase of the hyperbolic area and to the size reduction of the vortex.
This is in line with the expectations and results of Song and Yoo [12] for a UCM fluid
using a finite difference technique.

4.2 'Tree-Like Jet Flow

In Fig. 8, a polyacrylamide solution flows from a 1mm circular hole into a large reser-
voir containing the same shear-thinning-elastic liquid. At low flow rates the jet exhibits
Newtonian-like fluid behaviour, i.e. just after the expansion plane, the flow is everywhere
directed outwards. At higher rates a tree-like flow is observed. The cross-section of the
jet does not increase with the distance to the opening until the jet bursts in such a way
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that the streamlines are separating like the branches of a tree [6]. Therefore, this flow
type is called the tree-like jet flow.

We show here numerically that this effect is associated with a change of type of the set of
governing equations. The calculations are performed in a 1:140 axisymmetric expansion,
this large ratio being a good approximation of a narrow die discharging in a large reservoir.
Length of the mesh before and after the expansion are respectively equal to 50 times and
200 times the narrow channel radius. Boundary conditions are no-slip conditions on
the wall, vanishing normal velocity on the symmetry axis and a fully developed velocity
profiles in both entry and exit sections. Let us recall here that the constitutive equation
is integrated by means of the Galerkin method. A closeup view of the mesh is plotted in
Fig. 9. We consider here the same fluid data as in the planar contraction case.

In Figs. 10a and 10b, the streamlines and the hyperbolic areas are respectively shown
for increasing values of the We and Re. Let us note that, at high values of the dimen-
sionless parameters, the streamlines close to the symmetry axis are not affected by the
expansion; this corresponds to a downstream extent of the hyperbolic region.

We also superpose the isovorticity lines and the shaded area in some closeup views in
Fig. 11. At We = 1.73 and Re = 1.03, the vorticity generated at the corner propagates
upstream in such a way that the fully developed vorticity profile is perturbed at about
3 radii from the expansion plane. However, at We = 8.52 and Re = 5.09, the vorticity
which is created at the corner, cannot easily propagate its influence in the upstream
central region. This is the case of a supercritical flow, where a fluid particle approaching
the expansion corner travels with the same vorticity as it had from far upstream as if it
did not realize that there is an expansion ahead . It explains the occurence of the bounded
jet where its velocity is larger than the speed of the vorticity waves into rest.

In order to illustrate the coupling between inertia an elasticity, we show in Fig.12 the
streamlines obtained respectively for the elastic fluid without inertia, the inelastic fluid
with inertia and the coupled problem. On one hand, the purely viscoelastic problem
without inertia and the same value of the Weissenberg number exhibits a purely elliptic
propagation of vorticity. On the other hand, the transport in the inelastic solution is
important, but the tree-like flow is not observed. It is quite interesting to note that the
tree-like flow is only obtained by the change of type due to the coupling of both inertia
and elasticity,

5 Conclusion

A quasi-linear analysis for a FENE-P model has been performed. It appears that a suitable
definition of the tensors T4 and Tg allows us to define practical conditions respectively
for the loss of evolution and the change of type of the FENE-P model.
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We also demonstrate that the numerical simulation is able to reproduce theoretical re-
sults of the change of type. Moreover, our numerical results show that typical viscoelastic
features can be associated with the change of type of the governing system of equations.
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Appendix

We here present the tensorial conditions, expressed in the notation of Bird et al. [7]

nv 1
Ty = (14 3/b) (mB - I) :

B+ A(1—trB/b) B= (1 — trB/b)I.

where

ny is the zero-shear viscosity

B = H < RR > /kT is a non-dimensional configuration tensor,

b= HR:/kT is a measure of the extensibility of the dumbbell,

Ry is the maximum allowable length in the Warner law,

T is the temperature,

e k is the Boltzmann constant.

The tensor T4 is then defined as:

nv(l+3/b) 5 2w +3/b)

A1 —trB/b) " Xb(1 — trB/b)QB B

T, =
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Fig. 3. 4:1 planar contraction: close-up of the finite element mesh
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We=4.6 We=15.61 We=18.06 We=27.34
Re=1.07 Re=3.63 Re=4.21 Re=6.37

Fig. 4. 4:1 planar contraction of a 0.25% polyacrylamide aqueous solution : a) Streamlines
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We=4.6 We=15.61 We=18.06 We=27.34
Re=1.07 Re=3.63 Re=4.21 Re=6.37

Fig. 4. 4:1 planar contraction of a 0.25% polyacrylamide aqueous solution : b) Hyperbolic

flow regions in shaded area
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We=4.6 We=27.34
Re=1.07 Re=6.37

Fig. 5. Comparison of vorticity contourlines and hyperbolic regions
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Fig. 6. 4:1 planar contractio
he left and without i

X

We=1.98
Re=0.46

Re=1.0

¢

We=27.34
Re=6.37
n of a

;

0.25% polyacrylamide aqueous solution with inertia
ia eff




2= 6 L*= 100 L= infinity

We=5.83
Re=1.36

Fig. 7. Effect of L? on the flow characteristics: a) Streamlines
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2= 6 L*= 100 L= infinity

We=5.83
Re=1.36

Fig. 7. Effect of L? on the flow characteristics: b) Hyperbolic regions in shaded area
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Fig. 8. Tree-like jet flow (reprinted from H. Giesekus|6])
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Fig. 9. Finite element mesh used in the simulation of the tree-like jet flow: close-up near
the expansion
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We=1.73 We=3.93 We=8.52
Re=1.03 Re=2.35 Re=5.09

Fig. 10. Expansion flow of a 0.25% polyacrylamide aqueous solution : a) Streamlines
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We=1.73 We=3.93 We=8.52
Re=1.03 Re=2.35 Re=5.09

Fig. 10. Expansion flow of a 0.25% polyacrylamide aqueous solution : b) Hyperbolic
region in shaded area
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We=1.73 We=8.52
Re=1.03 Re=5.09

Fig. 11. Expansion flow of a 0.25% polyacrylamide aqueous solution : Comparison of
vorticity contourlines and hyperbolic regions
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We=8.52 We=0 We=8.52
Re=0 Re=5.09 Re=5.09

Fig. 12. Expansion flow of a 0.25% polyacrylamide aqueous solution : Comparison be-
tween viscoelastic flow without inertia, inelastic flow with inertia and inertial viscoelastic
flow
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