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Abstract

Accuracy and stability remain key issues in viscoelastic flow sim-
ulation. Classical low-order finite element techniques fail to converge
when the elasticity of the fluid is increased. In this paper, an adap-
tive hp-finite element method is used to solve differential viscoelastic
flow problems. An a posteriori error estimator, based on some re-
cent rigorous results of Oden and Wu for the Navier-Stokes equations
([1]) is also used. Starting from an initial mesh, local refinements (k-
adaptivity) or enrichments (p-adaptivity) are applied in the spirit of
the strategy proposed in [2]. The approximation error is reduced to
a given level of accuracy with a minimal set of additional degrees of
freedom. Numerical results on two 2D model problems illustrate both
the validity of the error estimator presented and the efficiency of the
adaptive procedure.

1 Introduction

Accurate and stable numerical methods are particularly important in vis-
coelastic flow simulation. Most of the techniques used in the literature are
based upon a coupled stress-velocity-pressure formulation, leading to a mixed
hyperbolic-elliptic set of equations. A characteristic number for this type of
problem is the non dimensional Deborah number (De), which measures the
elasticity of the fluid. Viscoelastic flow problems at high values of De has
worked out to be extremely difficult to solve, keeping numerical simulations



far away from realistic problems. One of the major reasons are the inaccu-
racies developed by the numerical methods ([3]).

More and more attention has therefore been devoted to spectral ([4], [5],
[6]) and high order methods ([7]). For smooth problems, those methods
exhibit an exponential rate of convergence and an improved robustness.

In order to extend these properties to problems exhibiting singularities,
we use an adaptive hp-finite element method. Local hA-refinements and p-
enrichments are particularly attractive in problems where complex geometries
and singularities are involved. Hierarchical shape functions and 1-irregular
meshes are introduced to allow local mesh adaptivity ([8]). The element
size h and the order of approximation p are adjusted at the elemental level
by different adaptive strategies, based on a priori and a posteriori error
estimates. We obtain very high rates of convergence of the approximation
error, even in the presence of singularities, so that the computer time required
to achieve a target error can significantly be reduced. When the viscoelastic
solver is imbedded in a continuation scheme, further savings in CPU time
are obtained by careful adaptivity of the finite element mesh at intermediate
steps of the evolution.

In Section 2, governing equations for viscoelastic flow simulation are de-
tailed. The mathematical properties of the constitutive equations are re-
viewed and a weak formulation of the problem is given. The spatial discretiza-
tion is briefly described in Section 3, leading to an hp discrete problem. The
error estimating post-processor is described in Section 4 and a mesh adapting
procedure is presented. Numerical experiments are performed on two model
problems : the flow around a sphere falling in a cylinder and the flow through
an abrupt 4:1 axisymmetric contraction. Lots of data are available for both
problems, which have been extensively solved as benchmark problems in the
viscoelastic flow community. Although no general conclusions can be drawn
yet, the results presented in Section 5 give good indications of how the ge-
ometry and the fluid model affect the efficiency of the adaptive strategies.
Comparisons are made for each problem with classical finite element results,
taken from the literature.



2 The Viscoelastic Problem

We consider the steady flow of a viscoelastic fluid in an open bounded Lip-
schitz domain 2 € R". the governing partial differential are the mass and
momentum conservation laws, coupled with constitutive equations charac-
terizing the viscoelastic fluid.

The conservation laws can be written as follow :

IR )
V.u = 0

where u is the velocity field, f the body force and o the Cauchy stress tensor.
We neglect the effects of inertia in the flow.

Many constitutive equations have been proposed to model the behavior
of viscoelastic fluids. An important class of model constitutive equations can
be written in the form

o = tn+T1v—pl (2)

where p is the pressure, 7y is the Newtonian part of the stress tensor and
Ty the viscoelastic extra-stress tensor. In particular, we consider a family
of differential viscoelastic models ([9]), with the following constitutive equa-
tions.

™ = QUND(U) } (3)
v+ Atr(rv) Fv = 2y D(u)
where the strain rate tensor D(u) is defined as

D(u) = (Vu+V¥iu)/2 (4)

A is the relaxation time of the fluid, ny and ny are kinematic viscosities
associated respectively with 7 and 7y. The symbol 7 denotes the upper
convected derivative. For a steady flow, we have

Y’:(’UJ'V)T—VUT-T—T-V’UJ (5)
When A is a constant, we obtain the classical Oldroyd-B model.
™ = 2nyD(u)
Tv + A 1V'V = 2nyD(u) }



Another interesting model of the family (3) is the Modified Upper Convected
Maxwell (MUCM) model ([10, 11]). The associated relaxation time X is given
by
Ao
. (”(TV)E()\O"YO))Q_I (7)
nvo
where 7¢ is a given characteristic shear rate inside ). The constants g,
and the function F' are given parameters of the model. Generally, they are
chosen in order to fit the MUCM model to experimental data.
The well-posedness of the finite element problem is guaranteed, as the

Atr(Ty)) =

stress tensor Ty remains square integrable. If F' is kept fixed at a non
zero value, A goes to zero in region of high stresses, leading to a Newtonian
behavior of the fluid. This is why Apelian et al. [10] proposed such a model.
If F vanishes, we derive the classical Maxwell-B and Oldroyd-B models, which
may exhibit non integrable extra-stresses.

This set of equations (1)(2)(3) is completed by appropriate boundary
conditions [12].

e The mixed type (elliptic-hyperbolic) of the constitutive equations im-
plies that some components of the stresses should be imposed at the
inflow section. In fact, we consider that the flow is fully developed and
we impose

TV = 1A'V on aﬂjnﬂow (8)

e Classical Dirichlet or Neumann boundary conditions on each velocity
component are required by the momentum equations. We impose pure
Dirichlet conditions at inflow and outflow sections and along rigid walls,
ie.

u=1u ondip (9)

and Robin conditions along axis of symmetry,

un = 0
on—nonn = 0 ondQgr

(10)

where @ is a prescribed velocity and n is the outward unit normal
vector to the boundary.



The characteristic number for this type of flow is the Deborah number
which compares a characteristic time of the fluid with a characteristic time
of the experiment. Here, we have

De = )\0")/0

The weak formulation of the viscoelastic problem can be written as follow

Given body forces f € V*
find (tv, w, p) € S xV xQ such that
[(rves4ar(r) Fvos)de = [ 2y D(u)- sds
o Q
J(etrv up): D)~ fv)de = 0
Q

/qV-ud:z; = 0
Q
VseS VveV, Vge Q.

where S ={ry € (HI(Q) "y = Fyon O 1 f1ow §
V ={ue (HI(Q))nu = wondQp,u-n = 0on g}

Q ={pe L*(Q): | pde =0}

(11)

n and m are the number of components of the velocity vector and the extra-
stress tensor, respectively.

3 Spatial Discretization of the Problem

We describe first the discretization of a scalar variable u. We recall here the
basic features of the hp-finite element method. For a full description, the
reader is referred to [8, 13, 14].



3.1 The hp-finite element approximation space

The domain 2 is decomposed into N non overlapping subdomains Qg , so that
each Qi is the image of a master element 0= [—1,1]" under an invertible
map Fxk.

For the one-dimensional case, the approximate solution is built using the
following shape functions.

e At the vertex node 7, we use the standard linear shape functions

. 1 .

WO = L0k =12 (12)
o At the center of the element, we use

Ge) = \/2]'2_1/_51 Po(t)dt j=2 ..p (13)

where P;_; is the Legendre polynomial of degree 7 — 1.

It is straightforward to obtain two and three dimensional shape functions
with tensor product extensions of the one-dimensional case.

With this polynomial basis, the approximation inside an element can no
more be determined by a single integer p. In the two-dimensional case, a set
of 6 integers is needed. This set is defined as

PK = {pK,h ---pK,6}
with
PK = min 1PK.}

PKEPK

The distribution of these sets over the whole mesh will be noted
p = {px: K =1..N} (14)

In the same way, we define the distribution of the maximal diagonal lengths
hr inside each element Qg

h = {hg: K =1..N} (15)



The local hp approximation space for a scalar variable u over element €y
can be defined as

M = {u = u(z) = 4o F', &€ M(Q,pr)} (16)

where Z\?(Q,ﬁk’) is the space spanned by the basis of n-dimensional shape
functions described above, with a given set of exponent px.

The global hp approximation space built under the classical continuity
assumptions as in [8] is written as

S(hyp, Q) = {u = u(z) € C%Q) : up = ulg, € My*} (17)
Inside element Qp, the following interpolation property holds (see [8])

hmin(pK—I—l—s ,r—5)
hp K

<
R ' s

K

Hu—ﬂ

el (18)

where u € H"(),r > s and @/? is an appropriate approximation of u inside
S(h,p,Q), The symbol || ||s,a, denotes the usual Sobolev norm.

3.2 The hp discrete problem

We present now the approximation spaces associated with the full viscoelastic
problem (11). Our mixed formulation involves different fields and we plan to
be able to use different Ap-interpolations for each of them. In particular, it
means that we define hg, hyv, hg and pg, pv, pg for the h- and p-distributions
of each field. By notational convenience, h and p will denote the full set (hs,
hv, hg) and (ps, pv, pg) respectively.

We select a finite dimensional subspace T'(h, p, ) of SxV xQ and rewrite



the discrete form of the weak problem using the classical Galerkin’s method.

Gliven body forces f € V*,
find (T3, ", p) € T(h,p,Q) such that

v
/(T}‘L/p s+ ATV s)de = / 2ny D(u"?) - sdx
Q Q

[ (atrir.u ) D)~ £ v )de = 0
/qV-uhpd:L' = 0
Q
Vi(s,v,q)€T(hp Q)

where T(h,p,Q) = {(T}‘L/p, u Py T}xl/p € (S(hs,ps, )" N
hp S ( (hV7PV7 ))n
hpES(hQaanﬂ)ﬂQ t

(19)

The exponents sets distributions associated with each variable cannot be
chosen independently. Let us just mention that the Ladyzhenskaya-Brezzi-
Babuska (LBB) condition imposes pg to be constrained with respect to py
for the Stokes problem.

The numerical simulation of viscoelastic flows has always been suffering
from the difficulty of reaching high Deborah numbers. This is certainly re-
lated both to the choice of the approximation spaces and to the selection of
the mixed formulation. Such topic has been discussed in a large number of
recent papers in the literature ([5, 15]). We just want to mention that the
general hp-finite element discretization presented here allow us to modify sep-
arately and locally the distributions pg, pv, pg and hg, hy, hg. We will keep
the velocity and extra-stress distributions close to each other in non-critical
regions and enrich or refine the extra-stresses only where needed.



4 Error Estimator and Adaptive Strategy

In this section, we describe a numerical procedure to obtain reliable and
realistic upper bounds to the approximation error. Our estimation technique
is based upon some recent rigorous results for elliptic problems ([16, 17],
for the Stokes ([18]) and the Navier-Stokes ([1]) equations. The adaptive
strategies are some generalized versions of the procedure given in [2] and
exploited in [14].

First, let us define the true approximation errors :

T Thp
u?r’r — oy — uhp
error  __ hp
p = p=r,

and the following norms:

sl = Z/Q

K=1

ol = Z 2nnD(v): D(v)dz,

K=1"78x

qly, = Z

K=1 QI\

The error will be estimated in an energy-like norm defined on S x V' x ) by:
(s, 0. )II* = Is[5 + [v]§, + lalg,. (20)

4.1 A postertori error estimation

As in all element residual methods, a local error estimator for the approxima-
tion error is given by the peculiar norm of the solution of a boundary-value
problem built at the elemental level. No rigorous results have been obtained
so far for the viscoelastic problem, but we assume that we can extend the



local set of equations used in [18] for the Stokes problem to the following one:

Gliven (T% , u?‘p, pB) solution of the discrete problem (19),
ﬁnd (T;Stv u;ftv p;ft) S SK X ‘/K X QI( SUCh that

/ ot spede =
Qk

hp
h v
fQI( (TIX? “SK —I_ )\ TIX” 'SI()d:E

N 277vD(u%7)'SKdl'

A 2oy D (u5): D(vg)dx =
K

fQK —OK (T?x 7’u’?\p7plx ) . D(IUK)dx
hp hp

+ faQK <nK : UeSt(TA y UK PK )> - vgds
+ Jo froxde

/ peSt gk dv = . qx V - u%) dx
K

\V/ SK - S](, \V/ VK - ‘/](, \V/ qK - Q[{, 1 S [( S Nh.

(21)
where <nK-0'65t(T?‘p, u?‘p, piL)) is a flux term appearing in the local problem,
as the continuity constraints have been relaxed at the interelement bound-
aries. The spaces Sk, Vi and ()i are the restrictions of S, V and () to the
element Q.

We approximate (75, w5, p%¥') with a polynomial expansion of higher
degree than the expansion used for (T?(, u?‘p, pip)
The local error estimators are exploited in order to obtain the global error

indicator 0; for a given mesh P

Oix = |||(T§ft, ui', pR| [ (22)
022 = Z 02 K (23)
K=1

10



where ||| |||x is the energy-like norm for Q.

The reliability and efficiency of the estimation procedure described above
cannot be guaranteed by a mathematical proof. However, numerical exam-
ples will show the excellent agreement of our error estimator with some other
error measurements.

4.2 A priori error estimation

Considering the interpolation property (18), we suppose that a local a priori
estimator of the approximation error for each field is available :

U5
error error error 2 < hIX’{”\ A2 24
(T, w7 p™ ™[5 < =57 Ak (24)

K

where Ak, pg and vk are local unknown constants and have to be estimated.

To generalize this expression to the viscoelastic problem, we have to define
correct values for hx and pg. As a well-known observation in all viscoelastic
flows ([3]), we expect the extra-stresses to be mainly affected by errors. Such
inaccuracies are due to the convective term in the constitutive equations (3),
the stress concentration near geometrical singularities and the appearance
of very thin stress boundary layers due to the presence of normal stresses.
A natural choice is therefore to take px = psx as the reference order of
approximation and hx = hgx as the reference mesh size inside element
Q. Numerical results presented in [19] clearly illustrate the validity of this
assumption.

4.3 Adaptive strategy

Practically, we set px and vg to given p and v (constant over the whole
domain ). The error estimator (23) is computed on uniformly h-refined
or p-enriched meshes, so that p and v can be obtained easily from linear
regression of the error curve in a log-log scale. More sophisticated techniques
can be used to estimate ux and i at the elemental level, improving the
efficiency of the adaptive strategy as proposed in [20]. However, this is not
the purpose of the present paper. The Ak are estimated by means of the a
posteriori error estimates 0; .

Starting with an initial set of meshes Py, let us choose 89" as preset level
of accuracy. We assume that we have computed the solutions of problems

11



(19) and (21) and that the actual local error estimators 6, i are available.
If we apply pure h-refinements to build the new meshes P;?', the reference
mesh size hg% inside each element of P;*' has to satisfy

hs i 0:x)*]
SK - _ Pv@f(’f)] . (25)

hdk (0701)”
In this paper, the same mesh size distribution is taken for all variables, so

that
tgt tgt tgt
th',K = hé,f( = th,K- (26)

The corresponding pure p-refinements are obtained directly from the fol-
lowing expression.

tgt 07 A
¢ 0:x)° |
Ps i _ [N( s ) ] '

PS,K (fat)? (27)

The rule chosen to select the p-distribution for pressure and velocities is
related to both the aforementioned LBB condition and numerical experiments
presented in [19]. We have

tgt tgt tgt tgt
pxg,K = pSg,K —1 and Pé,f( = px}q;]( - B, (28)

where (3 is equal to 1 or 2, respectively for pi}‘]’l}( =2or pi}’fK > 2.

For the Stokes problem, it has been demonstrated ([21, 22]) that this
particular choice is simultaneously stable with respect to the mesh size h
and to the polynomial degree p. Stenberg and Suri recently proposed several
stable families of mixed finite elements for the Stokes problem. Some of
these should be more suitable than (28) in the framework of uniform p-
distributions. As we are using local p-enrichments in our approximations, no
immediate generalizations are available. We choose therefore the suboptimal
family (28) to ensure the stability of the mixed finite element method.

Several numerical experiments have shown that abrupt increase of the
order of approximation between two neighboring elements can be detrimental
for the accuracy of the solution. We will prevent these jumps in the p-
distribution by adding extra-elements to the list given by Equation (27).

12



5 Numerical Results

To illustrate our adaptive procedure, we consider the steady motion of an
isothermal, incompressible viscoelastic fluid in two model problems: the flow
around a sphere falling in a cylinder and the flow through an axisymmetric
contraction. The results reported are obtained by a full Newton-Raphson
scheme, coupled with a suitable continuation technique.

5.1 Sphere problem

We consider the flow around a sphere falling in a cylinder at a constant
velocity V. The geometry of the problem and the boundary conditions are
given in Figure 1. The radius of the sphere is half the radius of the cylinder
and our calculation domain extends from —15R to 30R, with the sphere
centered at the origin. The geometrical parameters are such that 49 = V/R =
4/3.

The drag correction factor I' is defined by the ratio between the drag
exerted on the sphere and the drag D exerted by a creeping Newtonian flow
on an identical sphere in an infinite space. We have

D D
_ Db | (29)
DO 6m(ny +nv)VR

Debae et al. [15] give reference values for I' at increasing De for a Maxwell-
B fluid. We check the accuracy of the error estimation procedure by the com-
parison of the drag correction factor computed by the hp-adaptive method
with the reference. This drag based erroris presented on Figure 2 with the
a posteriori estimated error for three different Ap-meshes. The fluid is de-
scribed by the constitutive equations (3)(7) with F' =0, A\g = 0.3, ny = 0
and ny = 1, corresponding to a Maxwell-B model. It can be pointed out that
the error estimator provides a similar evolution with mesh enrichments as the
drag based error. Closeup views of the meshes produced by the automatic
adaptation procedure are presented on Figure 2, with the corresponding error
distributions. Their number of degrees of freedom are given in Table 1. The
error index, obtained by dividing the error indicator by the current norm of
the solution, is also presented in Table 1, with mass and momentum balances
and the computed drag correction factor. In this case, it appears to be not
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optimal to apply h-refinements, as local p-enrichments lead to higher rates
of convergence.

The same procedure is applied with a MUCM fluid, characterized by
F #0, Ao =045, ny = 0 and ny = 1. The results are presented on Figure
3. From the numerical values given in Table 2, we see that both mass and
momentum balances decrease with the error index.

Finally, we compare the drag correction factors obtained at increasing De
with several low- and high-order finite element methods for a Maxwell-B fluid.
These results are reported on Figure 4. With a classical low-order method
(taken from [15]), numerical inaccuracies developed during the calculations
prevent the continuation scheme to reach De numbers larger than 0.8. The
stresses are interpolated with 4 x 4 linear subelements, while velocities and
pressure are, respectively, biquadratic and bilinear. A very fine mesh is
used with 510 elements and 38644 degrees of freedom. A p-finite element
method with 3 times less degrees of freedom, allow us to reach the same
De number. The order of approximation for stresses, velocities and pressure
are set, respectively, to 6,5 and 3 throughout the mesh. Using a purely p-
adaptive finite element method, local enrichments of the stress field up to
order 7 bring the critical De number to 0.975. Only 3% extra degrees of
freedom were needed for this computation, if compared with the p-method.
The mesh used for extra-stress interpolation in the p-adaptive method is
plotted in Figure 5 with the 4 x 4 h-finite element mesh.

5.2 Axisymmetric contraction problem

The second problem considered is the steady motion of a viscoelastic fluid
through an abrupt 4:1 contraction. The geometry and boundary conditions
are given in Figure 6. At the inflow, we impose v = © and 7y = Ty,
assuming that these fields are fully developed. We suppose that the fluid
sticks to the wall. Only velocities are imposed at the exit section, which is
taken long enough to insure a fully developed profile. This profile is chosen
to achieve global mass conservation in ). The lengths of the entry and exit
sections are equal to 20 downstream radii. The characteristic shear rate
evaluated at the wall of the exit section is 79 = 1.

The Couette correction is the nondimensional pressure loss due to the

14



contraction and is defined as follows :

op—VpuLu —Vpplp

27w

C =

, (30)

where Vpyr and Vpp are the upstream and downstream fully developed pres-
sure gradients and 7, is the fully developed wall shear stress at the outflow.
The global pressure difference between the entry and the exit section is de-
noted by dp.

Starting with an initial mesh containing 35 elements and 1129 degrees
of freedom, we compute Couette correction values at increasing De, in the
particular case of a Maxwell-B fluid (F = 0, ny = 0, ny = 1). Mixed h-
and p-refinements are applied at De = (0 and De = 1.4. Using reference re-
sults from [15] for the Couette correction, we calculate a Couette correction
based error. The difference between the computed Couette correction and
the reference result is scaled by a characteristic Couette correction of 0.2,
as classical relative values would suffer from numerical inaccuracies around
C' = 0. An estimated error index is obtained by dividing the error indicator
6 given by Equations (21)(23) by the current norm of the solution. Figure
7 exhibits a very good agreement between the error index and the Couette
correction based error. This shows that the global error estimation com-
puted is a reliable tool to monitor the accuracy of a given hp-finite element
discretization.

For this problem, the particular form of Equation (3) may lead to non-
integrable extra-stresses at the reentrant corner, for Maxwell-B and Oldroyd-
B models. We compare several adaptive strategies for an Oldroyd-B fluid
(F=0, =2 nv/(nn+nv) = 0.875) in order to analyze the behavior of the
solution with a singularity. The convergence curves of the estimated error are
plotted in Figure 8 for pure h-refinements, pure p-enrichments and a mixed
hp-adaptivity of the original mesh. As expected, with pure p-enrichments,
the error converges algebraically, at the same rate as the one obtained with
pure h-refinements. The Ap-mesh is built through a first pure h-refinement
step followed by pure p-enrichments, leading to a higher global convergence
rate of the method. The numerical results are summarized in Table 3, where
h stands for a pure h-refinement step and p for a pure p-enrichment step. For
each mesh, the number of degrees of freedom is given, with the error index

and the mass and momentum balances. In this case, 75 clearly dominates

u¥’ and p5¥' in (23), so that the mass and momentum balances do not exactly
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follow the error index evolution.

Now using a MUCM model (F # 0, Ao = 4, nv/(ny + nv) = 0.875),
Equation (7) leads to a Newtonian behavior of the fluid close to the singu-
larity. We present in Figure 9 the results obtained with the three adaptive
strategies described above. The influence of the model chosen on the conver-
gence rate of the methods is well observed on the convergence curves. The
stresses remain square integrable and pure p-enrichments give the highest
rate of convergence. The mass and momentum balances presented in Table
4 are found to follow the same evolution as the computed error index.

To evaluate the cost reduction due to our adaptive hp-interpolation, we
present in Table 5 the CPU time needed to obtain the flow of a MUCM
fluid ((F # 0, Ao = 2.8, nv/(ny + nv) = 1.0) through an axisymmetric
contraction. Starting from a Stokes flow (i.e De = 0), a suitable evolution
scheme is used to reach De = 2.8. A first solution is obtained on a coarse
mesh Py at De = 0.1. A new mesh P; is then built through A-refinements
and p-enrichments, as defined in Section 4. Using this improved mesh, we
compute the solution up to De = 1.6. The final mesh P; is generated at this
stage of the evolution and the flow at De = 2.8 can be calculated. As shown
in Table 5, the evolution needed to obtain the solution at the required De
number is therefore much faster than a complete evolution on mesh P,. It
can be noted that the cost of adaptivity is really negligible (less than 0.5%)
as compared to the time spent to solve the viscoelastic discrete problem.

Finally, we compare our results on this problem with those obtained in
[15] for a Maxwell-B fluid. Figure 10 shows the Couette correction computed
at increasing De. A very good agreement is found between the four meth-
ods. The hp-adaptive finite element method exhibits an improved robustness
when compared with MIX-1 (biquadratic interpolation for the stresses and
velocities, bilinear interpolation for the pressure), but the 4 x 4 sublinear
stress interpolation is still the most robust method for this problem. The
hypothesis (26) taken in the adaptive scheme to select hy and hg is clearly
responsible for this lack of robustness, and particular attention will be de-
voted in future works to this aspect of the mesh-adapting procedure.
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6 Concluding Remarks

A general adaptive hp-finite element is used to solve viscoelastic flow prob-
lems in complex geometries. As in classical finite element approaches, a
local approximation is defined at the elemental level, using polynomial basis
functions. The global approximation spaces are defined so as to allow local
h-refinements and p-enrichments in the mesh.

The adaptive procedure is based upon both a prioriand a posteriori error
estimators. The actual error is approximated by a global error indicator,
obtained by solving an elementwise boundary-value problem. It will allow us
to better understand the behavior of several numerical methods frequently
used in viscoelastic flow simulation and to monitor their efficiency.

Experiments which illustrate the validity of the estimator have been per-
formed on the 4:1 contraction and on the sphere problem, taking respectively
the Couette correction and the drag correction factor as relevant parameters.
Lots of degrees of freedom are saved, taking advantage of the local character
of the refinements.

Numerical results obtained show how the domain geometry and the set
of constitutive equations affect the rate of convergence of the approxima-
tion error on both test problems. It allows us to select the best adaptive
strategy. Further investigations on other benchmark problems will however
be necessary to build a general mesh-adapting procedure for viscoelastic flow
problems. In the case of Maxwell-B and Oldroyd-B fluids, the proposed strat-
egy seems to be not so effective in the presence of singularities. Independent
h-refinements for extra-stresses and velocities will therefore be investigated
in future works for this kind of fluids.
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Adaptive step | D.O.F. | Error Mass | Momentum | Drag correction
performed index | balance balance factor
- 2002 | 0.2208 | 0.585 0.0869 5.5546
P 2351 ] 0.1678 | 0.587 0.0763 5.4926
p-p 2445 1 0.1317 | 0.567 0.0687 5.4198

Table 1: Sphere problem (Re=0), Maxwell-B fluid. Numerical results

Adaptive step | D.O.F. | Error Mass | Momentum
performed index | balance balance
- 3907 | 0.0950 | 0.9535 0.0496
P 4595 | 0.0652 | 0.3135 0.0001
p-p 5325 | 0.0515 | 0.2623 0.0001

Table 2: Sphere problem (Re=0), MUCM fluid. Numerical results

Adaptive step | D.O.F. | Error Mass | Momentum

performed index | balance balance

- 2289 | 0.1298 | 0.0770 0.1251

P 2437 1 0.0766 | 0.0653 0.0054

h 3787 1 0.0675 | 0.0426 0.0044

p-p 2717 ] 0.0560 | 0.0413 0.0028

h-p 4047 | 0.0462 | 0.0349 0.0038

h-h 5005 | 0.0440 | 0.0299 0.0034
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Table 3: Contraction problem (Re=0), Oldroyd-B fluid. Numerical results



Adaptive step | D.O.F. | Error Mass | Momentum

performed index | balance balance

- 2289 | 0.1069 | 0.1050 0.0147

h 2454 1 0.0779 | 0.0679 0.0130

h-h 2728 | 0.0720 | 0.0565 0.0087

P 2461 | 0.0652 | 0.0669 0.0130

p-p 2690 | 0.0598 | 0.0517 0.0072

h-p 2664 | 0.0529 | 0.0449 0.0146

Table 4: Contraction problem (Re=0), MUCM fluid. Numerical results

CPU for the solution CPU for the

(nr of iterations) | error estimation

Po (De =0.1) 1660 (5) 426
Py (De=0.1 = 1.6) 39378 (37) 1411
Py (De=1.6—2.8) 363347 (38) 1126
Total hp-adaptive method | 404385 2963
63.8% 0.5%

Py (De =0.1 — 2.8) 633586 (62) 1126
100% 0.2%

Table 5: Contraction problem (Re=0), MUCM fluid. CPU time
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Figure 1: Sphere problem : geometry and boundary conditions

Figure 2: Sphere problem (Re=0), Maxwell-B fluid. Closeup views of the
adaptive meshes and local error indicator distribution.
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Figure 3: Sphere problem (Re=0), MUCM fluid. Closeup views of the adap-

tive meshes and local error indicator distribution.

Figure 4: Sphere problem (Re=0), Maxwell-B fluid. Drag correction factor
vs De number.

Figure 5: Sphere problem. Extra-stress interpolation. Closeup view of clas-
sical 4x4 and p-adaptive finite element mesh.

Figure 6: Contraction problem : geometry and boundary conditions

Figure 7: Contraction problem (Re=0), Maxwell-B fluid. Couette correction
based error and Error index vs De.

Figure 8: Contraction problem (Re=0), Oldroyd-B fluid. Closeup views of
the adaptive meshes and global error indicator.

Figure 9: Sphere problem (Re=0), MUCM fluid. Closeup views of the adap-

tive meshes and global error indicator.

Figure 10: Contraction problem (Re=0), Maxwell-B fluid. Couette correc-
tion vs De number.
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