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Abstract

The present paper is devoted to the numerical study of an extensional rheometer
where a fluid sample is stretched between two plates. We use the FENE-CR model
in order to simulate a Boger fluid stretched in the device. The analysis shows that
the flow is not purely extensional, and that experimental data have to be analysed
with caution, in particular if the extensional viscosity is not very high. In general,
numerical simulations allow us to better understand experimental data.

1 Introduction

The measurement of extensional stresses is of critical importance to rheologists. For
example, it is now well established that contraction flows are, in many cases, strongly
influenced by extensional behaviour [1, 2]. The problem that arises then is to measure
extensional data and to interpret such experimental data. The principle of the extensional
rheometer is to try to expose the sample to a steady uniaxial extensional flow. Among
other difficulties, the fact that the flow only approximates the uniaxial extensional flow,
often prevents us to give a straightforward interpretation of the measurements. Of course,
this problem also occurs for other types of rheometrical experiments. Therefore, an anal-
ysis of the flow can help to improve the interpretation of the experimental data. This type
of analysis has already been made both by experimental observations and by numerical

simulations [3, 4, 5, 6, 7, 8, 9].

In this paper, we present the results of a study of the filament stretching device used
by Tirtaatmadja and Sridhar [10], Solomon and Muller [6] and McKinley and al. [7, 8, 9].
The device and the free-surface profile are schematically shown in Fig. 1. A constitutive
equation is selected, and we use the material parameters identified by McKinley on the



basis of steady shear data. The model is then used to simulate the flow in the filament
stretching rheometer and to compare numerical results with experimental observations.
Finally, we can analyse the flow in detail and derive the conditions for which the device
provides a flow close to uniaxial extension.

In section 2, we review the basic equations of a time-dependent free-surface viscoelastic
problem. In particular, we briefly describe the FENE-CR constitutive equations. This
constant shear-viscosity model appears to be a very efficient compromise between sim-
plicity and physical modelling. In other words, we use the FENE-CR equations not as
a molecular model but as a purely macroscopic one. In section 3, the numerical method
applied for the simulation of the stretching device is briefly described. Finally, in section
4, we analyse the results for both Newtonian and viscoelastic flows. We derive what are
the conditions to obtain an almost uniaxial extensional flow.

2 Basic Equations

2.1 The Viscoelastic Problem

Let us consider the flow of an incompressible fluid in a domain €. The partial differential
equations governing the conservation of mass and momentum are
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where v = v(x) is the velocity field, & = (:1;1,:1;2,:1;3)T is the coordinate field, f denotes
the body force per unit of volume, and o is the Cauchy stress tensor. The fluid density is
denoted by p and the operator D/Dt is the material derivative.

The Cauchy stress tensor o is expressed as follows
(2) g = —pI—I—r:[‘N—I-rI‘V7
where p is the pressure, and Ty and Ty are the purely viscous and viscoelastic components

of the stress tensor, respectively.

The viscous component Ty is given by
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where ny 1s the Newtonian viscosity and D is the strain rate tensor.



For the constitutive relationship of the viscoelastic component Ty, we chose FENE-
CR equations. In the FENE model introduced by Bird et al. [11], the polymer macro-
molecules are idealized as dumbbells suspended in a Newtonian solvent of viscosity ny. In
particular, the FENE model is characterized by the following non-linear spring law force

for the dumbbell
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where L is a measure of the extensibility of the dumbbell and R is the length of the
non-dimensionalized dumbbell end-to-end vector R. The full set of equations for the
FENE model includes a Fokker-Planck equation for the probability density function of
the dumbbells configuration at each point within the flow domain [11]. Introducing the
so-called Peterlin approximation, one can obtain a simplified set of partial differential
equations for the viscoelastic component defining the FENE-P model. The FENE-P
equations exhibit a shear-thinning viscosity and have good stability properties for the
numerical calculations. When (L? — o0), one recovers the Hookean model that leads
to the classical Oldroyd-B equations. By introducing some further phenomenological
modification, Chilcott M. D. and Rallison J. N. [12] obtained the FENE-CR model which
predicts a constant shear viscosity. Let us note that the steady extensional properties of
FENE-CR and FENE-P models are the same, but do not correspond to the true FENE
model, as demonstrated by Keunings [13]. However, this is not true for the transient
stress growth of the two models, that is different at large De, with the FENE-CR model
showing a small overshoot.

The FENE-CR model is defined by the following set of equations
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where A is the relaxation time, ny is the viscoelastic viscosity coefficient and A is the
non-dimensional configuration tensor < RR >, the configuration space average of the
dyadic product of the vector R. The symbol 7 in (5.a) stands for the upper-convected
derivative. Let us note that the last term of (5.b) is often incorporated into the pressure,
but it is introduced here in order to obtain a vanishing Ty for the fluid at rest.

Our mathematical viscoelastic problem consists of finding the velocities, the pressure
and the configuration tensor in the domain ) such that the conservation and constitu-
tive equations are satisfied under suitable boundary conditions for the velocities and the
configuration tensor.



2.2 The Free Surface Viscoelastic Problem

Let us assume that € is an unknown deforming domain. In particular, we assume that
part of the boundary, 0Qpgrgg, is a free surface.

If © is two-dimensional, the free surface can be characterized by a geometrical degree
of freedom h, which is a function of time and of the curvilinear coordinate of the initial
free surface. This function i can be viewed as the current displacement of the free surface
for a given position and at a given time along the normal of the initial surface. To be
more precise, the direction of displacement may be arbitrary as long as the displacement
does not become tangent to the free surface. Here, we decide to define i as the normal
displacement to the initial surface.

In order to obtain a well posed problem, it is well known that we have to impose both
the dynamic and the kinematic conditions along the free surface.

e On one hand, continuity of the contact force along the free surface leads to the
dynamic condition

(6) g-n= _(pext + 7(31_1 + 32_1)) 'n,

where peyt 1s the exterior pressure, v is the surface tension coefficient and n is the
outward unit vector normal to the boundary dQgrgg. The surface tension relates
the normal force with the principal radii of curvature of the interface, Ry and R,.
The normal vector and the radii of the curvature can be written as expressions of the
function h. By integrating by parts, we obtain the weak formulation of the dynamic
condition initially proposed by Ruschak K. J. [14] and extended by Keunings R. [15]
for the axisymmetric case.

e On the other hand, the fact that the free surface is a material line, leads to the
kinematic condition

Dh

This relationship provides the additional equation required to calculate the unknown
position h of the free surface.

3 Numerical Simulation of the stretching device

Now, we describe the boundary conditions used to calculate the time dependent flow of a
viscoelastic fluid in the filament stretching apparatus proposed by Sridhar et al. [10]. In
such a device, an initially cylindrical fluid sample is stretched between two plates. The
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shape of the fluid column and the force measured along the lower plate as a function of
time can be used for the characterization of the extensional viscosity of the sample. The
basic parameters of the device are shown in Fig. 1.

The typical function of interest for the rheometer is the Hencky strain as a function of
time. The Hencky strain is defined as follows

(8) ¢ 2 [LL(E)] ,

where L(t) is the length of the filament, and Lo = L(0). Similarly, Ry is the initial radius
of the filament and R(?) is the minimal radius as a function of the time.

By imposing an exponential rate of separation between the two plates, i.e. by assuming
that L(t) = Lo exp(ét), one hopes to do experiments under constant stretch rate conditions
rather than under constant force. The constant stretch rate is denoted by ¢, and the
Hencky strain becomes a linear function of time:

(9) € — ¢ét.

In our calculations, we neglect inertia and gravity. With this assumption, the flow is
not only axisymmetric but also exhibits symmetry with respect to an horizontal midplane
between the plates. In the next section, we will demonstrate that we can neglect gravity
and inertia if the extensional viscosity is very high compared to the stresses induced by
shear viscosity. Finally, we also demonstrate that the same condition has to be satisfied
in order to obtain useful experimental results from the stretching device. Therefore, the
computational domain is reduced to the area depicted in Fig. 2.

In order to describe the boundary conditions of the viscoelastic free surface problem,
we consider the following subsets of the boundary 0f:

e JQpparE, the upper side of the domain, represents the moving plate where the
velocity is prescribed. A no-slip condition is applied and the velocity is imposed as
follows

L
(10) w = 62—Oexp(ét),
u =20,

where Lg is the initial length of the whole sample.

e 0QgyM, the portion on which symmetry conditions are applied, i.e. vanishing normal
velocity and tangential stress,

o O0Qprgg, the free-surface,



e 000up, the point defined by the intersection of the free-surface and the upper mov-
ing plate. The position of this point of the free-surface is prescribed to be attached
to the end of the plate. In other words, the free-surface is not allowed to slip along
the plate,

e 00OBoTTOM, the point defined by the intersection of the free-surface and the hori-
zontal midline. At this point, one prescribes that the free-surface is vertical.

Initially, the computational domain is rectangular, and the fluid is assumed to be at
rest. That means that v = 0 and Ty = 0 for ¢ < 0. The second equality involves that
for the initial A, we take the tensor unity.

A mixed Finite Element Method (FEM) with the configuration tensor, the velocity,
the pressure and the geometrical unknowns as variables, is used. Standard Galerkin
weak formulation is derived with the quadrilateral finite element developed by Marchal
J. M. and Crochet M. J. [16]: the pressure, the velocity and the configuration tensor
are approximated by linear, quadratic and 4 x 4 sub-linear interpolations respectively.
However, we observe that we obtain the same results by using quadratic interpolation
for the configuration tensor. Such a choice is efficient in terms of CPU and memory
requirements. Mesh refinement analysis has been performed.

For the time integration, we use a predictor-corrector scheme. At each time step, a
prediction of the solution is calculated with the Euler explicit scheme. This first estimate
is then corrected with the Euler implicit scheme. The implicit equations are solved by
Newton’s method. The next time step is then selected such that the difference between
predicted and corrected solutions is kept under a specified value. More details can be
found in [17, 18]. The initial shape of the domain is a rectangle, and the sample is at rest
before the beginning of the stretching.

A moving grid algorithm is used to avoid overdistorded elements due to the boundary
motion and to maintain a good nodes distribution in the deformed mesh. We solve the
Thompson transformation [19] in order to take advantage of the smoothing properties
of this elliptic operator. Standard Dirichlet boundary conditions are applied on the co-
ordinates, except along the axis of symmetry where Neumann conditions are introduced
for the tangential component. Furthermore, a slight modification of the remeshing rule
near the upper plate is introduced in order to maintain a high density of elements where
the free-surface shape is more complex. In order to handle surface tension, a quadratic
continuous representation is used for both the geometrical unknowns and the coordinates.

4 Numerical Results

In most calculations, inertia and gravity are neglected and the parameters of both vis-
coelastic and Newtonian calculations are summarized in the following table. We use



material parameters identified on the basis of steady shear data [7].

p (density) 890 (kg m™?)
é (stretch rate) 6 (s7h)
Lo (initial length) 2 10 % (m)
Ry (initial radius) 3.5 1072 (m)
v (surface tension coefficient) 28.9 1072 (N.m™)

Newtonian calculations
n (shear viscosity) 98 (Pa.s)

FENE-CR calculations

n (shear viscosity) 105 (Pa.s)
nn (solvent viscosity) 35.7 (Pa.s)
nv (polymer viscosity) 69.3 (Pa.s)
A (relaxation time) 2.0 (s)
L? (extensibility dumbbell coefficient) 4325.5

Table 1: Material parameters for a Polyisobuthylene/Polybutene Boger fluid [7].

Now, let us define the dimensionless numbers that can be used for analysing the nu-
merical results. The transient Trouton ratio T'r scales the transient extensional viscosity
to the shear viscosity. The Deborah number De characterizes the elastic forces with re-
spect to the viscous terms. The capillary number C'a balances viscous and surface tension
forces. The Bond number characterizes the ratio of gravitational forces to capillary forces.
Finally, the Reynolds number Re characterizes inertia.

nt ‘R LR L2
Tr=—, De = )¢, C’a-nﬁ—,Bo:L,Re:6 P
770 g v n

It is obvious that the extensional viscosity is the most appropriate quantity to the
study of the present flows. Therefore, we use the ratios Re/Tr, Ca.Tr and Bo/(Ca.Tr)
to characterize inertia, surface tension and gravity with respect to extensional stresses.

4.1 Stretching flow of a viscoelastic fluid

The shape of the filament, obtained by numerical simulation with the FENE-CR model,
is drawn at different times of the calculation in Fig. 3. For relatively large values of the



time ¢, we see that the filament nearly has the shape of a cylindrical pillar which enlarges
near both plates. The formation of the pillar may be explained by the high extensional
viscosity of the fluid:

e As a consequence of the high extensional viscosity, a small increase of the defor-
mation leads to a dramatic increase of the stress. This effect tends to distribute
the deformation equally in the filament. Therefore, the fluid sample tends to a
cylindrical shape, and one also tends to a perfectly extensional flow.

e On the other hand, the high extensional viscosity of the fluid leads to a sucking effect
along the plates: the force in the filament is very important and draws away the
fluid adhering to the plates. It follows a very steep transition from the cylindrical
portion to the adhesion area, and a very strong deformation of the mesh in that
region.

The sucking effect is a source of numerical difficulties. A modification of the remeshing
rule has been introduced in order to maintain a high density of elements in the transition
area. Nevertheless, such a distorsion leads to dramatic deformations of elements and all
viscoelastic calculations failed before the time reached the maximum time of the experi-
mental data. In Fig. 4, we see that some elements close to the upper plate become almost
triangular at the end of the calculation. As suggested by referee, we also believe that the
sucking effect may also be connected to the instabilities observed by McKinley where the
fluid forms fibrils near the end plates.

We also analyse the profile of the extensional component of the tensor A in figure
5. We plot the ratio A.. as a function of r on the mid-plane section. We see that the
stretching is more important along the free surface. This effect probably is related to the
non purely extensional flow at the beginning of the stretching.

The almost perfect extensional character of the flow can be observed on the curve
of the minimum filament radius as a function of Hencky strain, in Fig. 6. At the end
of the numerical simulation, the slope of the curve tends to the theoretical dashed line
corresponding to a perfect extensional flow. However, the slopes of the two curves are
quite different at the early stages of the stretching. Let us observe that the inflexion of
the curve at € = 1.6 probably is the sign of the transition from a more complex flow to an
almost perfect extensional flow. In fact, the same observation can be made by analysing
the different shapes of Fig. 3.

4.2 Stretching flow of a Newtonian fluid

In Fig. 7, we draw the shape of the filament obtained for a Newtonian fluid at various
values of Hencky strain. The contours of the free surface are very different than the ones



obtained with the viscoelastic model. We no longer see any cylindrical portion. The
radius varies everywhere along the filament, and has a minimum on the symmetry plane.
Similarly, the numerical difficulties due to the suction effect do not appear in this case.

In Fig. 8, we give the minimum filament radius as a function of time. The curve of
the minimum radius decreases really faster than the line we could obtain for a purely
extensional flow. It follows that the Newtonian flow is very different from the uniformly
extensional stretching it previously was assumed to be. Therefore Spiegelberg and al. [9]
introduced a simplified lubrication analysis to study the stretching of a Newtonian fluid.
They provide an estimate of the effective extension rate, ¢ & 3¢/2 from the imposed value
€. On Fig. 8, we found an excellent agreement between the estimate from the lubrication
theory and our large scale calculations at the beginning of the stretching. Due to the
assumptions of the simplified model, it is quite normal that we observe discrepancies at
higher values of the stretching.

4.3 Inertia, capillarity and gravity can often be neglected

In this section, we show that we can neglect inertia and gravity in most calculations. It
is clear that if inertia and gravity are taken into account, the filament is not divided by a
horizontal symmetry plane. Therefore, the axisymmetric calculation has to be performed
on the whole filament, which implies an increase of CPU and memory requirements by a
factor two. We consider both the viscoelastic and Newtonian cases studied in the previous
sections.

e Using a viscoelastic model, we first perform the calculation neglecting inertia and
gravity. Then, we calculate the same problem, taking into account inertia and
gravity. In Fig. 9, we give the force measured on the lower plate as a function of
time for both cases. A detailed analysis of the results shows that the shift between
the two curves is approximately equal to the weight of the sample divided by two,
and is small compared to the value of the force.

o Let us now perform the same numerical experiments with a Newtonian model. Re-
sults are given in Fig. 10. The shift between the two curves is again approximately
equal to the sample weight divided by two. We observe that the force measured on
the lower plate for the calculation without inertia and gravity decreases very quickly
and that the extensional force becomes much smaller than the value of the sample
weight at the end of the stretching. Now, if we take inertia and gravity into account,
this fact leads to a negative total force for large values of the time.

Inertia and gravity may be neglected in the first calculation with a viscoelastic model,
but not in the second with a Newtonian one. This observation is related to the fact
that the extensional viscosity of the viscoelastic fluid is very important compared to its



shear viscosity, which results in high Trouton ratios, while the extensional and shear
viscosities of a Newtonian fluid are related by a constant Trouton ratio. Inertia terms
are neglectible in our calculations: the maximum value of Re/T'r is approximately 0.2 at
the end of the Newtonian stretching. The effect of gravity is very small in viscoelastic
calculations (Bo/(Ca.Tr) ~ 107%) and may be important for the Newtonian calculations

(Bo/(Ca.Tr) ~ 4 at the end of the calculation).

A similar conclusion can be drawn for the capillary forces: the dimensionless group
Ca.Tr ranges from 20 to 400 for the viscoelastic calculation, while at the end of the
stretching of the Newtonian fluid, C'a.T'r is approximately 1.

We conclude that only with strain hardening, the minimum radius of the filament de-
creases approximately as for a uniaxial extensional flow. Then, it is difficult to find a
good interpretation of the force measured along the lower plate in other cases. There-
fore, inertia, capillarity and gravity may be neglected for all cases where the extensional
rheometer is able to produce useful results (i.e. extensional viscosity is high).

4.4 Improved estimate of the extensional viscosity

The main quantity of interest from the experimental data provided by the filament stretch
rheometer is the extensional viscosity. In order to estimate this quantity, one measures
F'. the normal force applied to the lower plate. Assuming that the flow is close to uniaxial
extension at the median plane, the extensional tension inside the filament is then estimated

by

F
(11) T~ g
where R is the radius of the filament. Finally, approximating the extensional rate by the
stretch rate ¢, one is able to calculate an extensional viscosity by
T
é

(12) Tt~ -,

In fact, the flow is not purely extensional (in particular, at the beginning of the stretch).
Only the middle of the domain is in extension, and the local extension rate in the middle
of the sample is greater than the Hencky strain rate. A central question is of course to
determine what such an estimate means. The problem can be addressed by the numerical
simulation of the whole experiment. It can also be addressed by a better estimate of the
extensional rate along the center line. For example, we consider only a small material
cylindrical part of the filament. If we define [ as the length of this cylinder, the volume
conservation law leads to the following relationship:

ZRQ - loR%
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Therefore, one is able to derive a better approximation for both the extension strain and
the extension rate:

IR

Glﬁlﬂgzlﬂﬁ,
R
13 o~ 2
(13 L

A second estimate of the extensional viscosity can be written as

(14) 7t~ —.

The definition of this estimate can be clearly correlated with the work of Solomon and
Muller [6] who demonstrate the difference between radial and axial measures of strain
rate.

Finally, a third estimate of the extensional viscosity is provided by the lubrication
model of Spiegelberg and al. [9]
R% —Te

(15) ﬁ+z3+z?3.

In Fig. 11 the extensional viscosities of a Newtonian fluid as a function of the Hencky
strain is drawn from calculations in which gravity and inertia terms have been neglected,
using (12) and (14). We also draw the curve of the lubrication model using (15). One
can observe that the slopes of all estimates of extensional viscosity are approximatively
similar. However, the first approximation is distant from the horizontal line corresponding
to the Trouton ratio. Therefore, the second estimate of the extensional strain rate appears
to be more realistic. We also observe that the lubrication theory agrees with our improved
estimate of the Trouton ratio at the beginning of the stretching. The comparison of our
two estimates of the Trouton ratio has also been done for the viscoelastic fluid in Fig.
12. It demonstrates that both approximations of the extensional viscosities are similar
for large times. Some people have proposed an approach to avoid the nonuniformities of
Hencky strain rate during the stretching [6, 9] by selecting a modified evolution for the
velocity of the upper plate.

4.5 Comparison with experimental results

In Fig. 13, we compare the forces as a function of time for a viscoelastic fluid, obtained
respectively by the numerical calculations and by the measurements of McKinley. The
large discrepancy at the initial times is due to the delay (100 ms) of the measurement
device. The high value of the force at the beginning of the stretching is also explained by
the poorly extensional character of the sample deformation.
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Now, let us compare in Fig. 14 both the minimum filament radius as a function of time
obtained by the numerical calculations and by image analysis of the experiments. One
obtains a very good qualitative agreement and in particular, the numerical simulation
reproduces the slope change observed in experimental data.

In Fig. 15, we investigate the influence of the material parameters of the constitutive
equation for different kind of samples. In particular, we also perform the same calculation

for the fluid defined in the following table.

n (shear viscosity) 98 (Pa.s)
nn (solvent viscosity) 32.67 (Pa.s)
nv (polymer viscosity) 65.33 (Pa.s)
A (relaxation time) 2.9 (s)
L* (extensibility dumbbell coefficient) 4325.5

Table 2: Material parameters for a Polyisobuthylene/Polybutene [7] Boger fluid.

For € > 1, the curves obtained with the numerical calculation are similar to the exper-
imental data given by McKinley.

In figure 16, we also investigate the effect of the initial gap between the plates. The
major difference between the curves occurs in the area ¢ < 1, and consists mainly of
a shift of the initial value. This fact is due to the more non-extensional character of
the deformation at the beginning of the stretching when the gap is small. Qualitatively,
the influence of a modification of the initial gap is in good agreement with experimental
results.

5 Conclusions

We show that the rheometer of Sridhar performs well with fluids exhibiting a high exten-
sional viscosity. For low extensional viscosity fluids, the obtained flow is very far from
extensional, and it is difficult to give a straightforward interpretation of the results.

We limit ourselves to the set of parameters provided by the shear data. In particular,
we do not attempt to modify the parameters in order to match both shear and extensional
experimental data. However, we think that a suitable set of parameters would certainly
lead to a better agreement between numerical and experimental results. We could also
further investigate the effect of surface tension, gravity and inertia.
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Fig. 1. Schematic of the filament stretching rheometer.
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Fig. 2. Geometry for the numerical simulation of the filament stretching rheometer.
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e = 0.64

Fig. 3. Viscoelastic calculation: deformation of the sample as a function of the Hencky

strain.
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Fig. 4. Viscoelastic calculation: closeup view of the mesh at time e = 3.52. The remeshing
rule minimizes the distorsion of the elements, when the suction effect takes place near the
plate.
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Fig. 5. Evolution of A., as a function of the radius along the symmetry plane for e = 2.88.
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Fig. 6. Viscoelastic calculation: minimum filament radius as a function of the Hencky
strain. The dashed line represents the theoretical evolution of the radius for a perfectly
uniaxial extension. It is a fair approximation of the real behaviour for large values of the
Hencky strain.
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Fig. 7. Newtonian calculation: deformation of the sample as a function of the Hencky
strain.

19



001 T T T T T T T T T

0.001 |

le-05 ] ] ] ] ] ] ] ] ]

Fig. 8. Newtonian calculation: minimum filament radius as a function of the Hencky
strain. The dashed line represents the theoretical evolution of the radius for a perfectly
uniaxial extension while the dotted line gives the results predicted with the lubricated
model.
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Fig. 9. Viscoelastic calculations: force measured on the lower plate as a function of the
Hencky strain. The dashed and the continuous lines give the results when inertia and
gravity are taken into account or neglected repectively.

21



0.006

0.005
0.004
0.003
F(N) 0.002

0.001

-0.001 -

-0.002 | | | | | | | | |

Fig. 10. Newtonian calculation: force measured on the lower plate as a function of the
Hencky strain. The dashed and the continuous lines give the results when inertia and
gravity are taken into account or neglected repectively.
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Fig. 11. Newtonian calculation: estimated extensional viscosities as a function of the
Hencky strain. The continuous and the dashed lines give the results when the extensional
rate 1s approximated by the stretch rate of the Hencky strain or by a local mid-plane
estimation from the radius behaviour respectively. The two dotted lines give respectively
the theoretical Trouton ratio (Tr = 3) and the results given by the lubricated model.
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Fig. 12. Viscoelastic calculation: estimated extensional viscosities as a function of the
Hencky strain. The continuous and the dashed lines give the results when the extensional
rate is approximated by the stretch rate of the Hencky strain or by a local mid-plane esti-
mation from the radius behaviour respectively. Both curves are almost similar, excepted
for initial values of the Hencky strain.
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Fig. 13. Comparison with experimental results: force to be exerced on the plate as a func-
tion of time. The lines and the symbols give the numerical results and the experimental
data respectively.
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Fig. 14. Comparison with experimental results: minimum filament’s radius as a function
of time. The lines and the symbols give the numerical results and the experimental data
respectively.
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Fig. 15. Comparison with experimental results for different fluids: estimated extensional
viscosities as a function of the Hencky strain. The upper and lower parts give the numer-
ical results and the experimental data respectively.
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Fig. 16. Comparison with experimental results for different initial lengths: estimated
extensional viscosities as a function of the Hencky strain. The upper and lower parts give
the numerical results and the experimental data respectively.
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