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Abstract

An adaptive high-order finite element method is used to calculate
the flow of a viscoelastic fluid around a sphere falling in a cylinder. No
corner singularity appears in such a flow, but from a quite complex flow
field, one predicts the drag correction factor for the upper-convected
Maxwell fluid (UCM). Those properties explain why this problem is
used as an benchmark for numerical techniques in rheology.

Accuracy and robustness of the results are demonstrated by p-
convergence analysis and by comparison with reference results. Hence,
our calculations with high-order interpolations may be considered as
reference results for this problem. The Galerkin and the Petrov-Galerkin
techniques applied to several formulations (MIX, EVSS, AVSS) are
analysed and compared. Error estimation and adaptivity allow us to
derive optimal discretizations for each formulation. We observe that
both suitable formulation and discretization are critical to obtain a
valid prediction.

1 Introduction

Obtaining accurate numerical solutions at high values of the Weissenberg
number still remains a challenge in viscoelastic flow simulation. This paper
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presents a further effort towards the calculation of reference results for the
sphere problem.

As indicated in Figure 1, let us consider the flow of the upper-convected
Maxwell fluid (UCM) around a sphere falling along the axis of a long tube,
at a speed V. The radius of the sphere is R, while the tube radius is twice
as large. The quantity of interest is the drag correction factor ', defined as
the ratio between the drag D exerted on the sphere by the viscoelastic flow
and the drag exerted by a creeping flow of a Newtonian fluid of viscosity 7
on an identical sphere in an infinite space :

I'= D :
6mnV R

(1)

Today, it is still difficult to solve this problem. This challenge has long
resulted in the failure of numerical simulations to provide solutions at elas-
ticity levels of practical interest. The elastic character of the flow is usually
quantified by means of the Weissenberg number We defined as the prod-
uct of the relaxation time and the characteristic velocity gradient V/R of
the flow. It has been shown that one of the major reasons for this High
Weissenberg Number Problem (HWNP) is the inaccuracy of the numeri-
cal method [1]. Two avenues of research are investigated to develop better
numerical techniques for viscoelastic flows.

On one hand, suitable-high order interpolations can reduce numerical in-
accuracies or at least limit their dramatic effects on the calculation process.
Hence, more and more attention is devoted to spectral methods [2, 3], p-
finite element methods [4, 5, 6, 7] and spectral element methods [8, 9, 10, 11].
For problems endorsed with smooth solutions, those methods exhibit an ex-
ponential rate of convergence. One the other hand, suitable techniques have
been developed in order to take the hyperbolic character of the constitutive
equation into account. Typically, the classical Galerkin approach is optimal
for elliptic equations, but should, in general, be avoided with hyperbolic
problems.

The first numerical solutions for the sphere problem delivered dramatic
discrepancies between different numerical methods [12, 1]. Some important
improvements are obtained both by using better formulations of viscoelastic
problems and by taking advantage of better discretizations.

e In 1993, four different groups [13, 14, 15, 16] obtained the same results
using different methods for We < 1.6. However, no converged solution
was obtained for We > 1.6.



e In 1995, Yurun and Crochet [7] took advantage of a p-adaptive finite
element discretization and of the Petrov-Galerkin technique (SUPG)
for the Elastic Viscous Stress Splitting formulation (EVSS). With
such a numerical method, they obtained steady state solutions up to
We = 2.1. This value was only limited by the available computational
resources. Their results are in agreement with the values obtained by
Jin et al. [17] using a EEME-SUPG method. They are also in agree-
ment with those obtained by Arigo et al. [18] using a EVSS-SUPG
method.

e In 1996, Luo [19] introduced an operator splitting algorithm with a
low-order finite element discretization. With 110 x 10% degrees of free-
dom, he obtained numerical solutions up to We = 2.8.

e Recently, Sun et al. [20]. proposed an Adaptive Viscoelastic Stress
Splitting formulation (AVSS). Using a streamline integration, a lim-
iting Weissenberg number We of 3.2 was observed. However, unlike
other computations, their decoupled iterative calculations predict no
levelling off in the drag correction factor, raising the question of the
accuracy of the AVSS formulation.

e Finally, Baaijens et al. [21] used the EVSS-like formulation (some-
times referred to DEVSS) proposed by Guénette and Fortin [22] and
a discontinuous Galerkin integration. They obtained results up to

We = 2.5.

Today, it appears that EVSS-AVSS formulations with SUPG-SU techniques
are superior to the classical mixed Galerkin approach at high Weissenberg
numbers. The objectives of this paper are to present both a cost-effective
method and a reference curve for the sphere problem.

In order to provide a reference curve, it seems usual to take advantage of
high-order finite element approximations, even if high-order interpolations
alone cannot solve the High Weissenberg Number Problem. [4, 5, 6, 7, 9,
10, 11]. However, for smooth problems, high-order interpolations with a
suitable formulation provide stable and convergent schemes, a quite unusual
fact in viscoelastic flow problems. More accurate solutions with high-order
methods can be obtained with a reduced number of degrees of freedom. But,
as mentioned by Yurun and Crochet [7], the associated computational cost
and memory requirements are still very high.

Therefore, the second objective of this paper is to present a cost effective
adaptive high-order approach. The idea is to reduce the approximation



error to a specified level while minimizing the number of unknowns of the
problem. The mesh size h and the order of approximation p are adjusted at
the elemental level, using error estimates. Such an adaptive hp finite element
method leads to very high convergence rates of the approximation error
with respect to the number of degrees of freedom, even in the presence of
singularities [23]. For the sphere problem, it appears that the most efficient
way is to use only p-adaptivity. However, conclusions are different for a
problem such as the four-to-one contraction [23].

The numerical results of this paper are summarized in Table 1. Our
results are in full agreement with the literature up to We = 1.6. For values
of the Weissenberg number between 1.6 and 2.0, we observe a very good
agreement with the results of Yurun and Crochet [7], of Jin et al. [17] and
of Baaijens et al. [21]. However, for larger values of We, Figure 2 shows
that published results remain in disagreement. The accuracy of our results
up to We = 2.5 is demonstrated by p-convergence experiments.

This paper is organized as follows. First, we recall the continuous and
the discrete formulations of the viscoelastic flow problem in Sections 2 and
3. In Section 4, we analyse the results obtained with several formulations
and interpolations.

2 The Continuous Viscoelastic Problem

We consider the isothermal steady flow of an incompressible viscoelastic
fluid in an open domain €2. We limit ourselves to flows without inertia and
body forces, although considering the general case is straightforward. We
also assume that no purely viscous component appears in the Cauchy stress
tensor.

2.1 Governing equations

The governing partial differential equations are the mass and momentum
conservation laws, coupled with constitutive equations characterizing the
fluid. Most of the early numerical simulations have been performed with
the upper-convected Maxwell model [24]. This model seemed to have the
simplest constitutive equations exhibiting most typical viscoelastic effects.
However, it has been found that the flow of such fluid is one of the most
difficult to simulate among the available constitutive equations, as it may
generate more numerical difficulties than apparently more complicated dif-
ferential models. The upper-convected Maxwell model is therefore often



We Present results Previous published results
[13] [7]

0.0 5.9469 5.9475

0.2 5.6592 5.6597

0.4 5.1862 5.1868

0.6 4.8009 4.8021

0.8 4.5274 4.5299

1.0 4.3405 4.3405 4.3405

1.2 4.2153 4.2159

1.4 4.1336 4.1352

1.6 4.0831 (diverges) 4.0827

1.7 4.0670

1.8 4.0557

1.9 4.0487

2.0 4.0454 4.0420

2.1 4.0451

2.2 4.0476 (diverges)

2.3 4.0522

2.4 4.0580

2.5 4.0660

2.6 (diverges)

Table 1: Drag reduction factor for the sphere problem with a Maxwell fluid.
Summary of the numerical results.



used as a benchmark model for numerical methods. Hence, a huge amount
of numerical results is now available for this fluid. The classical mixed for-
mulation (MIX) of the corresponding viscoelastic problem is given by :

Find (T, u, p) such that

T—I—A’;1 —-2nD(u) = 0,
V.-o(T,p) = 0,
V.u = 0,

(2)

where u is the velocity field, p is the pressure, T' is the viscoelastic extra-
stress tensor, 7 is the viscoelastic dynamic viscosity and A is the relaxation

time of the fluid. The Cauchy stress tensor o (T, p) and the strain rate tensor
D(u) are defined as

o(T,p) = —-pI+T,
1
D(u) = §(Vu—|—VuT).

The symbol 57 denotes the upper convected derivative given in a steady flow

by :
v
T= (u-V)T-Vu' - T-T -Vu.

Suitable boundary conditions have to be imposed to lead to a well-posed
formulation of the continuous viscoelastic problem [25]. Some components
of the extra-stress tensor must be specified at the inflow section. Classical
Dirichlet or Neumann boundary conditions for the velocity are also required.

2.2 Stress-splitting formulations

In the limit of Newtonian flows (A = 0), the MIX formulation (2) in terms
of (T',u,p) is not equivalent to the usual (u,p) formulation of the Stokes
equations. When we introduce the discretization, this fact has detrimen-
tal numerical implications [1] and can be circumvented with the following

change of variables :
S=T—-2nD(u) .



A convected derivative of D(u) is then introduced in the constitutive equa-
tion, involving second-order spatial derivatives of u. But, these derivatives
can be eliminated by considering a (S, u,p, D) approximation. In order to
define the Flastic Viscous Split Stress formulation (EVSS), Rajagopalan et
al. [26] introduced the modified stress tensor S and the rate of deformation
D as additional unknowns, in the following way :

S = T-2nD,
1 3
D = §(Vu—|—VuT). 3)

The discretization of the EVSS formulation provides more stable and accu-
rate solutions than the discretization of the MIX formulation. Those good
numerical properties are due both to a new elliptic stabilizing term in the
momentum equation and to the least-square approximation of D(u) by a
new variable D.

In order to further improve the numerical properties, Sun et al. [20]
proposed a modified version of the EVSS formulation to compute the flow
of the upper-convected Maxwell fluid. Their so-called reference viscosity
scheme formulation can be written as follows :

S = T-238D, (4)

where the reference viscosity 5 is a function of the coordinates and can be
much larger than n used in the usual EVSS formulation. In other words,
the EVSS formulation is a particular case of this formulation. They also
proposed an adaptive procedure to select 5 so as to obtain a viscous stress
26D(u) at least of the same order as the elastic stress S. This scheme
defines the so-called Adaptive Viscous Stress Splitting formulation (AVSS).

In order to introduce a similar elliptic stabilizing term in the momentum
equations for other models, Guénette and Fortin [22] considered a modi-
fied stress splitting formulation. No change of variable is applied but the
momentum equations are modified as follows :

V.o(T,p)+2aV-(Du)—D) = 0.

Obviously, D(u) — D vanishes in the continuous formulation, but is intro-
duced as a stabilization term in the momentum equations. It acts exactly
as the additional term generated by the change of variable of the EVSS for-
mulation. This is sometimes known as the Discrete Elastic Viscous Stress



Splitting formulation (DEVSS) or as the extended EVSS formulation of
Guénettte and Fortin.

All those formulations are particular cases of the following generic prob-
lem :

Find (S, u, p, D) such that

S+A(S 428 D)~ 2(n - B)D(w) = 0,

V. (—pI+S+25D(u))+2aV-(D(u)—- D) = 0,
V.-u = 0,

D-D(u) = 0.

(5)

The MIX formulation (2) corresponds to a = 3 = 0 (the field D is then
not required and the field S becomes T') and the standard EVSS method
(3) can be obtained with a« = 0; 3 = 7. We obtain the reference viscosity
AVSS formulation (4) with o« = 0 and the extended EVSS formulation of
Guénette et al. with 5 = 0.

3 The Discrete Viscoelastic Problem

In this section, we derive the discrete formulation associated with the generic
mixed formulation (5). We also present how to select the discrete approxi-
mation spaces for each field.

3.1 Finite Element Approximations

Following the standard finite element procedure, we begin, as usual, by
introducing a family P of partitions of €2 such that

N(P)
a= {QK;QKEP}, QNQ =0, K#L
K

We suppose the Q and P are such that each element Q is the image of a
master element = [—1, 1]2 under an invertible map Fx.

In order to develop an adaptive strategy, the following generalizations
are introduced. On one hand, h-adaptivity consists of refinements of the



mesh. On the other hand, p-adaptivity consists of using polynomials of
differing degrees in the definition of hierarchical basis functions [27, 23, 28].
Continuity of the global basis functions is maintained by enriching the edge
function to match highest degree polynomial used on a common interelement
boundary. For a scalar field v, those generalizations allow us the contruction
of the local and global approximation spaces :

My = {U:U(ZB)I@OFIE17ﬁGZ/\4\(Q)}7
M(h,p,Q) = {v:v(m)ECO(Q):UK:MQKEMK},

where 1\7(@) is the space spanned over by the set of basis functions.
The symbols h and p denote here the h-distribution and the p-distribution
characterizing a hp-approximation of the scalar field v. The fundamental
requirement of this definition is that the global finite element approximation
has to be continuous over £2.

Before developing discrete mixed formulations, it is now necessary to
define more general notations. Let us just consider the different fields S, u,
p and D of the mixed formulation. We have to be able to use different /- and
p-distributions for each field. In others words, the discrete approximations
St p"? and D" belong to the following discrete function spaces :

§h = ((M(hs,ps,2)°NS),
uvr = (M(hy,pr,Q)° N,
P = (M(hp,pp, Q) NP),

D = ((M(hp,pp,Q))°ND),

where §, U, P and D are the appropriate function spaces defined on €2 for the
modified extra-stress tensor S, the velocity u, the pressure p and the strain
rate tensor D. For notational convenience, the full sets (hg, by, hp, hp) and
(ps, pu,pp,pp) are denoted by h and p. Using the Galerkin technique, the
discrete approximations can now be characterized by the following problem :



Find (8", u" ph* D" € S x U™ x P x D" such that
v v
L/@W+Aww+%IWﬁ—%n—mp@W»$dQ::0
Q
/@mWI+SW+2w+wWDwWD—2aDWy1%@dQ — 0
Q

/(V-uhp)qu = 0,
Q

(/ww—pwmyem — 0,

V(r,v,q,e)€S" xU" x P x D",

(6)

When X increases, the convective term of the first equation in (6) be-
comes dominant and the Galerkin technique loses its well-known “best ap-
proximation property” for elliptic problems [29]. It is known that the con-
sistent Petrov-Galerkin technique (SUPG) [30] is superior to the standard
Galerkin technique, with improved stability and accuracy for convection
dominated problems. For smooth viscoelastic flow problems, this property
has been observed for low- and high-order approximations [7, 13].

Remark 1

In the SUPG technique, we replace the test function s by a modified test
function s+ ku - Vs. The factor k is an O(h) parameter defined in each ele-
ment. For high-order finite elements, we observe, as did Yurun and Crochet
[7], that the best numerical properties are obtained with & = [/V where
[ is the characteristic size of the element. Such a choice is also made by
Lunsmann et al. [14] for low-order finite elements.

3.2 Stable mixed approximations

At this point, we have to select independently and locally the h— and
p—distributions for all fields in the discrete problem. If we consider the clas-
sical velocity-pressure formulation of the Stokes problem, it is well known
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that the mixed interpolation must satisfy a compatibility condition, in or-
der to provide stable results, derived by Ladyzhenskaya Babiska and Brezzi
[31]. The popular choice of quadratic velocity interpolation with a linear
pressure may be justified by the LBB condition.

There is no general mathematical theory that would give the choice of
the approximations of the extra-stresses tensor to be used with the different
viscoelastic formulations. It is also known that the approximation of the
extra-stres tensor appears to be mainly affected by errors [32]. Some rules to
select the discrete functions spaces can be deduced, however, from numerical
experiments and some partial theoretical results, but they do not guarantee
the suitability of the approximations. Today, the state of the art is the
following :

e Fortin and Pierre [33] analysed the stability and convergence prop-
erties of the element of Marchal and Crochet [34] for the three-field
formulation (T,u,p) of the Stokes problem. This formulation can
be considered as the Newtonian limit (A = 0) of the MIX formula-
tion. The 4 x 4 element of Marchal and Crochet consists of 16 linear
subelements for the extra-stresses, while velocities and pressure are bi-
quadratic and bilinear, respectively. For the three-field formulation of
the Stokes problem, Fortin and Pierre proved that a second condition
has to be added to the classical LBB condition. They also showed that
the element of Marchal and Crochet is stable for this formulation of the
Stokes problem, confirming the good numerical properties observed by
Marchal and Crochet. A sufficient condition for the mixed approxi-
mation to produce results identical to those of the velocity-pressure
formulation in Newtonian case is that the discrete extra-stress space
8" contain the gradient of the discrete velocity space U"". Such a
condition suggests to use a discontinuous approximation of the extra-
stress with a continuous approximation of the velocity. It also suggests
to increase the number of the degrees of freedoms for a continuous ap-
proximation of the extra-stress.

e For a non-vanishing relaxation time, the non-linearity and the coupling
between the equations make theoretical analysis much more difficult.
In general, it is assumed appropriate to extend to the viscoelastic
problem the conditions of Fortin proved for the Stokes problem. The
selection of a suitable approximation space for the stresses also depends
on whether or not there are singularities inside the domain.
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e For high order approximations used in smooth problems (or far away
from singularities), the high-order weighted residual methods provide
weakly C' approximations [35]. In other words, it means that the
velocity approximation belongs to C! when p tends to infinity. There-
fore, a continuous extra-stress approximation is not detrimental to the
global accuracy and we can use the same discretization in these re-
gions. For creeping flows in smooth geometries, Van Kemenade and
Deville [10, 11] observed that the accuracy of the MIX formulation
can be improved with a higher order for the approximations of the
extra-stresses with ps = py + 1. But, Talwar et al. [5] observed that
the most efficient discretization for the same formulation is obtained
with ps = py. For the EVSS formulation, they observed that the best
selection seems to be ps +1 = py = pp + 1 . Yurun and Crochet [7]
used ps = py = pp + 1 for the EVSS formulation.

e Close to singularities, it is wrong to assume that the high-order weighted
residual methods provide weakly C' approximations. The gradients of
the approximation of the velocity may exhibit jumps. A continuous
extra-stress approximation must be able to reproduce these jumps,
without generating spurious oscillations in the whole computational
domain. Moreover, as the regularity of the solution dictates the con-
vergence rate, high-order approximations are not optimal. The ele-
ment of Marchal and Crochet or a discontinuous approximation of the
extra-stress tensor then become mandatory. For the contraction prob-
lem, the best efficiency is observed with local h-refinement [36, 37].

The adaptive finite element method brings some insight into this “best mixed
approximation problem”. Taking advantage of adaptivity, it introduces an
overdiscretization of the extra-stress only where it is really necessary. We
also observe that local p-enrichment of the approximation of the extra-stress
are sufficient to exhibit the fast convergence characteristics of high-order
methods. The orders of the velocity and extra-stress approximations are
similar in non-critical areas and the local polynomial space of the extra-
stresses are increased in critical areas. This can be considered as an adaptive
way of selecting the discrete spaces.

For the sphere problem, it is useless to introduce h-refinement if the mesh
is well designed. Therefore, we only use p-adaptivity with the following rules
for the definitions of the local approximation of each field :

12



e MIX formulation :

ps—1l=py=pp+1, if P =2, (7)
ps—1l=py=pp+2, if pu > 2,

e EVSS and AVSS formulations :

ps+l=pr=pp+1=pp+1, if pu = 2, (8)
pstl=pr=pp+2=pp+1, if  py>2.

Note that the above choices, although suboptimal, lead to a stable finite
element discretization of the Stokes problem.

3.3 Adaptive strategy

Numerical simulation for viscoelastic flows remains a CPU time consuming
task. In this paper, we use a p-adaptive strategy in order to deliver very
high rates of convergence with a given number of degrees of freedom. An
adaptive strategy can be seen as an optimal control problem, in which the
computational effort to minimize must be controlled by an adaptive scheme
which orchestrates the discretizations to deliver a pre-set level of accuracy.

First, it is very difficult to derive realistic expressions of this computa-
tional effort in terms of the parameters of the discretization [36]. In general,
the discretization is adapted in order to equidistribute the rate of error per
degree of freedom over the whole mesh. Finally, the strategy is based on
a priori and a posteriori error estimates. As usual, we define a a priori
and a a posteriori estimates, as expressions involving or not the discrete
approximations.

We also assume that the local a priori error estimates for elliptic prob-
lems [38] are also valid for the viscoelastic problem. Therefore, the following
a priori upper bound for the error is supposed to hold true :

3t
|||(‘S«error7 uerror7 perror)|||521K S %A%, (9)
K

where Ag, i and v are some unknown constants. The mesh size hy and
the polynomial degree py are those characterizing the approximations of
the extra-stress tensor that are mainly affected by numerical errors in most
simulations. The subscript K denote restrictions to element Qx and the
energy-like norm |||.|||q, is defined as

s o)l = [ (- s+24D(e): Dlv) + )i

K
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In order to guide our adaptive strategy, we also need an a posteriori error
estimate. In fact, the a priori error estimate can provide the rate of con-
vergence, but is useless to quantify the error due to the unknown constant
Ak in (9). Today, efficient elementwise residual methods to estimate the a
posteriori error for elliptic problems [39, 40, 41] and the Navier-Stokes equa-
tions [42, 43, 28, 44], are available and their accuracy has been theoretically
demonstrated [42, 43]. The idea of such cost effective technique consists
in solving elementwise boundary-value problems on each element loaded by
the FEM residuals. Recently, this technique has been extended to viscoelas-
tic problems [45], but without theoretical results. Numerical experiments,
however, show that such a procedure provides reliable and realistic local an
global error indicators defined by :

0K = |||(Si§t7 u?tvp?t”HﬂK 3

N(P) (10)
2 = > 6;.

K=1

Using both a priori and a posteriori error estimates, the p-adaptive strat-
egy applied to the sphere problem can be defined. Let us recall that this
strategy is only a particular example of the global hp-adaptive strategies
described in [45, 36].

From a given discretization p on mesh P, we take advantage of the a
priori and a posteriori error estimates to build a new discretization p, ..
on the same mesh. In order to achieve an equidistributed error 6,4, 4c:, we
modify the order of the polynomial interpolation of the extra-stress tensor
used in each element as follows :

Find pg pew such that

242 2 N(P)
pK,new 0K 2
( 2w ) = (02 ) Z PE new
k=1

Pk target

(11)

This rule is derived by introducing rather strong assumptions for a con-
stitutive equation as the upper-convected Maxwell model. Numerical exper-
iments demonstrate that those assumptions can often provide useful strate-
gies. Let us also recall that, even if the strategy is not theoretically founded,
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the obtained solution is still guaranteed by the fast convergence properties
of the high-order methods.

First, we asssume that the convergence rate of the true error is well
approximated by the rate of a a priori error estimate expression (9) in order
to eliminate the unknown constant Agx. Secondly, we assume that the global
and local numbers of degrees of freedom can be estimated by the square of
the polynomial order. Finally, we have to approximate the parameter v.
Our rule is approximately similar to the rule for p-enrichment used in the
so-called three steps strategy introduced by Oden et al [46, 47, 23, 28].

Remark 2

The major weak point of the adaptive scheme is the selection of v which
has a critical influence on the guidelines produced by the strategy. This, at
present, is a heuristic adaptive choice. Details about such procedures can
be found in the literature [46, 47]. Our own technique consists of comparing
the a posteriori error estimate calculated on the new discretization, with the
target 0;4,4c¢ of the adaptive scheme [36].

Remark 3

The selection of the initial mesh is a key issue for any adaptive strategy. The
a priori error estimate will deliver suitable predictions of the convergence
rate only if the mesh is sufficiently refined to fall in the asymptotic part of
the convergence curve.

Since the decrease of local polynomial orders are not allowed by our
adaptive strategy, the coarsest mesh satisfying the previous property will
provide the best efficiency.

Remark 4

The enrichments of the local polynomial order are applied to the approxi-
mation of the extra-stress tensor. The approximations of the other fields are
then modified in order to satisfy the stability conditions (7,8). We some-
times use the same order for the approximations of the velocity and the
extra-stress tensor (ps = py = pp) in the initial discretization. In elements
where the adaptive strategy requires to increase the interpolation order, we
then obey the stability conditions (7,8).
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4 Results

All our calculations are described in Table 2.

Method Discretisation Unknowns Elements Limiting We
MIX-GAL  H;-Pe_~ 11459 51 0.98
EVSS-GAL  H;-Ps 22312 51 1.20
Hi-P 29927 51 1.38
H4-Ps 21956 510 1.20
Hi-Ps_g 21762 51 1.52
AVSS-GAL  H,-Pg 51860 79 2.16
AVSS-SUPG  H,-Psy 19481 79 2.71
Hs-Ps 28536 79 2.75
H,-P; 39329 79 2.18
Hs-Pg 51860 79 2.45
H4-Ps 21956 510 2.50
H3-P3_~ 31826 316 2.49

Table 2: Summary of the numerical results.

We investigate several formulations (MIX,EVSS,AVSS) with the Galerkin
(GAL) or the consistent Petrov-Galerkin technique (SUPG). The discrete
approximations are linear combinations of continuous high-order hierarchi-
cal basis functions defined in [27]. The central part of the meshes near the
sphere is shown in Figure 3.

In Table 2, the discretization is characterized in the following manner :

e H; denotes the finite element mesh (: =1,...,4).
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e P, _, denotes the range [j, k] of orders used in the polynomial approx-
imation of the extra-stress tensor.

For each calculation, we also give the global number of degrees of freedom,
the number of elements and the limiting Weissenberg number.

4.1 Results with the MIX-GAL method

For completeness, we again report our calculations presented in [23]. In this
simulation, the sphere problem is solved with the MIX-GAL method. The
approximations of the extra-stress tensor are enriched up to seventh order
and we observe a limiting Weissenberg number of 0.98. The same method
MIX-GAL with the element of Marchal and Crochet has a similar limiting
Weissenberg number for a same CPU cost, but a quite large amount of
degrees of freedom. Today, it is clear that a suitable formulation is critical
for obtaining results and we consider the EVSS-GAL method.

4.2 Results with the EVSS-GAL method

First, we perform two calculations with a uniform discretization of order
six and seven of the extra-stress tensor. Those calculations are reported as
(H;-Ps) (H;-P7) in Table 2. The limiting Weissenberg number is 1.2 and
1.38 respectively and the mixed discretizations are (ps = 6,py = 7,pp =
5,pp = 6) and (ps = 7,py = 8,pp = 6,pp = 7). Turning to the convergence
analysis, we observe the typically fast convergence properties of high order
methods. For a uniform low-order discretization with a more refined mesh
(H4-P5), a limiting Weissenberg number We = 1.2 is also observed.

Next, we consider the use of the adaptive strategy. From an initial mesh
(H,-P5) with uniform discretization (ps = 5,py = 6,pp = 4,pp = 5), we
perform two adaptive steps at We = 0.75. In Figure 4, the three discretiza-
tions are shown and the estimated error distribution on each meshes is also
given. Notice that the higher orders are assigned near the sphere. Shaded
elements reflect non-uniform p-distribution in the final mesh. Elements with
a high polynomial interpolation and with a high estimated error are filled
with darker gray. At this stage, we apply additional local enrichments to ob-
tain the discretization (H;-Ps_g) given in Table 2 and we observe a limiting
Weissenber number We = 1.52 .

In Figure 5, we draw the evolution of the error index as a function of the
number of degrees of freedom during the adaptive enrichment performed at
We = 0.75. The error index is defined as the ratio of the energy-like norm of
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the estimated error and the energy-like norm of the solution. It is observed
that the adaptive technique exhibits very fast convergence characteristics,
compared with a uniform enrichment of the approximations of the extra-
stress tensor from order five to six.

In order to illustrate the efficiency of the adaptive strategy, Table 3
provides the CPU times used for each part of the adaptive calculation (H;-
Ps_g). The total cost is low compared to that of the non-adaptive calculation
(Hi-P7) that approximatively gives the same accuracy and the same limit-
ing Weissenberg number. The numerical results reported in this work are
obtained by a full Newton-Raphson scheme with a continuation technique
and a direct frontal solver. Along the continuation path (parametrized by
We) of the adaptive calculation (H;-P5_g), the global error estimate as a
function of We is given with the cumulative CPU times at critical steps in
Figure 6.

Discretisation Unknowns CPU Number of iterations
(Continuation interval)
Hi-P; 15819 8600 18 (We=0— 0.75)
H,-Ps_» 17392 4400 6 (We=0.75)
H,-Ps_g 20191 5500 5 (We=0.75)
H,-P5_g 21762 53100 37 (We=10.75— 1.52)
Total 71600
H,-P; 128800 29 (We=10— 1.38)

Table 3: Adaptive strategy and continuation technique.

Very good agreement between results from low- and high-order dis-
cretizations demonstrates that robust and reliable solutions can be obtained
through the adaptive strategy applied to high-order methods. Numerical
results and limiting Weissenberg numbers compare well with those obtained
by Yurun and Crochet [7].
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4.3 Results with the AVSS-GAL method

In order to increase the limiting Weissenberg number, we now consider the
AVSS formulation [20] with a reference viscosity § = 107 in (4). Applying
the Galerkin technique to this formulation, we use the second finite ele-
ment mesh with a uniform eigth-order approximation of the extra-stresses.
Converged solutions are obtained up to We = 2.16 confirming the good
stabilizing properties of such a formulation.

4.4 Results with the AVSS-SUPG method

Moreover, reliability and accuracy are improved with the consistent Petrov-
Galerkin technique. In order to take advantage of the exponential conver-
gence rates of high-order methods, we perform the calculations (Hy-Ps),
(Hs-Ps), (Hs-P7) and (H»-Pg), with a uniform degree 5,6,7 and 8 for the
approximation of the extra-stress tensor. For an order 8, converged solu-
tions are obtained up to We = 2.45. The accuracy is demonstrated by
p-convergence that can be observed in Figure 7. Therefore, the results ob-
tained with the discretization (H,-Pg) and the AVSS-SUPG method can be
considered as an accurate and robust solution for the sphere problem. For
a low-order approximation with a highly refined mesh (H4-P5), a limiting
Weissenberg number of 2.5 is also reached.

A limiting Weissenberg number 2.49 is observed for a p-adaptive strategy.
The adaptive calculation (Hs-P3_7) provides exactly the same values than
those obtained with (H,-Pg). But, the adaptive method is superior both to
the uniform high-order method and to the uniform low-order method. On
one hand, the accuracy and the robustness of the reference result (H,-Pg) are
obtained by the adaptive approach with 40% fewer degrees of freedom. On
the other hand, for a similar CPU cost, the adaptive approach provides more
accurate results than the low-order calculation (H,4-P3). Table 4 gives some
insight in the accuracy of the different methods for the drag correction factor
at We = 2.0. The relative error is estimated from the difference with the
value obtained from (AVSS-SUPG H,-Pg). Notice that those observations
may strongly depend on the selection of the intial mesh.

5 Conclusion

We applied an adaptive high-order finite element method to predict the
drag correction factor for the upper-convected Maxwell fluid. Accuracy and
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Method Diser. Unknowns Drag Cor. Factor Estimated Error

AVSS-SUPG  H,-Pg 51860 4.045372

AVSS-SUPG  Hjs-P3_~ 31826 4.045048 0.008 %
AVSS-GAL  H,-Pg 51860 4.040366 0.124 %
AVSS-SUPG  Hy-P, 21956 4.053510 0.201 %

Table 4: Accuracy of the drag correction factor for We = 2.0

robustness of the results are demonstrated by p-convergence analysis and
by comparison with results from the literature [7, 12, 15, 19, 20]. It appears
that the computation performed with the AVSS-SUPG formulation and the
discretizations (Hs-P3_7) and (H2-Pg) may be considered as a reference result
for future benchmarks.

We observe that the combination of a suitable formulation (AVSS), a
suitable Petrov-Galerkin technique (SUPG) and a suitable discretization is
required to obtain accurate results at high Weissenberg numbers. FError
estimate and adaptivity are used to analyse and to develop new formula-
tions, while keeping the CPU cost at a reasonable level. Extension to other
viscoelastic models is straightforward.
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Figure 1: Sphere problem : geometry and boundary conditions.
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Figure 2: Drag correction factor as a function of the Weissenberg number.
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Figure 4: Adaptive strategy at We = 0.75. EVSS/GAL formulation. Close-
up views of the adaptive discretizations and estimated error.
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Figure 5: Error index as a function of the number of degrees of freedom. The
adaptive strategy is superior to an uniform enrichment of the discretization.
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Figure 6: Error estimate as function of We. Adaptive strategy for the
continuation scheme. EVSS/GAL formulation. Cumulative CPU time for
DEC2000/300 Alpha 50 Mhz workstation.
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Figure 7: Convergence analysis of the AVSS-SUPG formulation with high-
order approximations. Drag correction factor as a function of We.
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