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Abstract. Large-eddy simulations corresponding to the decaying isotropic turbu-
lence experiment of Comte-Bellot and Corrsin are performed, using a pseudo-spectral
code that incorporates four models: viscosity and hyper viscosity types, each imple-
mented for both the subgrid scale stress tensor and the subgrid scale force. Two 1/T'
scalings are also considered for the viscosity amplitude. The dynamic procedure is
extended to the four models and is tested. Results are obtained with and without
this procedure and for both scalings. The main conclusions are: (a) the two viscosi-
ty models perform equally well; (b) the Kolmogorov scaling performs as well as the
Smagorinsky scaling, yet it is computationally more efficient; (c) in the dynamic
procedure, there is a fairly wide range of test to grid filter ratios which produces
results insensitive to this ratio; (d) the hyper viscosity models lead to energy decay
curves that follow the experimental data as well as the usual viscosity models.
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Abbreviations: LES — large eddy simulation; sgs — subgrid scale; DNS — direct
numerical simulation

1. Formulation

When a filter (hereafter denoted =) is applied to the Navier-Stokes
equations for incompressible flow, an unknown sgs stress 7,; = w;u; —
u;w; appears in the resulting LES equations. Classically, the sgs ten-
sor has been modeled in terms of the velocity gradient. More precisely,

the traceless part, 7%, ! has been modeled in terms of the resolved

157
strain rate tensor S;; = (9;; + 9;u;) /2. The trace can be lumped into
the ‘pressure’, by defining P =P+ %Tkk, and does not affect the
flow dynamics. Such a formulation has been popularized by Smagorin-
sky [1] who proposed an eddy viscosity model for the sgs stress tensor
with an eddy viscosity scaled with the filter width and the local strain

amplitude.

! The superscript “+” will always denote the traceless part of a tensor in the
following. When appearing in a vector, this superscript means that the vector is the
divergence of a traceless tensor.
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The main advantages of the Smagorinsky model are its simplicity
and its stability. It is well-known that, when the Smagorinsky model is
compared to the actual sgs stress that can be computed from DNS, very
poor correlation coefficients are measured (see, e.g., [2, 3]). Moreover,
the Smagorinsky model is purely dissipative while it is usually admitted
that the small scales may locally play the role of a source of energy for
the resolved scales [4, 5, 6]. Hence, although it is sometimes argued
that the only relevant task of a sgs model is to dissipate the correct
amount of energy in average, there are some important motivations for
exploring new sgs models [3, 7, 8].

Before presenting these new models, we first stress that only the
sgs force, f7 = 0;7/;, appears in the Navier-Stokes equation and hence
really needs to be modeled. Moreover, only the solenoidal part of that
force, g7, affects the flow dynamics[3]. The difference between fF and
g7 is the gradient of a scalar ¢, and hence it can also be lumped into
the ‘pressure’ by defining P =P + o.

The purpose of this work is to investigate different simple possibili-
ties for the modeling of the sgs stress tensor, 77}, or the sgs forcing, g;.
We present in Table I the different models that have been considered
in this work[3].

Table 1. Subgrid scale models.

| Model formulation
1 = =21 Sy
2 Ti* = 2Z2 Vi V2§l‘]
3 g,* = 6irnnarn(l/t wn)
4 g,* = _Z2 eimnam(l/t V2577,)

where V? stands for the Laplacian operator and ¢4 is the fully anti-
symmetric rank 3 tensor with €45 = 1. The length scale A corresponds
to the filter width. Summation over repeated indices is assumed. Clear-
ly, the parameter v, has the same dimension as a viscosity. However,
the physical meaning of this quantity depends on the model. It can be
understood as an eddy viscosity in models 1 and 3 while the product
Zzl/t plays the role of an hyper eddy viscosity in models 2 and 4. Two
different scalings for v, have been considered. They are presented in

Table II.
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Table II. Eddy viscosity scaling.

| Model | Formulation |

v =CA |3
v = C}(Z4/3 €1/3

Smagorinsky a

Kolmogorov b

where C' and Cx are dimensionless constants and |S| = (2§ij§ij)1/2.
The scaling b follows the Kolmogorov[11] dimensional analysis. It uses

the filter width A as the length scale and (Zz/é)l/?’ as the time scale.
Here, € represents the rate of energy transfer within the inertial range
(assumed constant). In a LES, the use of the Kolmogorov scaling implic-
itly assumes that the quantity € is accessible during the simulation. Usu-
ally, this is not the case and this has motivated alternative scaling like
a in which € is approximated by invoking local equilibrium between the
rate of energy transfer within the inertial range and the subgrid scale
dissipation € ~ —77; S;;. This yields the classical Smagorinsky scaling
a for the eddy viscosity. The following relation between C' and C'kx can
also be derived:

C=CY (1)

However, it has been shown that the local equilibrium approximation
is not required when the dynamic procedure is used [9, 10]. In that
context, the Kolmogorov scaling has the practical advantage that (i) it
is simpler, and (ii) fewer filtering operations are required when imple-
menting the dynamic procedure.

The dynamic procedure is based on the application of an additional
test filter to the LES equations. This test filter is usually denoted by -~
and is characterized by a filter width A > A. It generates another sgs
tensor corresponding to a coarser resolution T, = (Uit; — u:a;)*. The
comparison between the different stress tensors leads to the Germano
identity [12]

L:'Fj + 7/—;* - T;; =0, (2)
where L}, = (U;i; — ;a,)* is known in terms of the resolved velocity
field. The modeling of the subgrid scale tensors violates the identity
(2). For the Smagorinsky model, the dynamic procedure [13, 14, 15,
16, 17] is implemented by assuming that (i) the same type of model
can be used for 75 and Ty, (i) the same value of the dimensionless
parameter C' can be used in 75 and Ty, (iii) for homogeneous flow,
the situation considered here, C' is independent of position, (iv) C'is
correctly approximated by a global least square minimization of the left
hand side of Eq.(2). For scaling b, the same assumptions are made for
the dimensional product C = Cy €/3. This is justified if both filters
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lie in the inertial range so that € is indeed the same at both filter sizes.
The dynamic procedure leads, for models 1 and 2, to:

<’Y;jL?j> = <ﬁjL:’Fj>

C="mmny O= (3)
<%’j%’j> <%’j%’j>
where < --- > denotes the volume averaging and
. — 2 = o~

¥ (1-a)=2 |X'[S[S;; — A%S[9,] (4a)

5;(h)=2 [K77 - A5, (4b)

Vi(2-a)=—2 [K' [5]V%5, - A [5]V°5,,] . (4¢)

(2-b) )

=2 {ZlO/S - AlO/S} Vzﬁij . (4d

We see that the procedure for scaling b is indeed computationally more
efficient than what is obtained when using scaling a. For isotropic tur-
bulence, one obtains that C' = C'(t) and C' = C(t). Hence, the Kol-
mogorov scaling b produces a uniform eddy viscosity, v;(¢). Because
of the spatial variations of |S], this is not the case when using the
Smagorinsky scaling a.

Notice that model 3 only differs from the classical Smagorinsky mod-
el by terms proportional to the spatial derivatives of v;. Hence, for
isotropic turbulence and scaling b (which lead to v, = 1;(t)), the mod-
els are identical: 1-b = 3-b. Other types of models that would not be
purely dissipative can be constructed as well [3, 6, 7]. They are not con-
sidered in the present paper. The dynamic procedure can be extended
to models 3 and 4 for the sgs force. In that case, one obtains

CHN 5 G
C_<~y:~y;‘>’ C_<’y;"y;‘>’ )

where [} = 9;L}; and

97 (3-0) = in O [ (S| — A%[515] (6a)
T (3b) =i O [ A7 = A 5,

=[3"7 - A v (6b)
77 (4-0) =i 0 [ [5]V%0, — A5]V75, (6¢)
3 (4b) =i O [A7 = A103] 9255,

_ & A v, (6d)
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2. Results

In this section, we present results obtained using the above models for
LES of decaying isotropic turbulence, with comparison to the experi-
ment of Comte-Bellot and Corrsin [18].

In order to carry out the LES’s; a pseudo-spectral code with a ‘3/2
dealiasing rule’ has been developed. The LES equations are integrated
in time using a third order Runge-Kutta scheme for the non linear
terms and an analytical integration for the viscous terms. The time
step is 1072 s and the eddy viscosity is computed only once per time
step.

The initial velocity field is generated by choosing the amplitudes of
the Fourier modes so as to match the 3-D energy spectrum to that mea-
sured experimentally at the first station (see [19]). The phases are cho-
sen randomly. These non-physical initial conditions are then ‘relaxed’
by first letting the flow evolve for a few time steps (typically 10 to
50) and then by rescaling back the amplitudes to retrieve the initial
spectrum. This procedure is repeated several times (typically 5 to 10
times). The obtained velocity field then contains more realistic phase
information and can be used as a good initial condition.

Simulations were first carried out on a 32 grid for all four models,
with scaling a, and using a constant value for €. The C-value was
optimized so as to obtain the ‘best’ energy decay curve. The resulting
evolution for the resolved energy (i.e., the fraction of the total energy
that is resolved by the computation) is presented in Fig. 1. With our
resolution, the initial resolved energy corresponds to 75% of the total
energy. Consequently, the subgrid scales carry less energy than the
resolved scales which is a basic requirement for LES.

As expected with C' constant, models 1-a and 3-a on the one hand,
2-a and 4-a on the other hand, give essentially the same results. The
viscosity models dissipate too much energy in the late stages of decay.
The hyper viscosity models do not dissipate enough energy in the late
stages. Increasing C' in hyper viscosity models increases the dissipation
in the early stages but it does not affect much the late stages. Obvi-
ously, viscosity and hyper viscosity models exhibit different behaviors
(different curvatures) during the early stages.

The experimental and computed spectra at station 2 are shown in
Fig. 2. It is seen that the models predict the spectrum reasonably well,
except in the high wavenumber range. Notice that we could have opti-
mized C so as to obtain better looking spectra at station 2, but this
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Time[s]

Figure 1. Evolution of the resolved energy for the four models with scaling a and
with constant C'. Solid curve: model 1 with C = 0.019, dashed-dotted curve: model
2 with C = 0.01, dashed curve: model 3 with C = 0.019, dotted curve: model 4 with
C = 0.01, circles: experimental data.

would have resulted in an energy decay curve further away from the
experimental data (especially for the hyper viscosity models).

—_
o
S
T

Energy density [cm®/s?]
>

0
10 !
10” 10° 10’
Wavelength [1/cm]

Figure 2. Resolved spectra corresponding to station 2. Solid curve: model 1 with C
= 0.019, dashed-dotted curve: model 2 with C = 0.01, dashed curve: model 3 with
C = 0.019, dotted curve: model 4 with C = 0.01, circles: experimental data.

The results for the energy decay are in fair agreement with the
experiment. However, C' was specified and kept constant. The dynamic
procedure which produces the suitable C'(t) (or C’(t)) is now consid-
ered. The test and grid filters are sharp spectral cutoffs. Their width
ratio, a = A/A, is first taken as a = 2.
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Resolved energy [cm“/s“]
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Figure 3a. Energy decay for models 1-a (dashed curve) and 1-b (solid curve). Decay

for model 1-a with constant C' (dashed-dotted curve) is also shown. Circles are
experimental data.
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Figure 3b. Comparison of the C' values for model 1, scalings a (dashed curve) and
b (solid curve). Circles are experimental data.

At first, both the classical and the Kolmogorov scalings on the eddy
viscosity model (1-a and 1-b) are considered. The results are shown
in Fig. 3a. As expected, the two models with the dynamic procedure
produce rather similar energy decays since they both are of the viscosity
type. The obtained curvatures in the energy decay curves appear better
than what is obtained with C' constant, even if the dynamic procedure
leads to a more dissipative behavior during the early stages.

Models 1-a and 1-b thus produce results that are of equivalent qual-
ity. This observation is strengthened if we consider the time evolution
of the C' value as presented in Fig. 3b. Notice that, for scaling b, the
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C' value reported in the figure is computed from Eq. 1 and the C” def-
inition. The mean dissipation rate, €, is estimated through numerical
time differentiation of the resolved energy curve.

The €' values obtained with both scalings are not expected to be the
same. Indeed, while the Smagorinsky scaling is based on a local equilib-
rium hypothesis, the Kolmogorov scaling relies on the mean dissipation
rate.

Since the Kolmogorov scaling requires substantially fewer filtering
operations than the Smagorinsky scaling [10], it is used for all following
simulations.

The energy decay obtained with all four models and with the dynam-
ic procedure is shown in Fig. 4. These computations were carried out
using the same grid and filters as before. It is seen that models 1-b
and 3-b are slightly too dissipative and that models 2-b and 4-b are not
dissipative enough.

Resolved energy [cm“/s“]

8.2 0.4 0.6 0.8 1
Time [s]

Figure 4. Resolved energy decay for all models with scaling b. Solid curve: model 1,
dashed-dotted curve: model 2, dashed curve: model 3, dotted curve: model 4, circles:
experimental data.

Hyper viscosity models appear to provide an energy decay curve ‘as
good’ as the one obtained with classical eddy viscosity models. This
partly supports some of the hopes formulated for these models after
performing a priori tests on DNS databases [3]. These models certainly
deserve further investigations.

Furthermore, it has been observed that the ratio, «, between the
filter widths could affect strongly C' (or C”) and thus the energy decay
rate. For each model, it appears that there exists a rather large range
of ratios producing similar decay curves. Outside this range, the results
become highly dependent on the value of a.
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Figure 5a. Influence of o on C' for model 1-a. The first 200 time steps correspond
to the setting of realistic initial conditions. 1: @ = 1.1, 2: a = 1.2, 3: « = 1.5, 4: «
=20,5:a=256a=307Ta=40
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Figure 5b. Influence of @ on the resolved energy decay for model 1-a. 1: o = 1.1,
2:a =12 3 a=15 4 a =20,5 a =25 6:a =3.0,7 a =40, circles =
experimental data

For instance, Figs. 5a and 5b show the influence of o on the com-
puted C' and on the resolved energy decay for model 1-a. The various

curves correspond to a fixed effective grid filter, A, and to different test
filters, A.
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Similar behaviors have been observed for all models and both scal-
ings. However, the range of a seems to depend on the model. If we
compare viscosity models, we observe that the ranges for the models
1-b and 3-b are slightly different. Recall that, since v, = 1, (t) only,
these models are equivalent. However, the dynamic procedure for 3-b
is different from that used for 1-b. In the first case, C is determined by
optimization at the sgs stress tensor level while it is obtained from an
optimization at the sgs force vector level in the second case.

3. Conclusion

Large eddy simulations of the decaying isotropic turbulence experiment
of Comte-Bellot and Corrsin have been performed, using a pseudo-
spectral code that incorporates some subgrid scale models proposed in
[3]. More specifically, eddy viscosity and hyper eddy viscosity models
have been considered for this paper. For each model class, two formu-
lations have been tested: the classical formulation based on strain rate
and a vorticity-based formulation. This leads to four different ‘models’.
For each model, two scalings for the eddy viscosity have been consid-
ered: the classical Smagorinsky scaling and the ‘Kolmogorov’ scaling
proposed in [10]. The dynamic procedure has been extended to all four
models and to both scalings, and has been tested numerically. Results
have been obtained with and without the dynamic procedure and have
been compared.

One conclusion of this investigation is that the Kolmogorov scal-
ing produces results in the dynamic procedure that are very similar to
those obtained with the classical Smagorinsky scaling. Yet, it is com-
putationally much more efficient because fewer filtering operations are
required.

Another conclusion is that hyper viscosity models produce an ener-
gy decay curve that follows the experimental data for the whole time
period covered by the experiment as well as the usual eddy viscosity
models. This result is also supported by a priori tests performed on
a 512° DNS database of the same experiment [3]: higher correlations
with the actual sgs stress tensor and sgs solenoidal forcing were indeed
obtained. Hyper viscosity LES models deserve further investigations.

Finally, the influence of the ratio between the two filter widths used
in the dynamic procedure has been probed numerically. It has been
found that there is a wide range of ratios leading to essentially the same
decay curves. This range depends on the models and on the scalings.
This sensitivity is most likely related to the higher order derivatives
required in the dynamic procedure.
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One of the future aims of our work is to test some LES models in the
vorticity-velocity formulation of the Navier-Stokes equation [3] instead
of the present velocity-pressure formulation. Indeed, a priori tests have
shown that the correlations between the modeled and actual sgs terms
are higher in vorticity-velocity LES than in velocity-pressure LES. In
vorticity-velocity LES, models based on the resolved vorticity appear
as natural candidates. This is confirmed by preliminary results.
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