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Abstract

We propose a new numerical technique, referred to as the Adaptive La-
grangian Particle Method (ALPM), for computing time-dependent viscoelas-
tic flows using either a differential constitutive equation (macroscopic ap-
proach) or a kinetic theory model (micro-macro approach). In ALPM, the
Eulerian finite element solution of the conservation equations is decoupled
from the Lagrangian computation of the extra-stress at a number of discrete
particles convected by the flow. In the macroscopic approach, the extra-stress
carried by the particles is obtained by integrating the constitutive equation
along the particle trajectories. In the micro-macro approach, the extra-stress
is computed by solving along the particle paths the stochastic differential
equation associated to the kinetic theory model. At each time step, ALPM
automatically enforces that all elements of the mesh have a number of La-
grangian particles ranging within a user-specified interval. Results are given
for the start-up flow between highly eccentric rotating cylinders, using the
FENE and FENE-P dumbbell models for dilute polymer solutions.

1 Introduction

The development of numerical methods for solving complex viscoelastic flow
problems has been the subject of active research efforts over the last 20
years. A vivid historical account is found in the book by Tanner and Wal-
ters [1]. Until recently, viscoelastic flow simulations have been based on
a purely macroscopic approach that couples the numerical solution of the
conservation laws with the integration of a suitable rheological constitutive
equation. Progress in macroscopic viscoelastic flow computations has been
impressive indeed (see e.g. the review literature [2-6]), to the extent that



much of the focus has now shifted towards modeling issues such as the evalu-
ation of constitutive equations in complex flows. The subject is by no means
closed, however. In particular, robust and efficient techniques remain to be
developed for addressing the complex three-dimensional and time-dependent
problems relevant to laboratory or industrial applications.

A novel paradigm for viscoelastic flow simulations was introduced in 1992
by Ottinger and Laso [7, 8], under the now famous acronym CONNFFESSIT
(Calculation Of Non-Newtonian Flows: Finite Elements and Stochastic SIm-
ulation Technique). It is basically a micro-macro approach that combines the
solution of the conservation equations (macro) with the direct use of a kinetic
theory model (micro) describing the rheology of the viscoelastic fluid. Thus,
instead of relying on a constitutive equation, one determines the viscoelastic
contribution to the stress by means of a coarse-grain model of the molecular
dynamics of the fluid. This is achieved using appropriate stochastic simula-
tion techniques. Recent developments in the emerging micro-macro approach
to viscoelastic flow computations are reported in [9-14].

Micro-macro computations are much more demanding in computer re-
sources than their macroscopic counterparts. They do provide, however, a
direct link between the flow-induced development of the micro-structure (e.g.
molecular orientation and stretch) and the flow operating conditions. Also,
micro-macro simulations can be used to guide the development of improved
constitutive equations. These points have been substantiated in recent stud-
ies of dilute polymer solutions. In this particular framework, a useful kinetic
theory model describes the fluid as a suspension of dumbbells convected in
a Newtonian solvent [15]. The dumbbell model consists of two Brownian
beads connected by a spring. It describes in a coarse-grain manner the in-
tramolecular interactions taking place in the polymer (through the spring
force), as well as the polymer-solvent interactions (through Stokes drag and
Brownian forces acting on the beads). The polymer configuration state is
thus described by the orientation and length of the vector @ connecting the
two beads. Interestingly, if one assumes that the connector force is linear
in @, the kinetic theory can be exploited fully and without mathematical
approximations to yield an equivalent constitutive equation known as the
Oldroyd-B model. This particular constitutive equation is a realistic model
of dilute polymer solutions in flows that do not extend the polymer molecules
close to their maximum extension (i.e. their contour length) (e.g. [16-19]).
In modeling stronger flows, finite extensibility of the polymer must be taken
into account. One approach is the Finitely Extensible Non-Linear Elastic



(FENE) dumbbell model, which makes use of a connector force that is a
non-linear function of Q. The force is singular at maximum extension, thus
preventing the dumbbell from extending beyond a specified length. Recent
stochastic simulations of FENE dumbbells have demonstrated the value of
this non-linear and yet rather crude kinetic theory model (e.g. [20-22]). The
important point here is that the FENE model cannot be translated into
a mathematically equivalent constitutive equation. The so-called FENE-P
constitutive equation [15] can be derived from the FENE theory using a
mathematical (closure) approximation due to Peterlin. As shown in [21, 23,
24], the impact of the closure approximation is significant; in other words, the
FENE and FENE-P rheological properties differ markedly in certain flows.
Stochastic simulations of FENE dumbbells have been exploited recently [21]
to derive improved closure approximations of the kinetic theory. The need
remains, however, for micro-macro simulation techniques that make direct
use of a kinetic theory model, without relying on closure approximations of
questionable value.

In a recent paper [14], we have proposed a new numerical technique,
referred to as the Lagrangian Particle Method (LPM), for solving time-
dependent viscoelastic flows using either the macroscopic or the micro-macro
approach. Briefly, LPM decouples at each time step the Eulerian finite ele-
ment solution of the conservation equations and the Lagrangian computation
of the polymer stress. A specified number of discrete particles is convected by
the flow, and the polymer stress carried by the particles is obtained by inte-
grating along the particle paths either the constitutive equation (macroscopic
approach), or the stochastic differential equation (micro-macro approach).
In [14], LPM was used successfully for computing the start-up flow of a di-
lute polymer solution between slightly eccentric rotating cylinders, using the
FENE-P (macroscopic) and FENE (micro-macro) dumbbell models.

As stated in [14], a major next step in the further development of LPM is
the design of an adaptive algorithm that would allow the automatic creation
or deletion of Lagrangian particles when and where needed. In the present
paper, we propose a first version of the Adaptive Lagrangian Particle Method
(ALPM), wherein the number of Lagrangian particles in each element of the
mesh is automatically kept within a user-specified interval during the course
of the simulation. ALPM is evaluated in the start-up flow of FENE-P and
FENE fluids between highly eccentric rotating cylinders, which indeed is a
much more challenging problem than the small-eccentricity case considered
in [14]. The simulation results clearly demonstrate the value of the adaptive
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algorithm.

The paper is organized as follows. In Section 2, we detail the equations
governing the flow of FENE and FENE-P fluids. Section 3 gives an overview
of the basic technical features of LPM. The large-eccentricity LPM simulation
results are reported and discussed in Section 4. We describe in Section 5 the
basic adaptive algorithm of ALPM, and report the ALPM simulation results
in Section 6. Finally, we conclude in Section 7.

2 Governing equations

In the present paper, we consider the time-dependent isothermal flow of an
incompressible viscoelastic fluid in a two-dimensional confined geometry €2
with boundary 0. The Eulerian formulation of the conservation laws for
linear momentum and mass read [25]

Do

thZV'(—pI—FT), (1)

V.v=0. (2)

Here, pis the density, p and v are the pressure and velocity fields, respectively,
I is the unit tensor, % is the material time derivative operator, and T is
the extra-stress tensor. We have neglected body forces in the momentum
equation. The conservation laws (1-2) must be closed with a suitable model
relating the deformation history of the fluid to the extra-stress tensor 7. In
computational studies, it is usual to write the extra-stress 7 as the sum of a

purely-viscous Newtonian contribution 7y and a polymer contribution 7,

T=TnN+ Tp, v = 20N D, (3)
where D is the rate of deformation tensor 1 (Vv+Vov") and ny is a constant
shear viscosity coefficient. In the context of polymer melts, 7y accounts for
the fast relaxation modes. For polymer solutions, 7y is the solvent contri-
bution to the extra-stress. The polymer extra-stress 7, is itself often written
as the finite sum of individual contributions T]Ef), each corresponding to one
data of the discrete linear relaxation spectrum,

Nsp

Tp=_ 'r;f). (4)
i=1
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Non-linear coupling between the modes is neglected in this formulation. The
numerical techniques presented in this paper are applied to the case of a
single relaxation time (NNg, = 1); they can readily be extended to a finite
spectrum (N, > 1).

We shall consider two approaches for determining the polymer stress 7:
a macroscopic constitutive equation of the differential type, and a coarse-
grain kinetic theory model of the polymer dynamics. The generic form of
differential constitutive equations used in computational rheology reads

D,
Dt

= f(7p. K), (5)

where k is the velocity gradient and f is a model-dependent tensor function
of 7, and k. Equation (5) governs the evolution of the polymer stress along
each particle path of the memory fluid. The class of kinetic theory models [15]
considered in this paper describes the molecular configurations of the polymer
molecules by means of suitable geometrical quantities denoted globally by X.
A diffusion equation is derived that governs the evolution of the probability
distribution function (X ,t) for the configurations at each material point
of the continuum. The polymer stress 7, is then obtained at each material
point by means of suitable averages over the configuration space.

For the sake of illustration, we consider below the kinetic theory of di-
lute polymer solutions known as the Warner Finitely Extensible Non-Linear
Elastic (FENE) dumbbell model [15]. The polymer solution is viewed as a
flowing suspension of dumbbells that are convected by the Newtonian sol-
vent and that do not interact with each other. Each dumbbell consists of
two identical Brownian beads connected by a spring. In this coarse-grain
picture, the beads are the interaction sites with the solvent (slow viscous
drag and thermal Brownian forces), while the connector spring force models
intramolecular interactions. So, the configuration state X is simply given
by the vector @ connecting the two beads of each dumbbell. In the FENE
theory, the spring force F¢ is defined as

7
1-Q%/Q3

where H is a spring constant and () is the maximum dumbbell length beyond
which the polymer cannot be extended. The diffusion equation that governs
the evolution of the configuration distribution function (@), t) reads for non-

F(Q) = Q, (6)



homogeneous flows as follows [15]

oY oY 0 2 2kT 0 0
hikd [t S A .Q - 2 F¢ o 2 2 7
where ( is the friction coefficient of the beads, T is the absolute temperature,
k is the Boltzmann constant, and @ denotes the spatial position. Assuming

that ¢(Q, ) is known at each material point, the polymer stress 7, is then
obtained by means of Kramers’ expression [15]

T, =—nkTI+n (QF°(Q)), (8)

where n is the dumbbell number density and the angular brackets ( - ) denote
the configuration space average [- ¢ d@). A convenient way of exploiting
Kramers’ expression (8) consists in integrating along the flow trajectories
the It6 stochastic differential equation [26]:

iQ = Q- %F"’(Q)] dt + ,/g AW, (9)

where W is the three-dimensional Wiener process, namely a Gaussian stochastic
process with vanishing mean and covariance (W (t;) W (t,)) = min(t1,t5) I.
Indeed, Eq. (9) is an evolution equation for the Markovian process @ whose
probability density ¢ is solution of the diffusion equation (7). Thus, equa-
tions (9) et (7) are mathematically equivalent. In the stochastic simulation
approach, one numerically computes the evolution of many realizations of the
stochastic process @ (via Eq. (9)); the polymer stress 7, is then obtained
by means of Kramers’ expression (8), with the configuration average ( - )
replaced by an ensemble average.

The particular differential constitutive equation used in this paper, known
as the FENE-P model, is derived from the FENE kinetic theory using a
suitable closure approximation due to Peterlin; the FENE spring force (6) is
replaced by the self-consistent pre-averaged approximation

@) = o7 @ (10)

The Peterlin approximation yields an evolution equation [15] for the config-
uration tensor A = (QQ):

DA ; AKT 4H/(
BT +v-VA-k-A-A- k' = c I 1—tr(A)/Q%A’ (11)



while Kramers’ expression (8) and the pre-averaged force law (10) give the
FENE-P polymer stress as an algebraic expression of the configuration tensor:

H
Ty =—nkTI +n ——FF+F= A. 12
p (A .
Equations (11-12) are readily manipulated to yield a differential constitutive
equation for 7, of the generic form (5). In numerical work, however, it is
more convenient to solve the configuration equation (11), which has the same
generic form

?t = g(A, R’)v (13)

and then compute 7, using Kramers’ expression (12). For further reference,
we note that the FENE and FENE-P models involve a time constant \ =
(/4H and a dimensionless finite extensibility parameter b = HQ%//@T The

polymer contribution to the zero shear rate viscosity is np =nkT\ ( ) for

the FENE-P fluid, and 1) = nkT\ (;5) for the FENE theory.

b+3

3 The Lagrangian Particle Method

The Lagrangian Particle Method (LPM) has been described in detail in our
recent paper [14]. A typical time step is depicted schematically in Fig. 1.
The Eulerian solution of the conservation equations (1-2) is decoupled at
each time step from the Lagrangian computation of the polymer stress along
individual particle paths. Let us consider a typical time step [t,,t,11 =
tn + Atcons|- Using the current polymer stress values 7,(t,) computed in
each element at the previous time step, a standard Galerkin finite element
technique is applied to the conservation equations to yield the updated ve-
locity and pressure fields at time ¢,,;. The Galerkin equations read (e.g.

[4])
/wz[ } dQ+/V1/)T p°I + 2ny D 4 7] dQ:/mwitds, (14)

/erj V- v] dQ = 0, (15)

where ); and 7; are given finite element basis functions for the velocity and
pressure respectively (1 < ¢ < N,,1 < j < N,), t is the contact force and
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Figure 1: Schematic of the Lagrangian Particle Method (LPM).



s is the arc length measured along the boundary 02 of the computational
domain. In Eqgs (14-15), every term marked with the superscript a denotes
the corresponding approximation obtained from the finite element expansions

vi(x,t) = Zv;'vi(t) vi(x), p(x,t) = zzilﬁ(t) (). (16)

The Galerkin equations (14-15) constitute a set of first-order differential
equations for the unknown nodal values v'(¢) and p(t). In LPM, we consider
the polymer contribution to (14), namely

/QV@/;iT-Tp a0, (17)

as a known pseudo-body force term evaluated at time ¢,. We discretize
(14-15) in time using the Euler forward/Euler backward predictor-corrector
scheme with a fixed time step Afcons. In the current implementation of
LPM, a Newton scheme is used to solve the non-linear corrector equations,
the initial guess being provided by the predictor. Biquadratic continuous
and bilinear continuous basis functions are used for velocity and pressure,
respectively.

The new velocity field at time ¢,,; is then used to update the polymer
stress 7,. In LPM, we compute the polymer stress at a number N, of
Lagrangian particles that are convected by the flow, by solving along the
computed particle paths either the macroscopic constitutive equation (13)
or the stochastic differential equation (9) for a large number of dumbbells
carried by each particle. Over the time step [t,,%,11], the trajectory r(t)
of each Lagrangian particle is determined using the Eulerian velocity field
obtained at time %,; one solves

dr
dt
by means of an element-by-element fourth-order Runge-Kutta method, with
a constant time step Aty < Ateons, and the initial condition 7(¢,) known
from the previous time step.
Having thus computed the trajectory T = {r(t),t € [tn,tni1]} of each
Lagrangian particle, we update the polymer stress as follows. For the FENE-
P model, we solve along T the configuration equation

DA _ giawn). (e, 1.). (19)

v(r, t,), (18)



using a fourth-order Runge-Kutta technique with a constant time step At onst
such that Atiyack < Ateonst < Ateons. The initial condition A(r(t,)) is known
from the previous time step. For the FENE dumbbell model, each Lagrangian
particle carries a number N; of dumbbells. The configuration @ of each
dumbbell is updated by solving along the trajectory 7 the stochastic differ-
ential equation

2 4kT
dQ(r(t)) = [&*(r(t), tn) - Q(r(2)) — ZFC(Q(T‘(t)))]dt+ ekl (20)
Again, the initial condition Q(r(t,)) is known from the previous time step.
In view of (8), the updated polymer stress carried by a particle is given by
the ensemble average

Tp(r(tar1)) = 1= 2 QU (r(tuir)) FAQY (r(tusn))) —nkT I, (21)

where Q' is an individual realization of Q (1=1,2,...,Ny). We solve (20)
by means of the Ottinger predictor-corrector scheme [26, 14] of weak order
2 with a constant time step Atgoen such that Atiaae < Atgiocn < Afeons.
We use correlated ensembles of dumbbells [14] in the sense that (i) the same
initial ensemble is used in each Lagrangian particle, and (ii) the same Ny
independent Wiener processes are generated to compute the configuration of
corresponding dumbbells in each particle.

At time t,,1, we thus have at our disposal values of the updated poly-
mer stress T, at discrete Lagrangian particles located at r!(t,,,), for | =
1,2,..., Npart- In order to compute the pseudo-body force integral (17) that
will be used to update the velocity field at time t,, 19 = t,, 11 + Atcons, We com-
pute in each finite element an Eulerian representation of the polymer stress.
This is achieved by computing the bilinear least-squares polynomial that best
fits the Lagrangian stress data available in each element at time ¢, ;. This
requires of course that at least four Lagrangian particles be present in each
element.

LPM has been used successfully in [14] for solving the start-up flow of
FENE and FENE-P fluids in a small-eccentricity journal bearing. In the
present paper, we consider the case of a large-eccentricity journal bearing, a
much more difficult problem indeed.
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4 LPM applied to the large-eccentricity
journal bearing problem

We consider the time-dependent, planar flow of FENE and FENE-P fluids
between eccentric cylinders, starting from the rest state (Fig. 2). The inner
cylinder, of radius R;, is rotating at a constant angular velocity w, while
the outer cylinder, of radius R,, is fixed. The axes of the two cylinders are
separated by an eccentricity e. We assume that the fluid sticks to the cylinder
walls, and specify the rest state as initial conditions. Thus, v*(x,t = 0) is
set to 0 over 2. When using the macroscopic FENE-P constitutive equation,
the initial configuration tensor A is set to its equilibrium value identically
(this amounts to specifying 7,(z,t = 0) = 0 over ). In the stochastic
simulations, the initial dumbbell configurations in each Lagrangian particle
are generated using the equilibrium distribution function [15].

The particular flow parameters and material data used in this work are
listed in Table 1. The present flow problem is characterized by the di-
mensionless eccentricity € = Roi 7 = 0.67, the dimensionless gap thickness
p = ez fi = 1.5, the Reynolds number Re = pwRi(R,— R;)/(ny +1y) = 0.8,
the Deborah number De = A\wR;/(R, — R;) = 1, the dimensionless finite ex-
tensibility b = 50, and the viscosity ratio § = nn/(ny +1,) = 1/9.

Flow parameters | ;=1 R,=25 e=10 w=0.5

Material data | A=3 b=350 p=1 ny=01 7 =08

Table 1: Flow parameters and material data used in the simulations (ex-
pressed in an arbitrary consistent system of units).

A typical finite element mesh is shown in Fig. 2. We use structured grids
with N, x Ny quadrilateral elements, when N, and Ny are the number of
uniformly-distributed elements in the radial and azimuthal directions, respec-
tively. The numerical results shown in this section have been obtained with
the 10 x 40 mesh of Fig. 2 with Atens = 1072 and Atyacc = Ateonst = 1073,
The numerical solutions will be presented in terms of the temporal evolution
of the velocity and polymer stress in the region of narrowest gap (Fig. 2),
where the largest velocity and polymer stress gradients develop.

The small-eccentricity problem (¢ = 0.1) studied in our previous paper [14]
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Figure 2: Finite element mesh for computing the start-up flow in a journal
bearing. The enlargement shows a number of Lagrangian particles convected
by the flow, as well as the locations where the computed polymer stress (o)
and velocity (o) are displayed in subsequent figures.
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is essentially a perturbed viscometric flow without recirculation flow lines.
The picture is quite different in the large eccentricity case, as shown in Fig.
3. Here, we illustrate the steady-state streamlines computed for the FENE-P
fluid. There is a significant recirculation zone in the region of large gap where
fluid elements are about 200 times slower than those flowing along the quasi-
circular paths induced by the moving cylinder. The converging-diverging flow
region located between these two distinct regimes constitutes as we shall see
a numerical challenge for LPM.

Figure 4 shows the large-eccentricity results obtained with LPM for the
FENE-P fluid. Several simulations are depicted, for a fixed number Ny,
of Lagrangian particles ranging between 3600 and 810000. In each case, the
particles are distributed uniformly in each element at time ¢ = 0. The LPM
results of Fig. 4 are thus for an average number of particles per element Nr‘jffrt
between 9 and 2025. While the specification N, =9 was used successfully
in [14] for solving the corresponding small-eccentricity problem, inspection of
Fig. 4 reveals that many more particles are needed in the large-eccentricity
case to obtain stable and accurate LPM results. Indeed, the LPM simulations
with N, = 9 and 25 failed before obtaining the steady-state. With N&, =
100, the transient response is computed accurately, but the results become
unstable once the steady-state is reached. Use of more particles yields stable
and accurate results. In fact, the LPM results obtained with N{l', = 256 are
quite satisfactory for typical rheological studies. The results obtained with
Nty = 2025 have converged numerically at the scale of the drawing; they
will be used in the sequel as reference solution.

The LPM simulation with N, = 9 failed at time ¢ ~ 2, where one finite
element happens to have less than four particles. It is useful to examine in
Fig. 5 how would the spatial and statistical distributions of the particles
evolve at later times using the uncoupled (i.e. Newtonian) flow kinematics.
Clearly, many elements located in the converging-diverging flow region do
not have enough particles; some are even empty.

Similar histograms of the statistical distribution of particles in the ele-
ments are shown in Fig. 6 for the LPM simulations with N;};rt = 100 and
256; the information is given for time ¢ = 10, where the steady-state solu-
tion is essentially reached. We see that all elements have enough particles,
thus producing satisfactory numerical results. The statistical distribution of
particles, however, has spread significantly relative to the initial distribution
(i.e. a Dirac function located at NS}fm)- This implies that many elements
may be richer in particles than actually warranted for numerical stability
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Figure 3: Steady-state streamlines computed with the FENE-P constitutive
equation.
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Figure 5: LPM simulation for the FENE-P fluid with an average of NSfrt =9
particles per element. Spatial and statistical distributions of the particles at

time ¢ = 10 using uncoupled (i.e. Newtonian) flow kinematics.

and accuracy. There is thus a need for an adaptive version of LPM, referred
to in the remainder of the paper as ALPM, where the number of Lagrangian
particles is allowed to vary during the course of a particular simulation.

5 The Adaptive Lagrangian Particle Method

A typical time step of ALPM is depicted schematically in Fig. 7. ALPM and
LPM are essentially equivalent (compare with Fig. 1), the exception being
the new adaptivity block. The latter involves three basic steps; namely (i)
creation, (ii) initialization, and (iii) destruction of Lagrangian particles. At
each time step, ALPM enforces that all elements of the mesh have a number
of Lagrangian particles in the user-specified interval [N;if;fn " Nng;{n *. How
this is achieved is briefly described next. For more details regarding the
computer implementation of ALPM, see [27].
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Figure 7: Schematic of the Adaptive Lagrangian Particle Method (ALPM).
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5.1 Creation of Lagrangian particles

In each quadrilateral finite element, let us define a uniform grid of \/nggtm e

ngur,;nin so-called Reference Locations (RL). As shown in Fig. 8, the RL’s
are the locations where the specified minimum number of particles would be
located if they were distributed uniformly. ALPM then checks that at least
one particle of the element is close enough to each RL, i.e. that it is enclosed
in a square box centered about the RL. If no particle is found to be close
enough to a particular RL, ALPM creates a new particle there. Figure 8

illustrates the creation step for one new Lagrangian particle.

O O

oy @ L

i

R T

o | | o

X | X o® X o o®
___________ ok ettt T S P P

Figure 8: ALPM: Creation step for NSf;tmin = 3 x 3. The crosses denote
the Reference Locations (RL), while the black circles are the Lagrangian
particles present in the element. Since no particle is found close enough to
the upper-left RL, a new particle is created there.

5.2 Initialization of the configuration state

Once a new particle is created at time ¢,, in an element, its configuration state
must be properly initialized in order to allow for the solution between ¢, and
t,+1 of the constitutive or stochastic differential equation along the particle’s
path (Fig. 9). The initialization step is again performed in an element-by-
element fashion. Ideally, one would wish to somehow preserve the polymer
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stress field 7,(¢,) computed in the element at the previous time step. Within
an isotropic term, the polymer stress (8) is proportional to (QF°(Q)). On
the basis of the Lagrangian particles present in the element at time ¢,,, one can
compute the linear least-squares polynomial that fits the available (QF(Q))
Lagrangian data. The polymer stress (QF°(Q))™" P2*) at the new particle’s
location is then obtained by interpolation. The remaining task is to compute
the configuration state of the new particle that gives the polymer stress
(QF(Q))™¥ Pa)  For the FENE-P fluid, the configuration state is given
by the second moment A = (QQ). In view of (10), we have

c (new part) __ HA
@F@) ) = i hs

which is readily inverted to initialize the configuration A of the new particle
at time ¢,,.

(22)

s ||

Figure 9: ALPM: Initialization step for the new particle created at the upper-
left corner of the element. FENE-P fluid (left): the arrows illustrate the least-
squares process used to compute (QF°(Q)) at the new particle using existing
Lagrangian data. FENE fluid (right): the least-squares process is performed
using individual dumbbell data. Each particle carries three dumbbells, for the
sake of illustration. Dumbbells of the same “type” are statistically correlated.

For the FENE dumbbell kinetic theory, the configuration state is given by
the set of connector vectors {Q(’),i =1,2,..., Ny} of the dumbbells carried
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by the particle. In view of (6), we have

HQQ > H Na Q(i)Q(i)

1-t(QQ)/Q5"  NaZ1-t(QVQY)/Q3

(23)
The difficulty with (23) is clear: it is not possible to compute the set {Q"}
by direct inversion of (23), as we did for the FENE-P configuration tensor A.
Another approach is thus called for. We propose to initialize the connector
vector of dumbbell #7 by means of a linear least-squares approximation based
on the Qs of the corresponding i™* dumbbell carried by the particles present
in the element at time ¢, (Fig. 9). Obviously, this procedure can only be
used with correlated ensembles of dumbbells.

(QF(Q))me™ part) = (

5.3 Destruction of Lagrangian particles

The destruction step allows ALPM to enforce a maximum of N:,’f;{n ** particles

in each element (Fig. 10). The element-by-element destruction loops goes as
follows, as long as the number of particles is larger than Nglat;fl ™. (i) Find
the two particles LP' and LP? that are closest to each other, (ii) Create a
new particle LP"" in between LP! and LP?, (iii) Initialize the configuration
state of LP™" and (iv) Remove LP! and LP?. The initialization step (iii)
is a simple arithmetic mean of either the configuration tensor A (FENE-P
model), or the 7" dumbbell connector vector QY. i=1,2,...,N, (FENE

fluid).

6 ALPM applied to the large-eccentricity
journal bearing problem

6.1 FENE-P fluid

Figure 11 shows the large-eccentricity results obtained with ALPM and
the FENE-P fluid. The mesh is that of Fig. 2, and the time steps are
Ateons = 1072 and Atyack = Ateonst = 1072, This particular simulation en-
sures that the number of particles in each element is always in the interval
[Nglat;g“ " Nglat;fl ™1 =19, 20]. Clearly, ALPM produces satisfactory results even
with such a small number of particles. Not surprisingly, Fig. 11 shows that
ALPM has created new particles near the moving cylinder only.
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Figure 10: ALPM: Destruction step for ngg{nax = 9. Left: Three particle

pairs (LP!, LP?) are identified. Right: Three new particles are created in
between the LP! and LP? particles; the latter are removed.

Convergence of the ALPM results to the LPM reference solution (obtained

with Nglfrt = 2025) is illustrated in Fig. 12. Here we show the temporal

evolution of the polymer stress computed by ALPM with [NS::;E“ in ;!f;fn ]

[9,20], [25,50], and [121,150] respectively, all other numerical parameters
being kept unchanged. The polymer stress transient computed with ALPM
is quite smooth; numerical oscillations somewhat affect the steady-state, but
the amplitude of these spurious oscillations decreases when the number of
particles increases.

Contour lines of the velocity v, and the normal stress difference 7,, — 7,
are shown in Fig. 13. Here we give the results at time ¢ = 10 of two
ALPM simulations for the FENE-P fluid, with [Nou™", Newi™®™] = [9, 20]
and [121,150], respectively. The results are in good agreement. One notes
also the satisfactory smoothness of the polymer stress field.

6.2 FENE fluid

Figure 14 shows the large-eccentricity results obtained with ALPM and the
FENE dumbbell kinetic theory. The mesh is again that of Fig. 2, and
the time steps are Ateons = Atgack = Atgsocn = 1072, Two simulations
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Figure 11: ALPM simulation for the FENE-P fluid with [Ngg™™, Noaa™] =
[9,20]. Upper-left: spatial locations at time ¢ = 10 of particles that were
present in the initial ensemble of particles at t = 0. Upper-right: spatial lo-
cations at time ¢ = 10 of particles created during the course of the simulation.
Lower-left: statistical distribution of particles at time ¢ = 10. Lower-right:
temporal evolution of the polymer stress in the region of thinnest gap (see

Fig. 2); the LPM 2025 reference solution is also shown.
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Figure 12: ALPM simulation for the FENE-P fluid using various values of
[NS::;E“ ", N;!f;fn *]. Temporal evolution of the polymer stress in the region of
thinnest gap (see Fig. 2). Convergence to the LPM 2025 reference solution

is observed.
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ALPM 9, 20]

Figure 13: ALPM simulation for the FENE-P fluid. Contour lines of velocity
and polymer stress at time ¢ = 10 obtained with [N;!f;trn]n, ngulj;naX] =9, 20]
and [121,150]. A constant increment of 0.1 and 1.0 is used for the velocity

and stress, respectively.
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are illustrated, with [Noai™™, Noawi™] = [9,20] and [25,50], and N, = 5000
and 3000 dumbbells in each particle, respectively. The smoothness of these
micro-macro results is noteworthy. The FENE-P solution is also shown for
comparison purposes. In this particular flow problem, the velocity field is
found to be unaffected by the Peterlin closure approximation (at least for
the case De = 1 studied here). The FENE and FENE-P polymer stresses,
however, are indeed very different.

The temporal evolution of the velocity and polymer stress fields is illus-
trated in Figs. 15 and 16. Here, we plot contour lines of the velocity v,
and the normal stress difference 7, — 7,, at selected values of time, for
(NS Now®™] = [25,50] and N4 = 3000.

A velocity overshoot is predicted at ¢ = 1 (cfr Fig. 14) in the region of
thin gap. The fluid is also found to move quite rapidly during the transient
phase (¢ = 2) in the region of large gap.

On the whole, the computed velocity and stress fields are quite smooth
during the transient phase. As observed already with the FENE-P model,
spurious oscillations somewhat perturb the steady-state solution. Their am-
plitude is not dramatic, however.

The micro-macro ALPM simulations for the FENE fluid provide a wealth
of information regarding the flow-induced evolution of the polymer config-
uration. For example, we show in Fig. 17 how the flow has distorted the
initial distribution of dumbbell length near the wall, in the region of thinnest

gap.

7 Discussion and conclusions

We have demonstrated in the present paper the ability of ALPM of producing
accurate numerical results for the time-dependent flow of a viscoelastic fluid
between highly-eccentric cylinders, using either a macroscopic constitutive
equation of the differential type (FENE-P model) or a kinetic theory model
(FENE dumbbells). ALPM is clearly a step forward relative to its parent
LPM, which was used successfully in [14] for solving the small-eccentricity
journal bearing problem.

Table 2 compares LPM and ALPM in terms of the computer resources
(CPU time and central memory capacity) needed to produce the results of
Sections 4 and 6. The FENE-P simulations were performed on a single DEC
Alpha processor, while the FENE calculations were run on a farm of 10 DEC
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Figure 14: ALPM simulation for the FENE fluid. Temporal evolution of

velocity and polymer stress in the region of thinnest gap (see Fig. 2). Results

for [NSw™™, New™®™] = [9,20] and [25,50] with a number N of dumbbells in

each particle equal to 5000 and 3000, respectively. The FENE-P results are

shown for comparison purposes.
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Figure 15: ALPM simulation for the FENE fluid with [N&Lm® nelbmax) _

part part
[25,50] and N,y = 3000. Temporal evolution of the contour lines of the wv,

velocity component. A constant increment of 0.1 is used for each snapshot.
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Figure 16: ALPM simulation for the FENE fluid with [N&Lm® elbmax) _

part part

[25,50] and N; = 3000. Temporal evolution of the contour lines of the first
normal stress difference 7,, — 7,,. A constant increment of 1.0 is used for
each snapshot.
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Figure 17: ALPM simulation for the FENE fluid with [N;:f;fnin,]\fsggfnax] =
[9,20] and N, = 5000. Distribution of dumbbell length at time ¢ = 0 and
t = 10 computed near the wall in the region of thinnest gap. The histograms
are drawn using the Lagrangian data available in the two finite elements
containing the point (e) of Figure 2. Dumbbell length is made dimensionless

with +/kT/H. The circle on the horizontal axis marks the upper limit V0.
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Alpha processors connected through a 100 MHz switch. Details on the MPI-
based parallel implementation of ALPM are given elsewhere [27]. Briefly,
we distribute the N; dumbbells carried by each Lagrangian particle to the
P available processors, and compute their configuration in parallel. A com-
munication phase is needed to assemble in each processor the contributions
of the P processors to the polymer stress. The remaining ALPM calcula-
tions, which are much less expensive than the stochastic simulation step,
are then performed redundantly by all processors in order to avoid further
communication overheads.

One observes in Table 2 that the LPM timing and memory data follow a
linear behaviour of the form a+ 00N+, where the constant a is the cost of the
Eulerian macroscopic solution of the conservation equations (Fig. 1). The
CPU time quoted in Table 2 is per macroscopic time step. So, the total run
time of the LPM 2025 FENE-P simulation of Fig. 12, over the time interval
[to, ts] = [0, 15], amounts to about 54.2 hours. The computer resources used
by the corresponding ALPM [121, 150] run are about ten times less. This is of
great significance for the micro-macro FENE simulations, which are by nature
quite demanding in computer memory. In fact, the ALPM [25, 50] simulation
for the FENE fluid (Fig. 14) used a total of 1.2 GB of core memory; the
corresponding LPM 2025 FENE simulation whould have required about 10
GB, which is not feasible on standard hardware.

The basic adaptive algorithm proposed in Section 5 is amenable to fur-
ther developments in a number of directions. In particular, criteria remain
to be developed for selecting the interval [stf;tm " stf;{n **1 that governs the
creation and destruction steps. Also, the initialization of the configuration
state in the micro-macro ALPM simulations deserves further investigations.
Other issues may arise as we gain more experience with ALPM in a variety of
flow problems. Nevertheless, the results reported in this paper do show the
feasibility and value of ALPM for solving non-trivial viscoelastic flow prob-
lems with a constitutive equation or a kinetic theory model for the polymer
dynamics.
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Model Method CPU time (s) | Memory (MB)
FENE-P LPM 9 3.33 7
(1 proc.) LPM 25 4.15 8
LPM 100 9.10 17
LPM 256 18.74 35
LPM 2025 130.04 235
FENE-P | ALPM [9,20] 3.61 8
(1 proc.) ALPM [25,50] 5.52 12
ALPM [121, 150] 15.18 30
FENE ALPM 19, 20] 9.04 10 x 60
(10 proc.) | ALPM [25,50] 31.97 10 x 120

Table 2: Computer resources for the LPM and ALPM simulations reported
in the present paper. The CPU time is quoted per macroscopic time step
All simulations used the 10 x 40 mesh of Fig. 2. The
FENE-P results were obtained with a single DEC Alpha 533MHz processor,

(Ateons = 1072).

while the FENE simulations used 10 processors in parallel.
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