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Abstract

We address the closure problem for the Warner Finitely Extensible Non-
Linear Elastic (FENE) dumbbell model of a dilute polymer solution. The FENE-
L closure model, introduced recently for one-dimensional elongational flows (Lie-
lens et al. J. Non-Newtonian Fluid Mech. 76 (1998) 249-279), is extended to
general flow kinematics. A simplified version of the theory, referred to as the
FENE-LS model, is also proposed. Simulations of steady-state and transient
rheometrical flows reveal the superiority of the FENE-L and FENE-LS consti-
tutive equations with respect to the simpler FENE-P closure in describing the
rheological response of the FENE kinetic theory.

Keywords: Constitutive equation; closure approximation; FENE dumbbells; ki-
netic theory

1 Introduction

In a recent paper [1], we proposed a general framework for addressing the closure
problem in the kinetic theory of flowing polymers. For the sake of illustration, we
considered the simplest non-linear kinetic theory of a dilute polymer solution, known
as the FENE dumbbell model [2]. A new closure approximation for the FENE theory,
referred to as the FENE-L model, was introduced in [1] for one-dimensional elon-
gational flows. Simulations revealed that the FENE-L model is a considerably more

�Dedicated to professor David V. Boger on the occasion of his 60th birthday.
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accurate approximation of the FENE theory than the classical FENE-P constitutive
equation derived using the Peterlin [3] closure scheme. In particular, it is capable of
reproducing the hysteretic behaviour of the FENE theory in stress versus birefringence
curves during start-up of flow and subsequent relaxation (see also [4]).

The goal of the present paper is to extend the one-dimensional FENE-L theory pro-
posed in [1] to general, three-dimensional flow kinematics. The paper is organized as
follows. In Section 2, we summarize the kinetic theory of FENE dumbbells. Following
the generic approach adopted in the companion paper [1], suitable state variables are
selected in Section 3, each of which obeying an evolution equation derived from the
diffusion equation. In Section 4, we introduce a particular canonical subspace wherein
length and orientation of the dumbbells are decoupled. It is shown that use of a decou-
pled canonical subspace yields a scalar closure problem, to which the one-dimensional
theory of Lielens et al. readily applies. The classical FENE-P closure model is recov-
ered in Section 5 using the configuration tensor as single state variable. In Section 6,
we derive the three-dimensional version of the FENE-L model, and propose a simpli-
fied version of that theory referred to as FENE-LS. Finally, we compare in Section
7 the response of the FENE-P, FENE-L, and FENE-LS closure models to that of the
actual FENE kinetic theory in steady-state and transient rheometrical flows (shear and
elongation).

2 Kinetic theory of FENE dumbbells

In the present paper, we address the closure problem for the kinetic theory of Warner
Finitely Extensible Non-linear Elastic (FENE) dumbbells [2]. This is the most ele-
mentary non-linear kinetic model of a dilute polymer solution wherein the polymer is
described by two identical Brownian beads connected by a spring. The beads experi-
ence Brownian forces and the Stokes drag exerted by the solvent, while the entropic
spring models intramolecular interactions. The configuration of the polymer is given
by the length and orientation of the vector Q that connects the two beads. For FENE
dumbbells, the spring force F c is defined as

F c�Q� �
H

��Q��Q�
�

Q� (1)

where H is a spring constant and Q� is the maximum spring length. The polymer
contribution � p to the stress tensor is computed through Kramers’ expression [2]:

� p � n hQF c�Q�i � nkTI� (2)

where n is the dumbbell number density, k is the Boltzmann constant, T is the absolute
temperature, and the angular brackets denote the configuration space average

h � i �
Z
� ��Q� dQ� (3)
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Here, ��Q� is the distribution function, i.e. ��Q�dQ is the probability of finding the
Q vector between Q and Q� dQ. The distribution function belongs to the space � of
functions that are always positive, even inQ, and of unit integral over the configuration
space fQ j Q �Q � Q�

�g. In order to compute the extra-stress tensor � � one adds to
� p the contribution � s of the Newtonian solvent:

� � � s � � p� � s � ��sD� (4)

where D is the rate of deformation tensor �

�
�rv �rvT � and �s is the constant shear

viscosity of the solvent.
The FENE theory involves a relaxation time � � �� ��H� and a dimensionless

finite extensibility parameter b � HQ�
�� �kT �, where � is the beads friction coefficient.

In the remainder of the paper, we shall write all equations in dimensionless form. The
connector vector Q, the time t, the velocity gradient � and the polymer stress � p are
made dimensionless with �kT�H����, �, ���, and nkT , respectively. We can thus view
the magnitude of the dimensionless velocity gradient � as a Weissenberg number We.
In dimensionless form, the diffusion equation that governs the evolution of � along the
flow trajectories reads [2]

D�

Dt
�

�

�

�

�Q
� �

�Q
� � �

�Q
�
��
� �Q� �

�
F c�Q�

�
�

�
� (5)

while the FENE spring force (1) and Kramers’ expression (2) become

F c�Q� �
Q

��Q��b
� (6)

� p � hQF c�Q�i � I � (7)

As discussed in [2], it is only in the limit of linear Hookean springs (b � �) that
the FENE kinetic theory yields an equivalent constitutive equation for � p; when writ-
ten in terms of the extra-stress � � � s � � p, this equation is the classical Oldroyd-B
model. For finite values of the extensibility parameter b, constitutive equations that
approximate the FENE kinetic theory can be derived by resorting to suitable closure
approximations. In the present context, a classical closure approximation due to Peter-
lin consists in pre-averaging the non-linear spring law,

F c�Q� �
Q

�� �
Q�
�
�b

� (8)

yielding the FENE-P constitutive equation. It has been shown recently [5, 3, 1, 4] that
the impact of the Peterlin approximation is significant, that is, the FENE-P model can
be a poor approximation of the FENE kinetic theory, especially in transient flows. In
the present paper, we extend the one-dimensional (1d) theory proposed by Lielens et
al. [1] for deriving improved closure models.
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3 State variables and evolution equations

Following [1], the fluid is described by a finite set X of n state variables Xi ,

X � fX�� X�� ���� Xng � fA�B�C� ���g �

where Xi is the configuration space average of a scalar or tensorial function fi of the
connector vector Q:

Xi � hfi�Q�i � (9)

The state variable Xi is solution to the following evolution equation [2], derived
from the diffusion equation (5):

DXi

Dt
�

�

�

�
�

�Q
� �

�Q
fi�Q�

�
� 	z 


XB
i

� � �

�
Q

�

�Q
fi�Q�

�
� 	z 


XD
i

� �

�

�
F c�Q� � �

�Q
fi�Q�

�
� 	z 


XC
i

�

(10)

The right-hand side of Eq. (10) involves three new state variables XB
i , XD

i and XC
i ,

related respectively to Brownian motion, hydrodynamic drag and connector force. The
closure problem amounts to establish a relationship between

�
XB

i � X
D
i � X

C
i

�
and the

original set X of state variables.
According to the 1d theory [1], we select as first state variable X� the second

moment of the distribution function,

X� � A � hQQi � (11)

The evolution equation (10) for X� then reads

DA

Dt
� I � � �A�A � �T � hQF c�Q�i� 	z 


AC

� (12)

Clearly, only the connector state variable XC
� � AC introduces a closure problem for

a non-linear force law F c�Q�. Also in accordance with the 1d theory, we choose as
second state variable X� a scalar measure of the radial dispersion of the dumbbells:

X� � B �
�
�Q �Q��� � (13)
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The evolution equation (10) for B reads

DB

Dt
� �	 tr�A� � �� � hQQ �Q � Q�i� 	z 


BD

� �



�Q � Q��

��Q��b

�
� 	z 


BC

� (14)

Here, a closure is needed for the drag and connector state variables, namelyXD
� � BD

and XC
� � BC . Finally, Kramers’ expression (7) becomes

� p � AC � I� (15)

The present closure problem is indeed much more complex than its one-dimensional
counterpart in view of the tensorial nature of the state variables A and AC . We shall
address this difficulty by selecting an appropriate decoupled canonical subspace �c for
the distribution function.

4 Decoupled canonical subspace

Following [1], we restrict the space � of admissible distribution functions � to a so-
called canonical subset �c of finite dimension m. This subspace is made of all in-
stances of a canonical distribution function �c which has m independent parameters.
The present closure problem is made considerably simpler by selecting a canonical
distribution that is decoupled in length and orientation:

�c�Q� � �Q �Q��u �u� � (16)

where Q � kQk �
p
Q � Q and u � Q�Q are the dumbbell’s length and unit

orientation vector, respectively. We shall use a normalized orientation distribution
function

�u �u� � 	 �

I
�u �u� du � �� (17)

where
H

� du denotes the integral over the unit sphere. Thus, �Q must obey

�Q �Q� � 	 �

Z p
b

�

Q��Q �Q� dQ � �� (18)

so that �c�Q� belongs to the space � of admissible distribution functions.
The major consequence of selecting a decoupled canonical subspace is that the

approximations of A and AC , obtained by means of �c instead of �, are proportional.
Indeed, we have

A � hQQic �
Z
QQ�Q �Q��u �u� dQ

�

Z p
b

�

Q� �Q �Q� dQ

I
uu �u �u� du � (19)
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On the other hand, the connector state variable AC is approximated as

AC � hQF c�Q�ic �
Z
Q �kF c�Q�ku� �Q �Q��u �u� dQ

�

Z p
b

�

Q�F c �Q� �Q �Q� dQ

I
uu �u �u� du � (20)

where F c �Q� � Q� ���Q��b� is the norm of the connector force. In deriving (20),
account has been made of the colinearity of F c and Q. Comparing Eqs. (19) and
(20), we finally obtain the following proportionality rule between A and AC in the
decoupled canonical subspace:

AC �

R pb
�

Q�F c �Q� �Q �Q� dQR pb
�

Q� �Q �Q� dQ
A � �A� (21)

where � is a scalar proportionality coefficient (always larger than one, due to the par-
ticular form of F c �Q�) depending on the radial distribution �Q.

Use of the decoupled canonical distribution (16) is of course expected to yield
approximate results only. In particular, closure models derived from (16) necessarily
have a vanishing second normal stress difference N� in transient simple shear flows.
Indeed, in view of (12), (15) and (21), we have

DA

Dt
� I � � �A�A � �T � �A � � p � �A� I� (22)

For the simple shear flow 
vx� vy� vz� � 
 �	 �t� y� 	� 	�, Eq. (22) yields

D

Dt

N�

�
�

D

Dt


p�yy � 
p�zz
�

�
D

Dt
�Ayy � Azz� � �� 
Ayy � Azz� � �N� (23)

So, N� �t� � 	 in all simple shear flows starting from isotropic equilibrium conditions
(The FENE kinetic theory generally predicts N� �t� �� 	 in transient shear flows; the
steady-state value of N� also vanishes, however [5]).

In order to proceed, we define the normalized radial distribution

�c �Q� � Q��Q �Q� � with
Z p

b

�

�c �Q� dQ � �� (24)

In view of Eqs. (19) and (20), the following relations are obtained:

tr�A� � R pb
�

Q� �c �Q� dQ�

tr�AC� � R pb
�

Q�

��Q��b
�c �Q� dQ�

(25)

6



which are analogous to Eq. (20a) of the 1d theory [1], with the radial distribution
�c �Q� playing the role of the 1d distribution function � c �Q� �

Let us now show that the decoupling approximation (16) in fact solves the closure
problem for the drag state variable BD in Eq. (14). Indeed, we have in the canonical
subspace,

B � �
�Q �Q���

c
�

Z p
b

�

Q� �c �Q� dQ� (26)

Thus, in view of Eqs. (19) and (25),

BD � h�Q � Q�QQ ic �
Z p

b

�

Q� �c �Q� dQ

I
uu �u �u� du

�
B

tr�A�
A� (27)

We then obtain the following evolution equation for A and B

DA

Dt
� I � � �A�A � �T � A

tr�A�

Z p
b

�

Q�

��Q��b
�c �Q� dQ� 	z 


AC

�

DB

Dt
� �	 tr�A� � �

B

tr�A�
� � A� �

Z p
b

�

Q�

��Q��b
�c �Q� dQ� 	z 


BC

�

(28)

while Kramers’ expression (15) becomes

� p �
A

tr�A�

Z p
b

�

Q�

��Q��b
�c �Q� dQ� 	z 


AC

� I �
(29)

Clearly, only the scalar connector state variables, AC and BC , need closure.
In summary, use of a decoupled canonical subspace reduces the present closure

problem to a purely scalar problem. Furthermore, only the radial distribution � �Q�
needs restriction to a canonical subspace; the orientation distribution �u is left un-
specified.

5 First-order closure

For the sake of illustration, we derive the classical FENE-P model [2] by describing
the fluid with a single state variable A. The following one-parameter canonical radial
distribution is defined:
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�c��Q� � ���Q�� (30)

where ���Q� is the Dirac distribution located at Q � 
. This particular choice of de-
coupled canonical subspace assumes that all dumbbells have the same length, although
they can have an arbitrary orientation. In view of Eqs. (21) and (25), we readily obtain
the classical Peterlin closure approximation:

AC � �

�� tr �A� �b
A � (31)

and use of Eqs. (10) and (29) yields the FENE-P model:

DA

Dt
� I � � �A�A � �T � �

�� tr�A��b
A� (32)

� p �
�

�� tr�A��b
A� I�

We wish to note that Tanner [6] derived the FENE-P model by assuming that the dumb-
bells share the same length and the same orientation. Although his final result is cor-
rect, this assumption is inconsistent. For example, it is in contradiction with the fact
that A is isotropic at equilibrium.

6 Second-order closure

6.1 General formulation

We now wish to develop a second-order closure withA � hQQi andB �
�
�Q �Q��

�
as state variables. In view of the use of the decoupled canonical subspace (Section 4),
we can follow as such the approach of the 1d theory [1]. A two-parameter canonical
radial distribution �c��� �Q� is selected, which, in view of Eqs. (25), (26) and (28), gives
the following approximations of the state variables:

tr�A� �
Z p

b

�

Q� �c��� �Q� dQ�

B �
Z p

b

�

Q� �c��� �Q� dQ�

AC �
Z p

b

�

Q�

��Q��b
�c��� �Q� dQ�

BC �
Z p

b

�

Q�

��Q��b
�c��� �Q� dQ�

(33)
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As in [1], the first two relations are inverted to yield the parameters 
 and � as a
function of tr�A� and B. The last two relations of Eq. (33) then yield the closure
expressions AC �tr�A�� B� and BC �tr�A�� B�.

The final form of the second-order closure model (28) and (29) obtained with the
decoupled canonical subspace (16) reads

DA

Dt
� I � � �A�A � �T � AC �tr�A�� B�

tr�A�
A�

DB

Dt
� �	 tr�A� � �

B

tr�A�
� � A� �BC �tr�A�� B� �

� p �
AC �tr�A�� B�

tr�A�
A� I �

(34)

The actual form of AC �tr�A�� B� and BC �tr�A�� B� is obtained by specifying the
canonical radial distribution function �c���. Two examples are discussed next, yielding
respectively the FENE-L and FENE-LS models.

6.2 FENE-L closure

In accordance with the 1d theory [1], the canonical, FENE-L radial distribution is
defined as follows

�c����Q� �
��� ��




��H��Q�� � � ���Q�� (35)

where �
� �� 	 
	�
p
b� 
 
	� �� and H��Q� denotes the Heaviside unit step function

located at Q � 
 (Fig. 1).

Insert Figure 1

With this particular choice, the relations (33) become

tr �A� � �
� �
��� ��
�



�

B � �
� �
��� ��
�

�
�

AC � �
�

�� 
��b
� ��� ��b

�p
b



ln

�p
b � 
p
b� 


�
� �

�
�

BC � �
�

�� 
��b
� ��� ��b�

�p
b



ln

�p
b� 
p
b� 


�
� �� 




p
b

�
�

(36)
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Following [1], Eqs. (36a) and (36b) give 
 and � as a function of A � tr�A� and B:


� �
�B


A�
p
�A� � �B

�

� �
��A� � �B� �

p
��A� � �B��A�

�	B
�

(37)

The FENE-L closure expressionsAC �tr�A�� B� and BC �tr�A�� B� are then obtained
by substituting Eq. (37) in Eqs. (36c) and (36d). As explained in [1], it is necessary to
add the following constraint to the FENE-L model

B �
�

�
A� � (38)

in order to prevent the pair �tr�A�� B� from leaving its space of admissible values. The
FENE-L closure expressions AC �tr�A�� B� and BC �tr�A�� B� are not detailed here,
being rather lengthy. A somewhat simpler closure model, referred to as FENE-LS, is
proposed in the next section.

6.3 FENE-LS closure

Our goal in deriving the FENE-LS model is to simplify the closure expressions
AC �tr�A�� B� and BC �tr�A�� B� of the FENE-L theory while keeping most of the
underlying physics. To this end, the FENE-LS canonical distribution is defined as
follows

�c����Q� � ��� �� ���R�Q� � � ���Q�� (39)

where �
� �� 	 
	�
p
b�
 
	� �� and R is a constant that will be specified later (Fig. 2).

Insert Figure 2

Here, the tail of the FENE-L distribution has been approximated by a Dirac distri-
bution located at 
�R; the limit R �� yields the FENE-P� model studied in the 1d
theory [1]. For the FENE-LS model, the relations (33) become

tr �A� � 
�

�
� �

��� ��

R�

�
�

B � 
�

�
� �

��� ��

R�

�
�

AC � 
�

�
�

�

�� 
��b
�

��� ��

R�

�

�� 
���R�b�

�
�

BC � 
�

�
�

�

�� 
��b
�

��� ��

R�

�

�� 
���R�b�

�
�

(40)
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The first two relations yield 
 and � as a function of A � tr�A� and d �
B

A�
:


� � A
R�d

R� � �

�
�
R� � �

�

s
�� �R�d

�R� � ���

�

� �
R�

A


�
� �

R� � �
�

(41)

If we choose R� � �, we obtain


� �
�B


A�
p
�A� � �B

�

which is exactly the same expression as for the FENE-L model. This gives us an
indication as to the choice of R for obtaining a good approximation of the FENE-L
closure, and hence of the FENE theory. The FENE-LS closure approximation is then
obtained by substituting (41) in (36c) and (36d).

Here again, it is necessary to add the following constraint to the FENE-LS consti-
tutive equation:

B �

�
R� � �

�

��

R�
A� � (42)

In order to simplify the closure even more and get rid of the annoying constraint,
it is attractive to approximate the square root present in the expression (41a) for 
� as
follows vuuut�� R�d�

R� � �

�

��
� �� 	

R�d�
R� � �

�

��
�

where 	 is a constant around 0.5 which will be determined later. With this approxima-
tion, Eq. (41a) becomes


� � A
R�d

R� � �� �	
R�d

R� � �

�

This expression allows us to naturally specify the coefficient 	. When d �
B

A�
� �,

the radial distribution must be a single Dirac distribution [1], i.e. with � � � and
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� � A. To achieve that, we must impose 	 �
R� � �

�R�
, which is indeed close to 0.5 if

R� is sufficiently large. The expressions (41) then become


� � A
R�

R� � �

d
� �

� A
��K

f �K
�

� �

R� � �

d
� �

R� � �
�
f � �K

�� �K
�

(43)

with K � �R� � ��
�� and f � d�� � A��B.

Inserting these results in (40a-b) gives the FENE-LS closure. Before that, one

further simplification that we made is
�

�� 
���R�b�
� �, valid if R� is sufficiently

large. This gives

AC � 
�

�
�

�

�� 
��b
�

��� ��

R�

�
�

BC � 
�

�
�

�

�� 
��b
�

��� ��

R�

�
�

and finally, with the help of (43), we obtain the FENE-LS closure approximation in
explicit form

AC �

�
A
��K

f �K

��
f � �K

�� �K

�
�� A

b

��K

f �K

���
�

��� f�

R� ��� �K�

�
�

BC �

�
A
��K

f �K

��
�
f � �K

�� �K

�
�� A

b

��K

f �K

���
�

��� f�

R� ��� �K�

�
�

(44)

In the sequel, we set R� � � in the FENE–LS equation.

7 Simulation results for rheometrical flows

We compare in this section the predictions of the FENE–P, FENE–L and FENE–LS
closure models to those of the FENE kinetic theory in several steady-state and time-
dependent rheometrical flows with specified kinematics. In all cases, we set b � �	
and the initial conditions for the transient simulations correspond to equilibrium. The
response of the FENE model is computed by means of the predictor-corrector stochas-
tic simulation technique proposed by Öttinger [7], and detailed in Section 3 of [3];
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we use 10� realizations for each stochastic simulation, which provides accurate results
for the relevant ensembles averages hQQi, ��Q � Q��

�
and hQF c �Q�i. We solve

the FENE-P and FENE-LS constitutive equations (32) and (28, 44) by means of a
fifth-order Runge-Kutta technique with adaptive time stepping. For solving the con-
strained FENE-L constitutive equation (28, 36, 38), the penalty method developed for
the 1d theory [1] could be used. We have found, however, that, in contrast with the
1d case, the FENE-L constraint never becomes active in three-dimensional flow kine-
matics. The FENE-L constitutive equation has thus been solved by means of the same
Runge-Kutta technique as for the FENE-P and FENE-LS equations.

7.1 Steady simple shear

We consider first a steady simple shear flow with kinematics 
vx� vy� vz� � 
 �	y� 	� 	�,
where �	 � �xy is the specified, constant shear rate. The relevant material functions are
the viscosity �, and the first and second normal stress coefficients ��, ��. These are
given in dimensionless form by

� � �	�� �s
nkT�

�
�

� �	


p�xy
nkT

�

�� � �	�

nkT��
�

�

�� �	��

p�xx � 
p�yy

nkT
�

�� � �	�

nkT��
�

�

�� �	��

p�yy � 
p�zz

nkT
�

(45)

As shown in Fig. 3, the shear viscosity computed with the FENE-L and FENE-LS con-
stitutive equations is in excellent agreement with the result of the FENE kinetic theory.
The FENE-P fluid shows a similar behaviour, although it is slightly less accurate an
approximation at intermediate values of the shear rate [5].

Insert Figure 3

Results for the first normal stress coefficient �� are shown in Fig. 4. Here again, the
FENE-L and FENE-LS models are slightly closer to the response of the FENE theory
than the FENE-P fluid for low to moderate shear rates (� �	 � �	). At large shear rates,
all closure models give identical results which overpredict the first normal stress coef-
ficient of the FENE theory. This is due, we believe, to the decoupling approximation
(16) which is shared by the three closure approximations.

Insert Figure 4

As noted in Section 4, all four models predict a vanishing second normal stress
coefficient �� in steady-state shear flow (see also [5]).
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7.2 Steady uniaxial elongation

The velocity field for steady uniaxial elongation is given by 
vx� vy� vz� �
�
��x���

�
��y���

�
��z
�
,

where �� � �xx is the specified, constant elongation rate. The relevant material function
is the elongational viscosity ��, which is given in dimensionless form by

�� � ���� 
�s
nkT�

�
�

� ��


p�xx � 
p�yy
nkT

� (46)

Insert Figure 5

Inspection of Fig. 5 reveals that the four models show very similar behaviour. The
FENE-L and FENE-LS closures better approximate the FENE theory for extension
rates smaller than one. At intermediate extension rates (� � � �� � �), none of the
three closures is clearly superior (this was already noticed and discussed in the context
of the 1d theory; See Section 5.3 in [1].). For � �� � �, the three closures give excellent
results.

It is in fact in time-dependent flows that important quantitative and qualitative dif-
ferences appear between the FENE-P closure and the more elaborate FENE-L and
FENE-LS models, as discussed next.

7.3 Start-up of simple shear followed by relaxation

We now consider the inception from equilibrium conditions of simple shear flow with
a constant shear rate �	, followed by relaxation after t�� � �. Figures 6 to 8 show
the temporal evolution of the first normal stress difference �
p�xx � 
p�yy� �nkT� and
shear stress 
p�xy�nkT� for � �	 � �, � and �	.

Insert Figure 6

Insert Figure 7

Insert Figure 8

Time-dependent shear is clearly a challenge for all the available closures. The
FENE-L and FENE-LS closures are far more accurate than the FENE-P model, but
agreement with the FENE results is only qualitative. Here again, the FENE-L and
FENE-LS results are almost identical.
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7.4 Start-up of uniaxial elongation followed by relaxation

Here we study the inception from equilibrium conditions of uniaxial elongation with a
constant elongation rate ��, followed by relaxation after t�� � ���. Figure 9 shows the
temporal evolution of the transient elongational viscosity

��� � 
�s
nkT�

�
�

� ��


p�xx �t�� 
p�yy �t�

nkT
�

as well as that of the mean square molecular extension tr hHQQ�kT i, for � �� � �.

Insert Figure 9

While all closures give identical results in the relaxation phase, the FENE-L and
FENE-LS closures are remarkably more accurate during stress growth.

Insert Figure 10

As discussed in details in [1, 4], a distinct property of the FENE kinetic theory is
the hysteretic behaviour of stress versus molecular extension predicted in this experi-
ment. In Fig. 10, we plot the results of Fig. 9 in the form of curves of elongational
viscosity versus average molecular extension parameterized by time. The FENE-P
model does not show hysteretic behaviour at all; the FENE-L and FENE-LS closures
predict hysteresis curves in qualitative agreement with the FENE kinetic theory.

The behaviour of the FENE-L/LS closures in 3d transient elongation is indeed very
similar to that predicted in the context of the one-dimensional theory [1]. It is for this
class of flows, which motivated the design of the canonical radial distributions (35)
and (39), that the new closures are at their best.

7.5 Start-up of biaxial elongation followed by relaxation

Finally, we consider the inception from equilibrium conditions of biaxial elongation
characterized by the velocity gradient � � diag � ��� ����� ���, where �� is the constant
elongation rate, followed by relaxation after t�� � ���. Figure 11 shows the temporal
evolution of the transient elongational viscosity

��� � ��s
nkT�

�
�

� ��


p�xx �t�� 
p�zz �t�

nkT
(47)

and of the mean square molecular extension tr hHQQ�kT i, for � �� � �.

Insert Figure 11
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During stress growth, the FENE results lie between those predicted by the FENE-
P and FENE-L/LS closures. In fact, none of the three closures is very accurate there.
While the FENE-L/LS models were excellent in transient uniaxial extension (Fig. 9),
their performance in biaxial extension is clearly less satisfactory. In fact, we would
expect that any closure based on the decoupling approximation (16) could not agree
quantitatively with the FENE model in the stress growth phase for both uniaxial and
biaxial extensions. At steady-state, the FENE-P closure is the more accurate of the
three, for the same reason as discussed in uniaxial extension. Finally, all closures yield
identical results in the relaxation phase.

Insert Figure 12

As seen in Fig. 12, hysteretic behaviour is obtained in this flow experiment as
well. The FENE-L/LS closures do reproduce the hysteretic behaviour of the FENE
model qualitatively. In comparison with uniaxial extension, they slightly overpredict
the FENE hysteresis curve during the growth phase for values of mean square molec-
ular extension above b��. This in fact is related to the speed of growth of stress and
molecular extension when reaching the steady-state (compare Fig. 9 and Fig. 11):
overprediction is equivalent to slower growth. Comparing with Fig. 10, we observe
that the shape of the hysteresis curves in uniaxial and biaxial extensions are almost
identical for the FENE-L/LS closures, while it does change somewhat for the actual
FENE kinetic theory. This is again due, we believe, to the decoupling approximation
(16). Finally, we note that the FENE-P closure is of course unable to show hysteretic
behaviour.

8 Conclusions

The FENE-L closure approximation to the kinetic theory of finitely extensible dumb-
bells, introduced in [1] for one-dimensional flows, has been extended in the present
paper to general, three-dimensional flows kinematics. A simplified version of the the-
ory, referred to as the FENE-LS model, has also been proposed. The reported simula-
tions for steady and transient rheometrical flows confirm the conclusions drawn in [1]
regarding the superiority of the FENE-L constitutive equation with respect to the clas-
sical FENE-P closure in describing the response of the FENE kinetic theory, both in
shear and elongation. In particular, the FENE-L model is able to reproduce hysteretic
behaviour in strong flows involving stress growth and subsequent relaxation, which
is out of reach for a single-mode FENE-P equation. Finally, the simplified FENE-LS
closure behaves similarly to its FENE-L parent, while being somewhat easier to handle
numerically.

As already noted in [1], we feel that the development of even more accurate (and
thus more complex) closure approximations is not warranted in this particular context.
Consideration of flows in complex geometries is a more useful next step. To this
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end, we have recently implemented the FENE-LS constitutive equation in a complex
flow solver based upon the Adaptive Lagrangian Particle Method (ALPM) devised by
Gallez et al. [8]. Since ALPM can also handle the actual FENE kinetic theory (i.e.
without closure, but at a greater cost, obviously), additional insight should be gained
as to the usefulness of the proposed new closures.
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Figure 1: The FENE-L canonical distribution function.

Figure 2: The FENE-LS canonical distribution function.
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Figure 3: Dimensionless shear viscosity �� � �s� �nkT� versus dimensionless shear
rate � �	 for the FENE (circles), FENE-L (continuous curve), FENE-LS (dashed curve)
and FENE-P (dotted curve) models with finite extensibility parameter b � �	. At the
scale of the drawing, the FENE-L and FENE-LS results are almost identical.
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Figure 4: Dimensionless first normal stress coefficient ���nkT�
� versus dimension-

less shear rate � �	 for the FENE (circles), FENE-L (continuous curve), FENE-LS
(dashed curve) and FENE-P (dotted curve) models with finite extensibility parame-
ter b � �	. At the scale of the drawing, the FENE-L and FENE-LS results are almost
identical.
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Figure 5: Dimensionless elongational viscosity ��� � 
�s� �nkT� versus dimension-
less extension rate � �� for the FENE (circles), FENE-L (continuous curve), FENE-LS
(dashed curve) and FENE-P (dotted curve) models with finite extensibility parameter
b � �	. At the scale of the drawing, the FENE-L and FENE-LS results are almost
identical.
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Figure 6: Start-up of simple shear (� �	 � �) followed by relaxation. Dimensionless
first normal stress difference �
p�xx � 
p�yy� �nkT� and shear stress 
p�xy�nkT� versus
dimensionless time t�� for the FENE (thick curve), FENE-L (thin curve), FENE-LS
(dashed curve) and FENE-P (dotted curve) models with finite extensibility parameter
b � �	. At the scale of the drawing, the FENE-L and FENE-LS results are almost
identical.
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Figure 7: Start-up of simple shear (� �	 � �) followed by relaxation; cfr. Fig. 6.
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Figure 8: Start-up of simple shear (� �	 � �	) followed by relaxation; cfr. Fig. 6.
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Figure 9: Start-up of uniaxial elongation (� �� � �) followed by relaxation. Dimension-
less transient elongational viscosity ���� � 
�s� �nkT� and mean square molecular
extension tr hHQQ�kT i versus dimensionless time t�� for the FENE (thick curve),
FENE-L (thin curve), FENE-LS (dashed curve) and FENE-P (dotted curve) models
with finite extensibility parameter b � �	.
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Figure 10: Start-up of uniaxial elongation (� �� � �) followed by relaxation. Di-
mensionless transient elongational viscosity ���� � 
�s� �nkT� versus mean square
molecular extension tr hHQQ�kT i for the FENE (thick curve), FENE-L (thin curve),
FENE-LS (dashed curve) and FENE-P (dotted curve) models with finite extensibility
parameter b � �	. The FENE, FENE-L and FENE-LS hysteresis curves are traversed
clockwise.
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Figure 11: Start-up of biaxial elongation (� �� � �) followed by relaxation. Dimension-
less transient elongational viscosity ���� � ��s� �nkT� and mean square molecular
extension tr hHQQ�kT i versus dimensionless time t�� for the FENE (thick curve),
FENE-L (thin curve), FENE-LS (dashed curve) and FENE-P (dotted curve) models
with finite extensibility parameter b � �	.
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Figure 12: Start-up of biaxial elongation (� �� � �) followed by relaxation. Dimension-
less transient elongational viscosity ���� � ��s� �nkT� versus mean square molecular
extension tr hHQQ�kT i for the FENE (thick curve), FENE-L (thin curve), FENE-LS
(dashed curve) and FENE-P (dotted curve) models with finite extensibility parameter
b � �	. The FENE, FENE-L and FENE-LS hysteresis curves are traversed clockwise.
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