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Abstract

The hysteretic behaviour of dilute polymer solutions in relaxation following
extensional ow is studied in the framework of three distinct theoretical mod-
els. For ideal kinematics of uniaxial elongation, we show that the kinetic theory
of FENE dumbbells and its FENE–L approximation present an hysteresis when
plotting polymer stress versus average molecular extension. A similar behaviour
is obtained for ideal extensional kinematics using a FENE–P constitutive equation
with a spectrum of nite extensibility parameters. Finally, a numerical simulation
of the lament stretching device shows that spatial inhomogeneities of the stress
and average conformation elds also lead to hysteretic behaviour with a single–
mode FENE–CR constitutive equation. In all three cases, hysteretic behaviour
results from the combined effect of dispersity and non-linearity.

We also address the validity of the stress-optic law for FENE dumbbells in re-
laxation following start-up of uniaxial extension. The simulation results show that
the stress-optic coef cient remains constant at low strains only. Plots of stress-
optic coef cient versus birefringence show hysteresis as well. This rules out a
modi ed stress-optic law for FENE dumbbells wherein the stress-optic coef -
cient would be a function of the second moment of the con guration distribution
function alone. Finally, it is shown in the Appendix that a proper selection of the
spectrum of nite extensibilities can be made so that the multi-mode FENE–P
model gives essentially the same stress response as the kinetic theory of FENE
dumbbells in transient uniaxial extension.
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1 Introduction
The behaviour of dilute polymer solutions in extensional ows has received much at-
tention in recent years. Most notably, a number of experimentalists have used the
lament stretching rheometer advanced by Matta and Tytus [1] and Tirtaatmadja and
Sridhar [2] to measure the extensional stress that develops in polymer solutions during
the start–up of ow and subsequent relaxation (e.g. [3, 4, 5, 6, 7]). One of the strik-
ing features observed experimentally is the very fast decay of stress upon cessation of
ow. Whether the rapid relaxation process is a viscous stress jump or a non–linear
elastic phenomenon is an open question, which is dif cult to address experimentally
in view of the nite time to stop the ow and the nite response time of the force
transducer [7]. The recent Brownian dynamics simulations of Doyle and Shaqfeh [8]
for a Kramers bead–rod chain show that the stress that develops in this model dur-
ing start–up of uniaxial elongation is mainly of an elastic character. Moreover, the
stress growth for bead–rod chains is qualitatively well predicted by the kinetic theory
of FENE dumbbells. Doyle et al. [9] have investigated the relaxation of dilute polymer
solutions following extensional ow by means of Brownian dynamics simulations of
bead–rod chains and FENE dumbbells they also performedmacroscopic computations
using the FENE–PM constitutive equation. The authors found a universal relaxation
curve valid for all the models investigated, that is in quantitative agreement with ex-
perimental data after stretch at large strains. The numerical predictions of Verhoef et
al. [7], using various multi–mode constitutive equations (i.e. the Giesekus, FENE–P
and Hinch models) and the FENE dumbbell kinetic theory, showed that quantitative
agreement with experimental data, both in start–up and relaxation, could only be ob-
tained over a wide range of strains with a spectrum of (uncoupled) FENE modes. In
relaxation, both the FENE–P and FENE models were found to perform well.

Another important experimental observation with polystyrene–based Boger uids
[10] is that dilute polymer solutions can show hysteretic behaviour of stress versus
intrinsic birefringence in relaxation following extensional ow. Hysteresis in stress
versus birefringence has been predicted in the recent numerical simulations of Lielens
et al. [11] and Doyle et al. [9]. The paper by Lielens et al. addresses one–dimensional
elongational ows. It is shown, by means of stochastic simulations, that the simple
FENE dumbbell kinetic model is able to predict hysteretic behaviour. In view of the
closure problem [12], the FENE theory cannot be translated into an equivalent macro-
scopic constitutive equation. The FENE–P constitutive equation, derived on the basis
of Peterlin’s approximation, is unable to predict hysteretic behaviour, as it gives a one–
to–one relationship between stress and average conformation. The new closure model
proposed in [11], and referred to as FENE–L, does reproduce the hysteretic behaviour
of the FENE model. Doyle et al. [9] also found a stress–conformation hysteresis
in their simulations with FENE dumbbells, both with a constant or conformation–
dependent drag coef cient, but not with the FENE–PM chain, again due to the pre–
averaging closure approximation. Results for the bead–rod chain model also display
a more sophisticated con guration hysteresis, which cannot be predicted by a simple
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dumbbell model. The stress–birefringence hysteresis curves obtained with the bead–
rod chain and FENE dumbbell models are in qualitative agreement with the experi-
mental observations for polystyrene–based Boger uids.

In the present paper, we further discuss the hysteretic behaviour of dilute polymer
solutions in relaxation following extensional ow. We adopt as theoretical framework
the kinetic theory of FENE dumbbells and related macroscopic constitutive equations.
These are summarized in Section 2. We consider in Sections 3–5 three distinct situa-
tions where hysteretic behaviour is indeed predicted: (i) ideal kinematics of uniaxial
elongation, with the kinetic theory of FENE dumbbells and its FENE–L approxima-
tion, (ii) ideal kinematics of uniaxial elongation, using the multi– FENE–P model,
i.e. a multi–mode FENE–P constitutive equation with a spectrum of nite extensibil-
ity parameters, and (iii) non–ideal kinematics of the lament stretching device, with a
single–mode FENE–CR constitutive equation. In all three cases, hysteretic behaviour
is shown to result from the combined effect of dispersity and non–linearity. This
statement is further elaborated in Section 6. In the light of our simulation results, we
question in Section 7 the validity of the stress–optic law for FENE dumbbells. It is
shown that the stress–optic coef cient remains constant at low strains only. Plots of
stress–optic coef cient versus birefringence show hysteresis as well, which rules out
a modi ed stress–optic law for FENE dumbbells wherein the stress–optic coef cient
would be a function of the second moment of the con guration distribution function
alone. This agrees qualitatively both with experimental results and chain simulation
studies [8, 9, 13]. Conclusions are drawn in Section 8. Finally, it is shown in the Ap-
pendix that a proper selection of the spectrum of nite extensibilities can be made so
that the multi– FENE–P model gives essentially the same stress response as FENE
dumbbells in transient uniaxial extension. The multi– FENE–P model thus appears to
be an adequate constitutive equation for describing dilute solutions of polymer chains
in extensional ow.

2 The FENE dumbbell model and related
constitutive equations

The Warner Finitely Extensible Non–Linear Elastic (FENE) dumbbell model [14] is
the most elementary non–linear kinetic model of a dilute polymer solution. Each
dumbbell consists of two identical Brownian beads connected by a spring. The beads
model the interaction between the polymer and the Newtonian solvent, while the spring
represents the entropic restoring force that arises from holding constant the end–to–end
vector of the linear polymer. The FENE theory involves a time constant
and a dimensionless nite extensibility parameter , where is the friction
coef cient, is the Boltzmann constant, and is the absolute temperature. For sim-
plicity, we write all subsequent equations in dimensionless form. The connector vector
, the time and the velocity gradient are made dimensionless with , ,
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and , respectively. The polymer contribution to the stress, , is made dimension-
less with , where is the dumbbell number density. For notational convenience,
we de ne

(1)

For FENE dumbbells, the dimensionless connector force reads

(2)

while the polymer stress is obtained using the Kramers’expression

(3)

where is the unit tensor and the angular brackets denote the con guration space av-
erage. The kinetic theory of FENE dumbbells does not yield an equivalent constitutive
equation for the polymer stress, due to the closure problem brought about by the non–
linear spring law (2). In order to compute the dynamics and polymer stress of FENE
dumbbells, one either solves the diffusion equation that describes the evolution of the
con guration distribution function, or, as done in the present paper, one integrates the
associated Itô stochastic differential equation [15]

(4)

for a large number of individual realizations of the stochastic process . In
eq.(4), is the velocity gradient and denotes the three–dimensional Wiener process.
We solve eq.(4) by means of the predictor–corrector scheme of weak order 2 proposed
by Öttinger [15] and detailed in [12]. The polymer stress, or any other macroscopic
quantity of interest, is approximated by an ensemble average, namely

(5)

In the present paper, we also consider three macroscopic constitutive equations,
namely the FENE–P, FENE–CR and FENE–L models, that are closely related to the
FENE dumbbell kinetic theory. We shall also consider a particular multi–mode FENE–
P equation, which we refer to as the multi– FENE–P model. For speci ed kinemat-
ics, we integrate these equations by means of a fth–order Runge–Kutta scheme with
adaptive time stepping.

The FENE–P equation is derived from the FENE theory using the self–consistent
pre–averaging approximation of the spring force due to Peterlin,

(6)
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This approximation solves the closure problem [14] and yields the FENE–P constitu-
tive equation

(7)

where is the con guration tensor and denotes the material time derivative.
The FENE–CR model, proposed by Chilcott and Rallison [16] reads

(8)

In essence, the FENE–CR equation is a variant of the FENE–P model designed for
describing constant shear viscosity Boger uids. A detailed comparison of the FENE,
FENE–P and FENE–CR models is documented in [12, 17] for rheometrical ows.

The third macroscopic model considered in this paper is the FENE–L equation
proposed by Lielens et al. [11]. It is a second–order closure model derived from the
FENE dumbbell theory, that involves the con guration tensor and the
scalar average . The FENE–L equation takes the form

(9)

Here, the symbol and are known algebraic expressions involving , and .
They are de ned in [11] for unidimensional kinematics, and in [18] for general ow
elds. In comparison with the FENE–P model, FENE–L is a markedly improved ap-
proximation of the FENE kinetic theory. As the FENE–P and FENE–CR models, it
can also be viewed in its own right as a phenomenological macroscopic constitutive
equation with material parameters to be identi ed in rheometrical ows.

Finally, we shall consider a particular multi–mode FENE–P constitutive equation,
which we refer to as the multi– FENE–P model. The modes are assumed uncou-
pled, have identical time constant and factor but different nite extensibilities
, . The polymer stress is thus the sum of the contributions of
each mode, where is computed by means of eq. (7), with in eq. (1). The
motivation behind the multi– FENE–P model is an attempt at modeling the spectrum
of length scales that arises in the deformation of a linear macromolecule. The modes

5



with small values of correspond to local changes in molecular conformation that
involve small parts of the polymer, while those with larger values of are meant to
capture the more global unraveling mechanisms of the chain that take place at larger
length scales.

Alternatively, the multi– FENE–P model can be viewed as a polydisperse suspen-
sion of non–interacting FENE–P dumbbells, or simply as a valid macroscopic constitu-
tive equation. One should note that the multi– FENE–P model, while having the same
mathematical complexity as the FENE–PM chain model proposed by Wedgewood et
al. [19] (i.e. the modes are decoupled in both cases), is in fact quite different on phys-
ical grounds. Indeed, the pre–averaging approximation used to derive the FENE–PM
model implies that all modes have the same maximum extensibility.

3 FENE–like models in uniaxial elongation
We rst consider the start–up of uniaxial elongation followed by relaxation. The ve-
locity gradient is speci ed to

(10)

where denotes the Weissenberg number, while is the Heaviside unit step
function located at . The maximum applied strain is equal to 9, and is set
to 6. Equilibrium is speci ed at , i.e. . In this ow, the polymer
stress has the form with . Macroscopic ob-
servables of interest are the mean square molecular extension, or , and
the dimensionless polymer contribution to the time–dependent elongational viscosity,

Figure 1 compares the results obtained for and with the FENE, FENE–
P, FENE–CR and FENE–L models. The nite extensibility parameter is set to .
Qualitatively, all models behave in a similar fashion, i.e. signi cant growth of elon-
gational viscosity and average molecular extension until a saturation state is reached,
followed by a very fast relaxation process. The FENE–CR and FENE–P equations
have almost identical responses, but the FENE–L model is in markedly better agree-
ment with the FENE results. All models follow the same stress relaxation curve, which
is considerably steeper than the single exponential

As proposed in [9, 11], it is useful to analyze the results of Fig. 1 in a different
manner, namely by plotting the elongational viscosity versus the average molecular
extension. The resulting curves, parameterized by the temporal variable, are shown
in Fig. 2. The main point is that the FENE and FENE–L models show hysteretic be-
haviour, while the FENE–P and FENE–CR equations do not. The insets of Fig. 2 give
further insight into the hysteretic behaviour of FENE dumbbells. We show there the
distribution of projected dumbbell length at selected values of time. The
function is readily available from the FENE stochastic simulations. At time
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, is still very close to the equilibrium distribution. During stress growth, e.g.
at time , a number of dumbbells have already gathered close to maximum extension
and are oriented mainly in the direction, thus producing a narrow peak in
these dumbbells are essentially in an equilibrium state wherein Stoke’s drag acting on
the beads is balanced by the connector force. The other dumbbells, however, are still
to experience further stretching and orientation. They form a thinning tail in the distri-
bution . At time , a steady state has been reached all dumbbells are oriented
mainly in the direction and have a projected length near the maximum extension
. This we call the saturation state. During relaxation, e.g. time , the peak–shaped

distribution goes back to equilibrium, but following a very different route. In fact, at
times and , the FENE dumbbells have identical average molecular extension, but
quite different distributions of orientation and length, thus producing signi cantly dif-
ferent polymer stresses. In view of the non–linearity of the connector force, the longer
dumbbells present at time contribute higher stresses than the relatively shorter ones
at time . The hysteretic behaviour of the FENE model is thus due to the fact that
FENE dumbbells do not reach at the same time their saturation state. In short, we have
a rst illustration of the proposition (non–linearity + dispersity hysteresis).

As seen in Fig. 2, the FENE–L closure model has kept enough of the physics of
the original FENE theory to show hysteretic behaviour as well. Indeed, it is able by
construction to approximate the thinning tail of the FENE distribution during stress
growth [11]. The FENE–P and FENE–CR models, however, do not show hysteretic
behaviour. These constitutive equations express the polymer stress as a non–linear
algebraic expression of the average molecular con guration alone, as inspection of
eqs. (7) and (8) reveals. A given value of average extension thus yields a single value
of stress. While non–linearity is preserved, it is dispersity that has been lost due to the
pre–averaging approximation.

In the sequel, we show that dispersity in the FENE–P or FENE–CR models is
recovered, and so is hysteretic behaviour, by using a spectrum of nite extensibilities
or when the ow is no longer spatially homogeneous.

4 The multi–b FENE–P model in uniaxial
elongation

Figure 3 illustrates the response of the FENE–P model with a spectrum of nite ex-
tensibilities in start–up of uniaxial elongation followed by relaxation (cfr. eq. (10)).
For the sake of illustration, we use modes with nite extensibilities that are
linearly distributed between and . We plot the elongational vis-

cosity versus the mean square molecular extension de ned as The

results are shown for = 4, 6, and 8.
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The main point is that a multi– FENE–P model does indeed show hysteretic be-
haviour, thus providing a second illustration of our proposition (non–linearity + dis-
persity hysteresis). As individual FENE dumbbells do, individual FENE–P modes
reach their saturation level determined by at different times (or strain levels) during
stress growth. Note that a multi– FENE–CR model would respond similarly.

The analogy between the FENE and multi– FENE–P can in fact be pushed one
step further. We show in the Appendix that a proper selection of the spectrum of
nite extensibilities can be made so that the multi– FENE–P results for the transient
elongational viscosity are virtually those given by the FENE dumbbell kinetic theory.

Next, we turn to the response of a single–mode FENE–CR model in the lament
stretching device. Here, it is the spatial inhomogeneity of the ow that will cause
dispersity. Together with the non–linearity of the pre–averaged spring force, this will
imply hysteretic behaviour as well.

5 The FENE–CR model in the lament
stretching device

The lament stretching device is shown schematically in Fig. 4. A cylindrical sample
of quiescent uid is placed between two circular plates of radius and separated by
a length . The uid is assumed to stick at the plate walls. At time , the
upper plate is set into motion in the direction and the uid sample is stretched. By
monitoring the force needed to separate the plates and the ensuing decreasing
radius of the uid column at mid–distance between the plates, one wishes to
estimate the transient elongational viscosity of the uid.

As pointed out by several authors (e.g. [20, 21, 22, 23]), the boundary conditions
at the plates induce a non–uniform decrease in the radius along the lament length.
The uid is indeed deformed by a transient shear ow prior to being extended. So,
the lament stretching device does not yield the ideal kinematics of homogeneous,
uniaxial extension considered in the previous sections. The velocity compensation
technique [2] is an attempt to produce ideal kinematics at one cross–section of the
lament only. It consists in continuously adapting the plate velocity such that
the mid–distance lament radius decrease exponentially, i.e.

(11)

where is the speci ed elongation rate. One should note that the constraint (11) does
not guarantee ideal extensional kinematics (i.e. with a spatially uniform velocity gradi-
ent ) at the mid–distance cross–section. Ignoring inertia and gravity, one can estimate
the transient elongational viscosity with the formula
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(12)

where is the coef cient of surface tension.
In a recent paper [21], Sizaire and Legat have described the results of a nite ele-

ment simulation of the lament stretching device for a single mode FENE–CR uid.
Values of the material parameters were those identi ed by McKinley in steady shear
of a polyisobutylene–polybutene Boger uid (see Table 1 of [21]). We have repeated
the simulations of Sizaire and Legat, the difference between the two studies being that
we specify the velocity compensation technique as a boundary condition. To the set of
conservation and constitutive equations, we thus add the constraint (11). Implementa-
tion details are provided in the Ph.D. thesis of Sizaire [24].

Figure 5 shows the computed transient Trouton ratio as a function of the
Hencky strain , where is the solution shear viscosity at zero shear rate. For
the larger value of the nite extensibility parameter ( , value used in [21]), the
FENE–CR behaves essentially like the Oldroyd–B uid ( ) and non–linearity
of the spring law does not show at Hencky strains below 4. For , however,
the apparent elongational viscosity reaches a plateau at a Hencky strain of about 2, in
a manner that is qualitatively very similar to what is observed in uniaxial extension.
The important difference, however, is that the stress and conformation elds are not
homogeneous as illustrated in Fig. 6.

We plot there the component of the polymer stress and con guration tensor
as a function of the radial coordinate, computed at mid–distance between the plates.

Although the instantaneous velocity eld is that of uniaxial extension at the free surface
(in view of the constraint (11)), the polymer stress and con guration tensor

are not uniform over the lament cross–section during stress growth. Since the uid el-
ements are moving radially–inwards in that cross–section, this shows that the velocity
compensation technique does not yield ideal extensional kinematics there. We nd that
the uid elements near the free surface experience larger stress and average molecular
extension than those near the axis of the lament, due to the uid’s memory of non–
ideal kinematics at the early stages of stretching. This is particularly so for Hencky
strains between 1.5 and 1.6. It is only at Hencky strains above 2 that the polymer stress
and con guration tensor become uniform at the mid–distance lament cross–section.
If the upper plate is stopped then, these pro les will relax uniformly as they would
after pure extension. So, in this numerical simulation, dispersity is provided by the
non–homogeneity of the polymer stress and con guration tensor during stress growth,
while non–linearity is brought about by the non–linear pre–averaged spring law of the
FENE–CR model. Our proposition (non–linearity + dispersity hysteresis) leads us
to expect hysteretic behaviour in this numerical experiment as well.

Hysteretic behaviour is indeed obtained in simulations of stretching followed by
relaxation in the lament stretching device, using a single mode FENE–CR model.
We have performed three simulations with and 3.2, and 4.8. The
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plate stops at a Hencky strain of 3. The average polymer stress is plotted versus
the average molecular extension in Fig. 7. These quantities are computed at the
mid–distance lament cross section as follows

(13)

(Note that is a lineal average instead of the surface average , in order to
mimic birefringence measurements). The hysteresis curves are qualitatively similar
to what we have obtained in uniaxial elongation with the FENE, FENE–L and multi–
FENE–P models. They are traversed clockwise, namely the upper part of the curve
corresponds to stretching while the lower part corresponds to relaxation all relaxation
curves follow a master curve. We point out that a similar response would be obtained
with a one–mode FENE–P constitutive equation.

For the larger value of the nite extensibility parameter ( ), saturation is
not yet reached when the plate is stopped at a Hencky strain of 3. While the stress
and average conformation elds are not spatially homogeneous in this case either, the
FENE–CR uid essentially behaves like a linear Hookean dumbbell model, and only
a very minute hysteresis is obtained [24].

6 Discussion
We have illustrated the hysteretic behaviour of dilute polymer solutions in relaxation
following extensional ow, in the framework of three distinct theoretical models. For
ideal kinematics of uniaxial elongation, we have shown that the kinetic theory of FENE
dumbbells and its FENE–L approximation present an hysteresis when plotting polymer
stress versus average molecular extension. A similar behaviour is obtained for ideal
extensional kinematics using a FENE–P constitutive equation with a spectrum of nite
extensibility parameters. Finally, spatial inhomogeneities in the lament stretching
device also lead to hysteretic behaviour with a single mode FENE–P or FENE–CR
constitutive equation. In all three cases, hysteretic behaviour results from the combined
effect of dispersity and non–linearity.

Indeed, let and denote individual contributions to the stress and average
molecular conformation in the direction of elongation, respectively. For FENE dumb-
bells, is the contribution of an individual dumbbell to the polymer stress, while

is its contribution to the average con guration. For the multi– FENE–P model,
is the scaled stress contribution of mode , while is the correspond-

ing scaled conformation . Finally, in the lament stretching simulation with the
single mode FENE–CR model, and are the axial components of and
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computed at one particular radial location of the mid–distance lament cross–section.
In all three cases, the relation between individual stress and conforma-
tion is provided by a non–linear stress function with positive concavity.

Now, the hysteretic behaviour discussed in the previous sections arises when plot-
ting a suitably averaged stress versus an average conformation . For
FENE dumbbells, the brackets denote the con guration space average. With the multi–
FENE–P model, is the sum of the stresses while is the arithmetic
mean of the con guration tensors . In the lament stretching simulation,
and are the spatial averages de ned in eq. (13). As shown in Fig. 8, the main
point is that

(14)

with the equality being obtained only when there is no dispersity in the individual
values of , i.e. when all individual contributions are identical. During stress
growth, a broad distribution of individual con gurations develops, leading to an
average stress that is strictly larger than . When saturation is reached,
the distribution of individual con gurations essentially reduces to a Dirac distri-
bution, dispersity is minimal and thus . This property is well pre-
served during most of the relaxation process, thus yielding a master curve de ned by
the stress function . In view of eq. (14), the hysteresis curve is traversed clockwise.

The hysteretic behaviour illustrated in this paper raises important questions regard-
ing the validity of the stress–optic law. In the next section, we address this issue for
FENE dumbbells.

7 The stress–optic law for FENE
dumbbells

Intrinsic birefringence results from the optical anisotropy of the polymer solution un-
dergoing ow [25, 26, 27]. Its origin lies in the anisotropic polarizability of the poly-
mer segments. For a given model of the polymer chain, and with suitable assump-
tions such as the additivity of segmental polarizabilities, it is possible to relate the
anisotropic part of the refractive index tensor of the polymer solution to a relevant
measure of average molecular conformation. The stress–optic law states that the poly-
mer stress is related to the refractive index tensor by a simple proportionality
rule

(15)

where is a constant called the stress–optic coef cient (e.g. [26, 27]). If valid, the
stress–optic law provides a non–intrusive way of measuring stresses using intrinsic
birefringence data. As discussed in recent papers [8, 13], it is generally acknowledged
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that the stress–optic law fails under conditions of strong ow. In the present section,
we discuss the validity of the stress–optic law for FENE dumbbells in the simulation
of start–up of uniaxial elongation followed by relaxation.

An expression for the intrinsic birefringence for FENE dumbbells is obtained by
considering the connector vector as the end–to–end vector of a freely–jointed bead–
rod chain [8, 13, 25]. In uniaxial elongation (cfr. eq. (10)), the dimensionless birefrin-
gence reads

(16)

If the stress–optic law is valid, the dimensionless stress–optic coef cient

(17)

should thus remain constant during stress growth and relaxation.
Figure 9 illustrates the temporal evolution of the stress–optic coef cient for

and a maximum applied strain of 9. The calculations are for Dur-
ing stress growth, the stress–optic coef cient is indeed constant at low strains, where
non–linearity of the spring force does not yet intervene. At larger strains, however,
rapidly decreases due to non–linear elastic effects. During the relaxation process, the
stress–optic coef cient quickly goes back to its low strain plateau value. These results
invalidate the stress–optic law for FENE dumbbells. They are in qualitative agreement
with the recent simulations of bead–rod [8] and FENE–P [13] chains in start–up of
elongation.

It is useful to plot the stress–optic coef cient versus birefringence, as we did in
Fig. 2 for stress versus conformation. This again gives an hysteresis shown in Fig. 10.
So, for a given value of birefringence, a dilute polymer solution modeled by FENE
dumbbells may have multiple values for the stress–optic coef cient in time–dependent
strong ows. This is also in qualitative agreement with the experimental results and
bead–rod chain simulations reported in [9].

Unlike for a FENE–P or FENE–CR uid, the hysteretic behaviour of Fig. 10 rules
out a modi ed stress–optic law for FENE dumbbells wherein the stress–optic coef -
cient would be a function of the second moment alone.

8 Conclusions
In the framework of kinetic theory of FENE dumbbells and related macroscopic equa-
tions, we have shown that hysteretic behaviour results from the combined effect of
dispersity and non–linearity.

With FENE dumbbells, dispersity results from a coarse–grain version of molecular
individualism [28]. At start–up of ow, individual dumbbells have their own con g-
uration dictated by an equilibrium distribution, thus yielding different non–linear dy-
namics during stress growth. A more sophisticated version of molecular individualism

12



is observed in simulations with bead–spring or bead–rod chains, eventually leading to
a con guration hysteresis [9, 13, 29]. Molecular individualism can also be traced in
the multi– FENE–P calculations, should one wish to interpret this model as a polydis-
perse suspension of FENE–P dumbbells of different maximum length. In the simula-
tion of the lament stretching device with a single mode FENE–CR model, dispersity
is not due to molecular individualism at all, but rather to the non–ideal character of the
ow kinematics inducing different deformation histories across the mid–distance sec-
tion of the lament. In an actual experiment with the lament stretching device, it may
thus be dif cult to identify the relative contributions to hysteretic behaviour of molecu-
lar individualism and ow inhomogeneities. The current development of micro–macro
numerical techniques that couple stochastic simulations of kinetic theory models with
the nite element solution of the conservation laws should help resolve that issue (e.g.
[30, 31, 32]).

The kinetic theory of FENE dumbbells predicts hysteretic behaviour in stress–
birefringence curves, and thus does not follow a stress–optic law wherein the stress–
optic coef cient would be a function of the con guration tensor alone. This is in quali-
tative agreement with experimental results and more detailed bead–rod or bead–spring
simulations [8, 9, 13]. Recent experimental and numerical work [7, 33] also adds to the
credibility of simple non–linear dumbbell models. Thus, although the FENE dumbbell
model is very crude (in particular, the distribution of solvent drag along the polymer
chain and the coupling of internal con guration modes are ignored), it appears to be
a realistic starting point for micro–macro simulations of dilute polymer solutions in
complex geometries.

In the Appendix, we show that a suitable selection of the spectrum of nite ex-
tensibilities can be made in the multi– FENE–P model so that the resulting stress
response in transient uniaxial extension is essentially identical to that of the (single–
mode) FENE dumbbell model. Thus, the multi– FENE–P model appears to be a very
good macroscopic model for describing dilute polymer chains in extensional ows. In-
terestingly, we show that small values of the parameters are needed to have a multi–
FENE–P model t the response of a single–mode FENE model.

This last remark leads us to comment on the selection of suitable values for the var-
ious parameters that appear in the models used in this work. For simplicity, let us dis-
tinguish three levels of description, namely, level 1: modeling of chains (e.g. Kramers
model), level 2: non-linear dumbbell models, and level 3: closed-form constitutive
equation. Obviously, each level of description has a phenomenological character to it
that should not be ignored. In view of the approximations and idealizations adopted
for going from levels to , it is not at all obvious to us that the model parameters
at level can be unambiguously related to those at level . For example, due to
the Peterlin approximation used to go from levels 2 to 3, interpreting the parameters of
the FENE–P model in the framework of the underlying FENE kinetic picture can be
misleading, especially so for the maximum extensibility parameter ([12, 34]). A sim-
ilar situation arises, in our opinion, when one wishes to relate the parameters of chain
models to those of the single–mode FENE dumbbell model. Indeed, concentrating all

13



interactions between the chain and the solvent at both ends of a dumbbell and neglect-
ing internal con guration effects are also signi cant approximations that are likely to
change the interpretation of the model parameters. In other words, it is not clear to us
that a range of physically admissible values for the maximum extensibility parameter
of the FENE dumbbell model at level 2 can be de ned strictly and unambiguously in
terms of parameters for chain models at level 1, as done e.g. in [9].

In view of the phenomenological character of each level of description, we feel
that a valid procedure for estimating the values of the model parameters is to t exper-
imental rheometrical data, as done e.g. in the vortex growth simulations performed by
Purnode and Crochet with the FENE–P or FENE-CR model [35, 36] (yielding in this
case rather small values for the maximum extensibility parameter ). Alternatively,
one could consider the results obtained at level or as the “experimental”
data to be tted at level .
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10 Appendix
We wish to show in this Appendix that a suitable selection of the spectrum of nite
extensibilities can be made so that the multi– FENE–P results for the transient
elongational viscosity are virtually those obtained with the single–mode FENE dumb-
bell model in start–up of uniaxial extension followed by relaxation.

Although the result is for the three–dimensional case, its development is based
upon a one–dimensional theory where we retain only the and components of
all variables of interest all other components are assumed to vanish identically. The
dumbbells are thus aligned with equal probability in the positive or negative direc-
tion, while the effect of the ow is to modify their length. The resulting mathemati-
cal problem is scalar we shall thus drop all reference to the coordinate system (e.g.

, , ). For FENE dumbbells with maximum extensibility ,
the one–dimensional analog of eqs. (3,4) read

(18)

Here, is the con guration space average computed with the distribution function

(19)

Now, let us consider a multi– FENE–P model with a continuous spectrum of
nite extensibilities. The polymer stress is thus given by

(20)
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where is a mode average computed with the distribution of nite exten-
sibilities. For a given value of , the con guration is obtained as solution to the
one–dimensional analog of eq. (7):

(21)

At this point, we wish to show that eqs. (18) and (20,21) are formally very similar. In
order to do so, we normalize the FENE connector with its maximum extension, i.e.

(22)

For the multi– FENE–P model, we de ne a normalized con guration variable )
such that

(23)

In terms of and , the FENE and multi– FENE–P models read respectively

(24)

and

(25)

with the constraint
The similarity between eqs. (24) and (25) is striking. Formally, the main difference

between FENE and multi– FENE–P is that the stochastic Brownian term of intensity
in eq. (24) is a deterministic term of magnitude in eq. (25). Furthermore, if

the length distribution of the multi– FENE–P model is de ned by

(26)
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then eq. (25) reads

(27)

which is similar to eq. (24) .
These considerations lead us to the following statement: by selecting a mode dis-

tribution such that the equilibrium FENE and multi– FENE–P length distribu-
tions coincide, i.e.

(28)

one should expect (see Section 6 in [11]) that these two models give very similar
dynamics of the polymer stress. In view of eq. (26), the constraint (28) yields the
following spectrum of nite extensibilities [37]:

(29)

where is a normalization constant such that This particular spec-
trum is illustrated in Fig. 11, for .We shall refer to the multi– FENE–P model
with the spectrum (29) as the FENE–Pb model. Although quite similar, the FENE
and FENE–Pb models are of course not equivalent mathematically [37]. It is worth
pointing out that the spectrum (29) selected in order to mimic the FENE theory with
nite extensibility exhibits a maximum value around . In the discrete
version of the FENE–Pb model, a large number of modes will thus have an extensi-
bility parameter that is signi cantly smaller than . This shows that small values of
the parameters are needed to have a multi– FENE–P model t the response of a
single–mode FENE model.

We now apply the above ideas to three–dimensional kinematics. We consider a
discrete version of the FENE–Pb model, with a number of nite extensibilities .
The latter are selected such that [37]

(30)

with given by (29). As in Section 4, the polymer stress is the sum of the contribu-
tions of each mode, where is computed by means of eq. (7) with in eq.
(1).

Figure 12 compares the transient elongation viscosity predicted with FENE
and FENE–Pb models in the start–up of uniaxial elongation followed by relaxation.
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The velocity gradient is given by eq. (10) with . As the number of modes
increases, i.e. 5, 10, 30, and 100, one indeed observes convergence of the
FENE–Pb results to their FENE counterparts. The optimal selection of the spectrum
of nite extensibilities depends, however, upon the ow kinematics. For example,
the choice (29) which is excellent for uniaxial elongation is not optimal for bi–axial
elongation [37].
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Figure 1: Start-up of uniaxial elongation followed by relaxation ( , ):
evolution of speci ed strain rate and strain . Comparison of results for the
transient elongational viscosity and the mean square molecular extension tr .
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Figure 4: Schematic of the lament stretching device. The initial aspect ratio
is set to 1.75 in the numerical simulation.
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Figure 6: Numerical simulation of start-up of elongation in the lament stretching
device, using the velocity compensation technique ( ). Axial component of the
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Figure 9: Stress–optic coef cient versus time for FENE dumbbells in start-up of
uniaxial extension followed by relaxation ( , ).
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Figure 10: Stress–optic coef cient versus birefringence for FENE dumbbells
in start-up of uniaxial extension followed by relaxation ( , ). The
hysteresis curve is traversed counter-clockwise.
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Figure 11: Continuous spectrum that de nes the FENE–Pb model for .
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Figure 12: Transient elongational viscosity in start-up of uniaxial extension fol-
lowed by relaxation ( , ). Convergence of FENE–Pb (dashed curves) to
FENE (solid curve), with 5, 10, 30, and 100.
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