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The start-up flow of a nematic rodlike polymer in an eccentric cylinder

geometry is studied on the basis of the rigid rod model. The simulations neglect the

polymer stress contribution in the momentum equation. The nematic configuration is

obtained by integrating the diffusion equation for the orientational distribution

function with a Galerkin approach. The predictions are compared with results

obtained by introducing different closure approximations. Both a quadratic and a

Bingham closure are considered. The comparison shows that the approximations

have a qualitative impact on the results.

��������: Nematic rodlike polymers; Doi model; closure approximations; eccentric

cylinders.
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Liquid crystalline polymers (LCPs) represent a class of materials that show a

peculiar rheology (e. g., [1]). The modeling of LCPs is still an active field of

research; an interesting aspect is the characterization of complex flow situations that

are commonly encountered in processing. Recently, Feng and Leal [2] have

presented an interesting work, in which they address the problem of complex flow

simulation in an eccentric cylinder geometry. The liquid crystalline phase is modeled

with a simplified constitutive equation derived from the rigid rod model [3] with the

introduction of the quadratic closure approximation [4]. No spatial effects are

accounted for, and the flow problem is solved by coupling the equation of motion

together with the stress equation and the polymer configuration dynamic equations.

The adoption of a closure approximation allows the configuration dynamics to be

formulated in terms of the second rank order tensor. The results are very intriguing:

The scalar order parameter and the director fields show very complex patterns, and

the existence of defects is also highlighted. In order to assess the effect of the closure

approximation on the results, Feng 
�� ��. [5] compared, in a subsequent paper, the

results obtained with different closures.

In view of these interesting results, we here wish to ascertain the influence of

closure approximations following a different approach. We first analyze the same

flow problem studied by Leal and coworkers without making use of closure

approximations. To keep the numerical burden low, however, we solve the flow

problem by neglecting the polymer stress contribution in the momentum equation.

The results are then compared with predictions obtained with simplified formulations
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without stress coupling. These predictions are used also to compare with Leal and

coworkers to evaluate the effect of the stress coupling on the predictions.

����
����

The start up flow of a nematic polymer in an eccentric cylinder is studied.

The system geometry is sketched in Figure 1, and is identical to that considered in

[2]. The outer cylinder is stationary, and the inner cylinder starts rotating at t=0 with

angular velocity ω. For the sake of comparison, the geometrical parameters are those

of Feng and Leal (1997): �1=3, �2=10, and e=5 (see Fig. 1 for the nomenclature).

Thus, the geometry is characterized by two dimensionless parameters: µ=(�2−�1)/�1

= 7/3 and ε=e/�1=5/3.

The model consists of the equations of motion combined with the constitutive

equation for the polymeric phase. The nematic polymer is described by neglecting

any spatial interaction. The equations of motion are:

0∇ ⋅ = , (1)

2
�!

�
ρ η∂ = −∇ + ∇ + ∇ ⋅

∂
 

 τ . (2)

In Eq. 2, non-linear convective terms are neglected. In Eqs. 1−2, ρ is the density of

the fluid, ηs is the solvent viscosity,   is the velocity vector, ! is the pressure and τ is

the polymer stress. A model for the nematic phase must be chosen to compute the

stress tensor. We here refer to the rigid rod model that describes the rod−like

molecules as rigid Brownian rods with infinite aspect ratio [3]. At a given position in
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the space, the dynamics of an ensemble of rigid rods is formulated in terms of a

diffusion equation for the rod orientational distribution function ψ(!; �):

( ) ( )1
:�

(

.
�

.� � 0
ψ ψ ψ ψ ∂ ∂ ∂ ∂= ⋅ + − ⋅ ⋅∇ − ∇    ∂ ∂ ∂ ∂ 

! !  ! !!  
! ! ! !

� . (3)

In Eq. 3, the derivative in the LHS is a Lagrangian derivative, ! is the

pseudo−versor, 
∂

∂!
 is the gradient over the unit sphere, �B is the Boltzmann

constant, 0 is the absolute temperature,  ∇ � is the velocity gradient, and �� is the

average rotational diffusivity.

The nematic potential, �(!), is that of Maier−Saupe [6]:

( ) 3
S:

2 (� � � 0= −! !! . (4)

In Eq. 4, the second rank order tensor is introduced:

( )= ∫� ! !! !�ψ . (5)

Once the distribution is known, the stress tensor can be calculated as

suggested by Doi and Edwards [7]:

( )
( )23

3 3 :
2

(
( (

�

� 0
� 0 � 0�




νν ν
ν

= − ⋅ − + ∇� � � � ��  �
�

. (6)

In Eq. 6, ν is the number density of the rod−like molecules, 
 is the rod length, and �

is the fourth rank order tensor given by

( )= ∫� ! !!!! !�ψ . (7)

The diffusion equation (Eq. 3) and Eqs. 1−2 are made dimensionless by

considering as characteristic time the reciprocal of the cylinder angular velocity ω−1,
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and as characteristic length Λ = �1/3. The polymer stress, τ, is made dimensionless

with the quantity ν�(0. In this way, three dimensionless groups are obtained:

2
(

� �

� 0
�

ν
η

=
�

,

�.
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ω= , (8)

�

�

η

Λωρ=
2

.

In Eqs. 8, the parameter � measures the polymer contribution to the total

stress [2], Pe is the Peclet number, and Re is the Reynolds number. Finally, in

dimensionless form the equations are:

0=⋅∇  , (9)

2 �
�
 !

� 	

∂ = −∇ + ∇ + ∇ ⋅
∂
 

 , (10)

( ) ( )1
:

6 (

�.
.� 	
 � 0
ψ ψ ψ ψ

∂ ∂ ∂ ∂= ⋅ + − ⋅ ⋅ ∇ − ∇    ∂ ∂ ∂ ∂ 

!
!  ! !!  

! ! ! !
, (11)

( )
( )23

:
	


�

ν

= − ⋅ − + ∇� � � � � �  �τ . (12)

The predictions can be obtained by integrating the coupled set of Eqs. 9−12.

However, for the sake of numerical simplicity, we here solve the problem in a

decoupled fashion. In fact, the molecular model (Eq. 11) is solved numerically

without resorting to closure approximation, but, the simulations are carried out by

considering pure kinematics conditions (��
. the polymer stress is neglected in

Eq. 10). This is equivalent to solve the above equations for �=0. Henceforth, we will
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refer to the solutions obtained through this procedure as “exact solutions” just to

distinguish from solutions obtained with the use of closure approximations.

The influence of closure approximations is analyzed by replacing Eq. 11 with

an equation derived with the so-called Prager procedure [8]. In such a way, the

evolution equation for the second rank order tensor is obtained as

( )6 2 6 2 :0�
�

��
= − + + ⋅ − + ⋅∇ + ∇ ⋅ − ∇�

� � � � �� �   �  � . (13)

In Eq. 13, δ  represents the second rank unit tensor. In order to “close” Eq. 13, a

closure approximation, ( )=� �� , is needed. We here use two different closures: the

quadratic closure [4], and a Bingham�closure ([9−10]). The predictions obtained with

closure approximations can give two pieces of information. On one hand, one can

compare the results with those obtained with the exact�$��
� (Eq. 11) to evaluate the

impact of the closure approximations when the flow field is prescribed. On the other

hand, it is possible to estimate the effect of the �−parameter by comparison with the

previous works of Leal and coworkers, who solved the coupled problem with the

same types of closure; and, therefore, the importance of the coupling can somehow

be evaluated.

The quadratic closure reads:

� " �� . (14)

The Bingham�closure here adopted has been recently presented in [10], and

can be compactly written as:
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( ) ( ) ( )( )

( ) ( )

( )

1 2 3 4 5 6

1 4 3 5 2 3 6 2 3

2 4 5 2 6 2 3

3 4 5 6 2

2
4 1 1 3 2 2 3 3

2
5 4 5 3 6 2 7 3

6

R S SS S S SS S S SS S,

1
7 4 3 3 12 56 6 2 1 8 ,

140
1

12 7 3 1 4 6 6 8 ,
14
1

7 7 2 4 3 ,
4

,

,

- - - - -

- - -

-

5 ! - ! - ! -

! ! - ! - ! -

β β β β β β

β β β β

β β β β

β β β β

β

β

β

= + + + ⋅ + ⋅ + ⋅ ⋅

 = − − + + − + − + 

= + + + + − −  

= − − + −  

= + + +

= + + +

=

δδ δ δ

2
8 9 3 10 2 2 3 .! ! - ! - 5 -+ + +

(15)

In the above equations, the overbar implies the tensor symmetrization, and -2 and -3

represent the second and the third invariant of tensor �:

 
( )

( )
2

3

1
1

2
= −

=

� ��

�

-

- .
�
(16)

The numerical values of the parameters are reported in Table 1.

����	�
���
�����
�	�#���

Equations 9−10 are integrated by adopting a Lagrangian streamline

integration. The numerical algorithm is a particular case of the Lagrangian Particle

Method (LPM), which combines in a decoupled fashion the solution of the

conservation laws with a Lagrangian computation of the polymer configuration

(Eqs. 11−12) for a discrete number of particles. In the case at hand the contribution

of the polymer stress to the total stress is neglected (i.e. 0=� ), so that the integration

of Equations 9−10 is performed independently of the polymer configuration

integration. The latter integration is performed once the flow field has been

calculated. Details on LPM may be found elsewhere [11].
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The integration of the diffusion equation (Eq. 11) is performed through a

Galërkin scheme: The distribution function is expanded as a spherical harmonics

series ([12−13])

),()(),(
0

ml, φϑΥ=ψ ∑ ∑
∞

=

=

−=

$
�


"
��
�

�$

�$

�1�! , (17)

where the 1�$ coefficients are complex functions of time. The expansion is truncated

at some level � and, by exploiting the orthogonality properties of the spherical

harmonics, one ends up with a set of ordinary differential equations in terms of the

1�$ coefficients. In fact, for the parameter values investigated here, numerical

convergence has been obtained by truncating the expansion at �=12.

���������	�����
�����	�

The solutions are described by reporting two descriptors of the system: the

scalar order parameter and the director angle. There is no rigorous definition of these

physical quantities in flow conditions. However, following Larson [14], we consider

the scalar order parameter as:

3 1

2 2
� = −� �� . (18)

The director is defined as the orientation of the eigenvector of � corresponding to its

largest eigenvalue. As a general result, all our simulations show that the asymptotic

solutions do not change as the initial state for the distribution function is varied. The

asymptotic state is always characterized by the director lying in the flow plane. As a
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consequence, only one angle is needed to describe the director orientation of the

regime solutions. This angle is measured with respect to the 6−axis.

The parameter to be fixed for the simulations are �, �
, and Pe. Two Peclet

numbers are investigated: Pe=10 and Pe=20. The Reynolds number is always

5.55×10−5Pe. The �−value is chosen so to have the same equilibrium condition of

Feng and Leal [2], that is a scalar order parameter, �eq, equal to 0.683. For this value

of the equilibrium scalar order parameter, only the prolate nematic is stable at rest.

The corresponding �−value is 5.392. For future reference, the �−value

corresponding to �eq=0.683 for the quadratic closure is �=4, whereas it coincides

with that of the exact�model for the Bingham�closure.

In the following, the director field and the scalar order parameter field, as

predicted by Eq. 11 and with closure models, are presented. Only asymptotic

solutions are illustrated. The director field is drawn by plotting, as done by Feng and

Leal, ellipses that represent the projection of the second rank order tensor onto the

flow plane. The largest axis gives the director orientation. The lengths of the axes are

proportional to the corresponding �−eigenvalues in the 67−plane.

��������	
������
�������������
���
���

In this section we report the solutions obtained by integrating Eq. 11, that is,

without resorting to closure approximations. Figure 2 illustrates the director field for

Pe=10. Since the asymptotic solution is periodic in the recirculation zone, the graph

is just a snapshot taken during the asymptotic oscillation. The solid line encircles the

subdomain in which the periodic oscillation occurs. In this region, the system shows
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a wagging−like solution, ��
���the director oscillates between two limiting angles. The

director field is here rather complex, but no evidence of defect−like situations are

envisaged. Close to the inner cylinder the director is aligned along the streamline

directions. Something similar to a defect –1/2 is found on the external cylinder

(coordinate), where the director field shows a discontinuity.

Figure 3 shows the scalar order parameter field for the same parameter values

of Fig. 2. Several minima and maxima are found. In the recirculation zone, as typical

of the wagging regime, the scalar order parameter reaches very low values during the

oscillation. Close to the inner cylinder the scalar order parameter shows wide spatial

variations. A relative minimum is detected below the inner cylinder on the left, and a

relative maximum is present on top of the inner cylinder on the left again. The

situation is even more complex on the boundary between the recirculation zone and

the region close to the inner cylinder. Two stationary relative minima are found: one

in the position ( ) ( )7,3, −−≈76 , the other at ( ) ( ), 1.2,1.46 7 ≈ . In the recirculation

zone away from the wagging region, the scalar order parameter experiences again

wide variations: it is higher in the bulk of the recirculation zone, and lower in the

region close to the outer cylinder.

Figures 4−5 report the director field and the scalar order parameter field for

Pe = 20, respectively. No significant differences with respect to the lower value of

Peclet are found except in the recirculation zone where a stable stationary solution is

found. Actually, the asymptotic solution is stationary everywhere. This is coherent

with the behavior typical of simple shearing flow where periodic solutions give the
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way to stationary solutions as the Peclet number increases [14]. Also in this case, the

scalar order parameter is low in the recirculation zone, reaching a minimum of 0.20.

��������	
���
�������������
���
���

We first present the predictions of both quadratic and Bingham closure

approximations for Pe=20 so that a direct comparison with the data of Feng and Leal

can be addressed.

 Figures 6−7 report the director field and the scalar order parameter field for

the quadratic closure. The results are qualitatively and quantitatively close to the

results by Feng and Leal (see their Fig. 4d in [2]). The solution is stationary. The

director is aligned with the circular streamlines close to the inner cylinder. In the

recirculation zone, a defect of strength +1/2 is found as in the work of Feng and Leal.

In correspondence of the defect, the scalar order parameter reaches a minimum

(�min=0.218), which is very close to the value reported in [2] (S=0.248). The scalar

order parameter field is much simpler than that predicted without closure

approximations; moreover, the scalar order parameter is clearly overestimated. All

these results imply that the stress coupling, at least at the level used by Feng and

Leal, does not significantly affect the predictions. On the other hand, the comparison

with the results obtained without the closure approximation shows that many

qualitative aspects are missed with the quadratic closure. This is obviously not

unexpected, as it is well known that this closure gives very poor results also in

simple flows.
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Figures 8−9 are obtained with the Bingham�closure approximation (Eq. 15).

The asymptotic solution shows a periodic region in the recirculation zone, thus the

plots report only an instantaneous snapshot of the periodic solution. The oscillation

in the recirculation zone is complex. Two zones one of the tumbling type, ���
�, in a

fixed spatial position the director rotates indefinitely in time, and another of the

wagging type are encountered. In the figure, the tumbling and the wagging domains

are encircled with a solid line. The scalar order parameter field shows some structure.

Two maxima and two minima are found close to the inner cylinder. A wide region

where the scalar order parameter is rather uniform separates the two tumbling

domains. A qualitative agreement with the exact�solution (Fig. 4−5) is found in some

regions of the flow field. For example, close to the inner cylinder, the closure model

is able to correctly reproduce the presence of minima and maxima. In addition, as in

Fig. 6, in the recirculation zone, the scalar order parameter � is high in the bulk, and

low in the region close to the outer cylinder. On the other hand, the periodic domain

found with the Bingham�closure is absent in the exact�solution.

Since at Pe=10 the Bingham� closure predictions do not differ qualitatively

from those just shown, no plots of the director and the scalar order parameter field

for the closure approximations are reported. Again, two periodic domains of the

tumbling type are found. If one compares this situation with the exact� solution� for

Pe=10, it turns out that the agreement is much better. This confirms that the Bingham

closures behaves satisfactorily in slow flows ([9−10]).

��
���
�����
���
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A quantitative comparison between the constitutive equations can be

performed by investigating the dynamics evolution in different points of the flow

field. Here, three different positions are monitored: point A close to the inner

cylinder ((x,y) = (−2.5,2.5)); point B in the recirculation zone ((x,y)=(2.5, 0)), and

point C close to the outer cylinder ((x,y) = (0, −7.5)).

Figures 10−12 report the evolution of the scalar order parameter S and the

director angle α at points A, B, and C, respectively, for Pe=10. The exact solution is

plotted with solid lines, and the Bingham� closure is plotted with dotted lines. The

initial condition is always the isotropic condition. For the exact� solution� this

corresponds to

( ) 1
0

4
��ψ

π
=! , (19)

whereas for the simplified formulation it reads:

( )
1 3 0 0

0 0 1 3 0

0 0 1 3

 
 =  
  

� . (20)

The evolution at point A is reported in Figure 10. The asymptotic solution is

stationary both for the exact model and the Bingham�approximation. The steady state

scalar order parameters are very close, whereas a slight discrepancy is found for the

director orientation. It is apparent that at this position the exact solution and the

Bingham�closure are in good agreement

In Figure 11, the evolution for � and α are plotted at point B. The exact model

predicts a wagging−like solution. The director angle oscillates between two limiting

values, and the scalar order parameter oscillates between 0.25 and 0.59. The
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Bingham� closure gives here a very different picture as it predicts a tumbling−like

solution with the scalar order parameter oscillating between the values of 0.52 and

0.865.

Figure 12 shows the evolution of S and α at point C. Both models predict a

stationary solution. However, from a quantitative point of view, the Bingham�closure

predicts a much larger scalar order parameter (0.81 vs. 0.61). A better agreement is

found for the director angle.

For Pe= 20, the situation at A and C is very similar to those just illustrated, and

thus no plot is presented. Figure 13 shows the situation at point B. The exact solution

predicts a stable stationary solution, which is eventually reached after a long

transient. On the contrary, the Bingham� closure predicts a tumbling regime. This

discrepancy is due to the intrinsic nature of this closure approximation that

overestimates the range of existence of the periodic regime for U>5 (see [10]).

���
�����	

As a general result, it is apparent that the closure approximations investigated

here do not describe satisfactorily the dynamics of the exact solution. The Bingham

closure performs adequately at low Peclet values as already noted for simple flows

[10]. Unfortunately, as the flow field becomes stronger, the quality of the predictions

degrades. An explanation of this degradation can be related to the orthotropic nature

of the closure [15]. Since the fourth rank order tensor takes all its directional

information from the second rank order tensor, it possesses strong symmetry

properties, that is, all the off−diagonal components of the fourth rank order tensor
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must be zero when written in the eigenspace of second rank order tensor. A possible

measure of ���#����!����7 of the exact fourth rank order tensor was suggested in [13].

We slightly modify the proposed norm by normalizing it with the scalar order

parameter:

2 2 2 2 2 2 2 2 2
1112 1222 1113 1333 1233 1223 1123 2223 2333� � � � � � � � �

���$
�

+ + + + + + + +
= . (21)

In Eq. 21, the fourth order tensor is written in the eigenspace of �. This norm can be

used only with an anisotropic state, and is zero when the orthotropic assumption

holds true. Figure 14 reports the value of this norm in the flow field for Pe=20. It is

apparent that the orthotropic assumption does not hold true. However, it is worth

noting that the Bingham�closure gives the best results in the regions where this norm

is smaller, ��
. in the bulk of the recirculation zone and above on the left of the inner

cylinder. Of course, as the Peclet number decreases, the norm of Eq. 20 decreases as

well, thus confirming the better agreement found in this work for Pe=10.

It should be mentioned that our simulations have shown that no stable

solution is encountered with the director oriented orthogonally to the flow plane

(���−���������
��$
, [12]) in contrast with the results obtained by Feng and Leal [2].

This discrepancy could, of course, be due to the absence of coupling polymer stress

coupling in our work. However, the presence of log−rolling solutions in Feng and

Leal may also be caused by the constrained symmetries adopted by them. In fact, in

their work, the out−of−flow−plane components of the second moment tensor are

imposed to be always nil. This means that the director can be oriented only within

the flow plane or in the direction orthogonal to it. On the other hand, in the present
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work, the model is three−dimensional, ���
�, the distribution function and also the

second rank order tensor are not restricted by any constraint. Therefore, the director

is free to evolve in a 3d space, and it can easily leave the log−rolling orientation.

Instead, in the formulation of Feng and Leal, the director can leave the orientation

orthogonal to the flow plane only if the configuration passes through a

nematic−oblate state (or even isotropic), and, since this route is energetically

expensive, the stability of log-rolling solutions is thus enforced with respect to our

formulation.


�	
�����	�

In the present work, the problem of a complex flow simulation of nematic

polymers, described with the rigid −rod model, has been addressed. The main

objective of this work was to ascertain whether simplified constitutive equations

based on closure approximations are adequate. Two closure approximations have

been considered: the quadratic and the Bingham closure. The comparison is made by

considering the flow between rotating eccentric cylinders. The flow problem is

solved by neglecting the polymer contribution to the stress. Within this assumption,

it turns out that the closure approximations cannot be used at large Peclet numbers.

The Bingham�closure behaves satisfactorily only at low Pe.

The influence of the polymer stress coupling has been qualitatively evaluated

by comparing the results obtained with the quadratic closure with those presented by

Feng and Leal [2] in the very same situation but with a moderate stress coupling. It
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appears that no significant difference was present, thus suggesting that, at least at

moderate �−values the impact of the coupling is negligible.

�$%&��'��()�&*�
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Fig. 1 – The eccentric cylinder geometry. Relevant geometrical and kinematic

parameters are illustrated.

Fig. 2 – A snapshot of the director field during the oscillating regime for Pe=10 as

predicted with the exact solution. The ellipses represent the projection onto

the flow plane of the second rank order tensor. The wagging region is

encircled.

Fig. 3 – A snapshot of the scalar order parameter field during the oscillating regime

for Pe=10 as predicted with the exact solution.

Fig. 4 – The director field at the steady state for Pe=20 as predicted with the exact

solution.

Fig. 5 – The scalar order parameter field at the steady state for Pe=20 as predicted

with the exact solution.

Fig. 6 – The director field at the steady state for Pe=20 as predicted with the

quadratic closure approximation.

Fig. 7 – The scalar order parameter field at the steady state for Pe=20 as predicted

with the quadratic closure approximation.

Fig. 8 – A snapshot of the director field during the oscillating regime for Pe=20 as

predicted with the Bingham closure approximation. The tumbling region is

encircled.

Fig. 9 – A snapshot of the scalar order parameter field during the oscillating regime

for Pe=20 as predicted with the Bingham closure approximation.
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Fig. 10 – The evolution of the scalar order parameter and the director orientation for

Pe=10 at point A (see text). The solid lines represent the exact solutions; the

dashed lines represent the predictions of the Bingham closure model.

Fig. 11 – The evolution of the scalar order parameter and the director orientation for

Pe=10 at point B (see text). The solid lines represent the exact solutions; the

dashed lines represent the predictions of the Bingham closure model.

Fig. 12 – The evolution of the scalar order parameter and the director orientation for

Pe=10 at point C (see text). The solid lines represent the exact solutions; the

dashed lines represent the predictions of the Bingham closure model.

Fig. 13 – The evolution of the scalar order parameter and the director orientation for

Pe=20 at point B (see text). The solid lines represent the exact solutions; the

dashed lines represent the predictions of the Bingham closure model.

Fig. 14 – The field of the norm of Eq. 21 for Pe=20.
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TABLE 1

!) !2 !* !% != !'

−9.6746 −53.486 14.4619 −2.2786 −9.0389 108.098

!> !+ !4 !)3 5) 52

10.6180 −1.3120 14.1101 −68.022 4.5906 −)2�**3%
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Figure 6
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