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Abstract

An incremental method is presented to generate automatically boundary-
fitted Delaunay triangulations of the global ocean. The method takes into
account Earth curvature and allows local mesh refinement in order to
resolve topological or dynamical features like midocean ridges or western
boundary currents. Crucial issues like the nodes insertion process, the
boundary integrity problem or the creation of inner nodes are explained.
Finally, the quality of generated triangulations is discussed.
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1 Introduction

Since the pioneering work of Bryan (1969), most ocean general circulation models (OGCMs)
are using finite-difference techniques on structured grids. If those grids are based on the
geographical coordinates, stability problems are likely to arise in the vicinity of the North
Pole (Williamson, 1979). Many approaches were suggested to deal with this difficulty
within the framework of structured grid models (e.g. Williamson, 1979, Murray, 1996).
So far, essentially three types of solution have been implemented in OGCMs: combined
grids as equatorial transform (Deleersnijder et al., 1993, Eby and Holloway, 1994, Cow-
ard et al., 1994), grids generated semi-analytically (Madec and Imbard, 1996) and grids
generated analytically (Murray, 1996, Purser and Ranc̆ić, 1997, Bentsen et al., 1999).
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However, two main drawbacks due to the rigidness of all these structured grids are in-
escapable. Firstly, their staircase representation of coastlines exerts some spurious form
stress on model boundary currents (Adcroft and Marshall, 1998) and the alternative grid
generation method based on boundary-fitted coordinates (Wilkin and Hedström, 1998)
only works for regional applications. Secondly, the rigidness of these grids combined with
the expensive CPU cost of the OGCMs prevents the resolution of relatively small topo-
logical and dynamical features without nesting or adaptive mesh refinement (Blayo and
Debreu, 1999). However, the fine resolution of these features is likely to be a key point
for a globally well-resolved ocean circulation model. Among these are equatorial dynam-
ics, western boundary currents, mesoscale eddies, ridges, continental slopes, channels and
straits.

Using unstructured grids would help to solve the problems listed above. This is why
numerical methods as finite elements may be potentially interesting for modelling the
global ocean. While these were successfully used in tidal (Shum et al., 1997) and coastal
modelling (Lynch et al., 1996), little interest has been expressed so far in the other
branches of oceanography (Myers and Weaver, 1995, Le Roux et al., 1998) apart from the
spectral finite element ocean model (SEOM) (Iskandarani and Haidvogel, 1995, Curchister
and al., 1998). However, they have significant advantages over finite difference.

A first advantage of finite element methods is their inherent ability to deal with un-
structured grids. These grids easily allow local grid refinement to give high resolution
without loss of accuracy. The use of such grids also avoids the meridian convergence
problem of longitude-latitude grid in the vicinity of the North Pole.

A second advantage is their strong and rigorous mathematical foundation based on a
weighted residual formulation. The solution which is typically constructed from a poly-
nomial expansion belongs to an a priori defined function space. The mathematical foun-
dations of the finite element method also allows a precise definition of the accuracy which
leads to adaptive finite element methods.

In this paper, we present a method to generate automatically unstructured meshes
of the global ocean. To take advantage of robust and well-known algorithms, we have
subdivided the ocean into a conform triangulation. Such triangulations have been already
used in oceanography and are generated by usual codes like TriGrid (Henry and Walters,
1993). These codes – which are principally aimed toward the automatic generation of
finite element networks in the two horizontal dimensions for use with models of coastal
circulation – are not adapted to the global ocean, a domain for which Earth curvature
influences dramatically the quality of generated meshes. For instance, to reach good
quality meshes of the global ocean with TriGrid, Le Provost et al. (1994) had to split
the global ocean into subdomains which are supposed plane. Therefore, we developed our
generator to provide a mesh generator well adapted to large-scale oceanography. From
a technical point of view, the ocean surface is directly triangulated on spherical surface.
We have also implemented the automatic creation of nodes – both boundary and inner
nodes – during the mesh generation.

A first Delaunay triangulation generator on the sphere using an incremental method
was implemented by Renka (1997) but the applications of this generator did not deal with
boundaries like the coastlines. This issue is properly addressed below.
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2 Unstructured adaptive finite element methods

Let u be the exact solution of a general circulation model. The block-field vector u includes
all variables of an oceanic circulation model : the velocity components, the pressure, the
temperature and the salinity. Let uh be the approximation of u so that

uh(x, t) =
N∑

i=1

Ui(t)φi(x) (1)

where Ui are unknown nodal values and where φi are given piece-wise polynomial shape
functions. This form of uh allows a finite element treatment of the spatial discretization
and a finite-difference treatment of the time discretization.

For a coercive discrete operator (typically, a coercive operator can be viewed as the
discrete algebraic system obtained by applying standard Galerkin finite element procedure
to a dissipative physical model), the following interpolation property holds (Ciarlet, 1979) :

||u− uh||H1(Ω) ≤ C
hp+1

ρ
||u||H2(Ω) (2)

where ||.||H1(Ω) and ||.||H2(Ω) are usual Sobolev norms, p is the order of the shape functions,
h is a typical mesh size, ρ is a typical inscribed circle radius of the triangulation elements,
C is a triangulation-independent constant. For a given mesh size, the fact that the
triangulation exhibits small shape factors h

ρ
is a crucial issue for the accuracy of the

finite element approximation so that the normalized inverse of the shape factor is used to
quantify the quality of a triangulation. This quality factor belongs to the interval [0, 1].
The quality factor of a degenerated triangle vanishes while that of an equilateral triangle
is equal to unity. It is commonly accepted that a triangulation is a good one if all its
triangles have just acute angles. It means that the quality factor of the worst triangle
must be greater than 0.5.

Equation (2) is an a priori error estimation for all problems where a dissipative term
appears, such as shallow water models (see, for instance, Foreman, 1984). A more accurate
a posteriori error estimation can be calculated when the finite element solution uh is
known. The joint use of a priori and a posteriori error estimations leads to an automatic
adaptive method (Johnson and Szepessy, 1995). In other words, an adaptive method
consists in calculating a discrete solution uh and the a posteriori error on a first grid. If
the error is greater than the precision objective, the a priori error is used to determine
the minimum number of nodes which must be added in the grid to reach the objective.
Finally, a discrete solution is calculated on the new grid and the process starts again.
Here, we only investigate the initial step, i.e. the design of a first mesh. To obtain such
a mesh with suitable shape factor, we use the standard Delaunay triangulation.

3 Delaunay triangulation on the sphere

Let X = {x1, x2, . . . , xn} be a set of points in a plane which are called nodes. Now,
partition the plane by assigning every point in the plane to its nearest node. All those
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points assigned to xi form the Voronoi region V (xi). The set of all points belonging to
more than one Voronoi region defines the Voronoi diagram. The dual graph of a Voronoi
diagram is obtained by drawing connecting lines between nodes perpendicular to the edges
of the diagram (Figure 1). It can be proved that the dual graph of a Voronoi diagram
produces a triangulation of the nodes which is called the Delaunay triangulation. This
duality between Delaunay triangulation and Voronoi diagram ensures the uniqueness of
the Delaunay triangulation – if co-cyclic points are excepted.

Figure 1: Delaunay triangulations (solid lines) are obtained by drawing connecting lines
between nodes perpendicular to the edges of the Voronoi diagram (dashed lines). When
four nodes are co-cyclic, quadrangular elements are produced but they can be correctly
divided into two triangles.

An important property holds for the Delaunay triangulation : the open circle circum-
scribed to a triangle does not contain any triangle vertex. One of the consequences of this
property is that Delaunay triangles exhibit good shape factors.

To adapt Delaunay triangulation to the sphere, the usual distance between two points
may be replaced by the geodesic one, i.e. the length of the unique great circle arc passing
through two points of the sphere. Therefore, we are able to define the Voronoi diagram on
the sphere. It can be shown that the dual triangulation of this diagram has in most cases
good shape factors. Without loss of generality, such a triangulation can be characterized
by the Delaunay criterion: if S is the surface to triangulate, the open sphere circumscribed
to any triangle of the triangulation and whose center lies on the surface of S does not
contain any triangle vertex (Jayaraman et al., 1997).

Delaunay triangulations are used for several applications and a variety of algorithms
to obtain it was developed. In the intersection of halfplanes approach, each Voronoi
region is constructed separately, by intersecting n − 1 halfplanes. This algorithm has a
cost of O(n2 log n). The best algorithm from a theoretical point of view is the divide
and conquer approach proposed by Bentley and Shamos (1976). This approach has a
complexity of O(n log n) but it is rather difficult to implement. An equivalent approach
but more simple to implement is the clever plane-sweep algorithm of Fortune (1987). This
algorithm passes a sweep line over the plane, leaving at any time the problem solved for the
portion of the plane already swept, and unsolved for the portion not yet reached. Actually,
this very short description hides several major problems, which Fortune surmounted by
an extraordinary clever idea (O’Rourke, 1993). A popular approach is the incremental
construction of the Delaunay triangulation. Suppose a Delaunay triangulation T of k
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nodes is already constructed, and now we would like to construct the triangulation T ′,
after adding the node p. Suppose p falls inside the circles associated with several triangles
in T . Then, these triangles cannot be triangles in T ′ anymore, because they violate the
Delaunay criterion. It turns out that these are the only triangles of T that are not carried
over to T ′ and that these triangles are located on one area of the graph. The algorithm
complexity is O(n2) and is known as the incremental Watson algorithm (Watson, 1981).

As our problem consists in creating a good triangulation from a given spherical domain
but without knowing a priori all the nodes xi, we have adapted the incremental algorithm
with automatic creation of nodes on segments in a dynamic fashion in order to reach a
preset level of local size for the element (Figure 2):

• Creation of an initial triangulation. As for all incremental methods, the Watson
algorithm needs a starting point, i.e. an initial Delaunay triangulation which can
be easily implemented. For symmetry reasons we have chosen an initial triangulation
with 5 nodes (two on the poles and the remaining three on the equator) and six
triangles. However, this is not the only possible choice.

• Insertion of boundary nodes. To have an easy representation of continents and
islands, known boundary nodes are firstly inserted in the triangulation one by one.
As the Delaunay triangulation is unique and if numerical errors are ignored, the
order of nodes insertion does not influence the final Delaunay triangulation.

The creation of a Delaunay triangulation Tk+1 of k+1 nodes from a Delaunay trian-
gulation Tk of k nodes requires two steps. The first one consists in inserting the new
node p in the old triangulation Tk: the triangle which contains p is searched and
replaced by three new triangles whose vertices are the new node p and the vertices of
the old triangle. The second step transforms the new triangulation into a Delaunay
one. Only a limited number of triangles are involved by such a transformation. This
is based on the two following properties. The first one says that if the Delaunay
criterion is respected for all configuration of two adjacent triangles so the triangu-
lation is a Delaunay one while the second one says that a triangulation of a set of
nodes X can be transformed into another triangulation of X by a succession of seg-
ment swaps. Each swap creates a new triangulation. A Delaunay triangulation can
be obtained only by swapping common segments of triangles which do not respect
the Delaunay triangulation (Figure 3). More details can be found in Cherfils and
Hemerline (1990).

Errors due to floating point computations may lead to defects such as intersecting
and overlapping triangles. Typically, these defects occur when the test for finding
the triangle containing the node to insert fails (Boender, 1994). Therefore to identify
if a node is at the right or the left of a segment, the implementation must be done
in such a way that the result is robust: all nodes must belong only to one triangle
in a conform triangulation.

• Boundary integrity problem. To represent boundaries, the Delaunay triangulation
is constrained to avoid the swap of a boundary segment. Once created, they will
never be destroyed. This constraint can already be applied during the insertion of
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❄

Inserting nodes on coastlines

❄

Constraining boundary segments
Removing triangles on continents

❄

Inserting nodes inside oceans

❄

Figure 2: Basic steps of the Delaunay triangulation algorithm.
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Figure 3: Swapping a segment to obtain triangles satisfying the Delaunay criterion.

boundary nodes. However, when all boundary nodes are inserted in the triangula-
tion, nothing ensures that all the boundary segments have been created. This is the
boundary integrity problem. The easiest solution to implement is certainly to find
the missing segments and to subdivide them by inserting their midpoints so, after
some repetitions, the boundaries are closed. By this approach, very short segments
can be created so that at the end of the algorithm bad quality triangles could be
generated. Another solution without insertion of new nodes consists in swapping
the edges intersecting the missing boundary segments until it is created. Then, it
must be verified that the new triangles respect the Delaunay criterion.
It could also be useful to extend this algorithm so that segments are created taking
into account information about bathymetry.

• Destruction of triangles. The insertion of the boundary nodes in the triangulation
generates triangles outside the ocean. To avoid the creation of undesired inner
nodes, those are destroyed immediately after the insertion of the boundary nodes
(Figure 4).

• Creation of inner nodes. Finally, new nodes are created in a dynamic fashion at
the middle of well chosen segments in order to reach a preset level of local mesh
size. Uniform distribution of triangle shapes is obtained by an iterative procedure
that consists in inserting a new node in the middle of the longest segment of the
triangulation. Non-uniform triangulations are obtained by using a weighted dis-
tance to identify the longest segment. Of course, after each node insertion, the new
triangulation is transformed into a Delaunay one. These algorithms have the main
advantage that they bypass problems due to floating point computations. Illustra-
tions of uniform and graded meshes along oceanic western boundaries and Equator
are displayed in Figure 5.

4 Results

Typically, the CPU cost of the triangulation algorithm is totally negligible with respect to
that of OGCM calculations. However, we provide here some CPU times for completeness.
On a standard PC (Pentium III - 500 MHz - 120 Mo of RAM), the time needed to generate
an unstructured graded mesh of 105 nodes is 12 seconds. It varies linearly with the number
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Figure 4: Triangulation after that triangles on continents were removed: the coastlines
are well-fitted, particularly the European and the Indonesian coastlines. Obviously, the
shape of most triangles is very far from the equilateral.

Figure 5: Both triangulations contain approximately 10000 nodes. The first triangulation
has an almost uniform mesh size of 130 km. The second triangulation is adapted to resolve
the Gulf Stream dynamics. Its typical mesh size is equal to 20 km in the refined regions
and is equal to 160 km elsewhere.
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of inserted nodes. Our adapted implementation allows to obtain such a result which is
quite better than the theoretical complexity of O(n2). We use a binary tree which allows
at any time the knowledge of the longest weighted segment: this bypasses most of the
searches. Of course, such a data structure increases memory requirements. For example,
the insertion of a new node requires 560 bytes.

Figure 6: Triangulation whose refinement is based on the bathymetry and close up view
of Europe area.

The second issue is the quality of the triangulations which is given by the normal-
ized inverse of the shape factor. The boundary design and the segments weight govern
essentially the quality of the grid — both controlled by the user.

The boundary design must be adapted to the desired mesh size: a too fine bound-
ary design compared with the typical mesh size leads to flat triangles. The stopping
condition of the incremental algorithm must be based on an a priori specified mesh size
which allows an automatic fit of the boundary design. To obtain a good representation
of the coastlines, we treat the boundary design in two steps. In the first step, a physical
representation of the coastlines is obtained by inserting boundary nodes with exact geo-
graphical coordinates. The choice of these nodes has to be driven both by the geometry of
the boundaries and by modelling issues. In the second step, such a representation can be
completed by adding new boundary nodes with interpolated coordinates and not exact ge-
ographical coordinates. In fact, this step filters small-scale details of the coastlines which
have been previously judged irrelevant for the calculations and which would introduce
critical numerical difficulties (bad triangles or introduction of significant errors due to the
coarse representation of the features). In Figure 6, the linear piecewise interpolation of
the coastlines could be improved by using high order piecewise polynomial interpolation
(typically cubic splines or Bezier curves).

Strong differences in weight distribution which lead to highly graded meshes influence
poorly the quality of the generated meshes. Indeed, sharp gradients in weight distribution
mean that two regions with different mesh size are juxtaposed so that at the interface
flat triangles could be generated. For instance, an abrupt step trough which the segments
weight is doubled creates triangles whose quality factor is smaller than 0.4.
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Figure 7 shows the distribution of the quality factor of the mesh produced by the
Watson algorithm with automatic creation of nodes on segments. More than 90 % of
the triangles of the grid have quality factor greater than 0.7 and any triangles have
quality factor smaller than 0.5. The worst quality factor is equal to 0.53. Although
this distribution is already satisfactory (cf. section 2), it can be improved by using the
Laplacian smoothing and the mesh relaxation (Boender, 1994). In fact, the first method
optimizes nodes position while the second optimizes the connexion pattern between the
nodes. Clearly, many triangles in the modified mesh exhibit better shape factor. In other
words, these are closer to equilateral triangles. However, a very few number of elements
(0.5%) have still a relatively poor quality factor in particular near the coastlines.
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Figure 7: Improvement of shape factor distribution by Laplacian smoothing and mesh
relaxation.
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5 Conclusion

We have implemented an incremental algorithm to generate unstructured meshes for a
global ocean circulation model. Needing only the specification of coastlines and segments
weight, a triangulation with good shape factors can automatically be created. In particu-
lar, no singularities or uncontrolled convergence zones are created. The generator appears
to be able to refine at a correct scale the topological and dynamical features which are
key points for a globally well-resolved ocean circulation model. Among these are equa-
torial dynamic, western boundary currents, mesoscale eddies, ridges, continental slopes,
channels or straits.

The next step of our work will be the development of an ocean general circulation
model based on the finite element method to compare the efficiency of unstructured grids
with classical approaches.

Finally, the mesh generator is a general purpose tool that could be useful in other
fields of geophysics. Let us just mention the interpretation of scattered measurements on
the Earth (Nielson, 1993).
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Purser, R. and M. Ranc̆ić (1997) Conformal octagon: an attractive framework for global
models offering quasi-uniform regional enhancement of resolution. Meteorology and
Atmospheric Physics, 62, pp. 33–48.

Renka, R. (1997) Algorithm 772: Stripack: Delaunay triangulation and voronoi diagram
on the surface of a sphere. ACM Transactions on Mathematical Software, 23 (3), pp.
416–434.

Shum C.K., P.L. Woodworth, O.B. Andersen, G.D. Egbert, O. Francis, C. King, S.M.
Klosko, C. LeProvost, X. Li, J.M. Molines, M.E. Parke, R.D. Ray, M.G. Schlax, D.
Stammer, C.C. Tierney, P. Vincent and C.I. Wunsch (1997) Accuracy assessment of
recent ocean tide models. Journal of Geophysical Research-Oceans, 102 (C11), pp.

13



25173-25194.

Watson, D. (1981) Computing the n-dimensional delaunay tesselation with applications
to voronoi polytopes. Computer Journal, 24 (2), pp. 167–172.

Wilkin, J. and K. Hedström (1998) User’s manual for an orthogonal curvilinear grid-
generation package. Technical report.

Williamson, D. (1979) Difference approximation for fluid flow on a sphere. in: Numer-
ical methods used in atmospheric models (vol. II). GARP Publication Series n◦17.
WMO-ICSU.

14


