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Abstract: This modelling study is based on experimental data concerning
electrical stimulation of the human optic nerve in a blind volunteer (Veraart
et al., 1998). First, we investigate whether the 2-channels mammalian myeli-
nated fibre model proposed by Chiu et al. (1979), can be applied to the case of
human optic nerve fibres. In order to answer this question, the macroscopic
electric potential generated by an implanted cuff electrode is calculated us-
ing a 3D, inhomogeneous and anisotropic nerve model, taking into account
possible variations of connective tissue thickness and neural tissue conduc-
tivity. Theoretical fibre excitation thresholds and conduction velocities are
then calculated by assuming the 2-channels membrane description. Results
show that the behaviour resulting from this 2-channels membrane model is
not compatible with the experimental perception thresholds (Veraart et al.,
1998) and with the conduction velocities measured in primates (Griffin &
Burke, 1974). This is still true when the physical model parameters (ionic
channel densities and passive cable parameters) are modified within a rea-
sonable and physiological range. Finally, we show how the addition of a
third slow-dynamics channel leads to a 3-channels model which adequately
simulates the experimental data.

Keywords: Optic nerve, Spiral cuff electrode, Human, Fibre model, Ionic

channels, Finite elements method, Bifurcations.



1 Introduction

Recently, electrical stimulation of the human optic nerve (ON) has been
conducted using an implanted self-sizing spiral cuff electrode (Veraart et al.,
1998). In the frame of these experiments, the development of a suitable model
allowing the simulation of nerve fibres activation, would be undoubtedly
useful.

The ON fibres, organised within a single cylindrical fascicle, are the myeli-
nated axons of the retinal ganglion cells (RGC). Several studies provide ev-
idences for the existence of three major RGC groups in the primates (see
Stone, 1993, for a detailed review and discussion). The Y cells exhibit a
transient response to steady illumination, and their receptive field centre-
surround inhibitory mechanism involves non linear summation processes.
The Y cells are related to spatial localisation, movement perception and
black & white vision. The corresponding fibres have an average conduction
velocity of 22 m/s (Griffin & Burke, 1974); they have large diameter and rep-
resent a small percentage of the population. The X cells exhibit a sustained
response to steady illumination, and their receptive field centre-surround in-
hibitory mechanism involves linear summation processes. The X cells are
related to pattern-colour recognition. The corresponding fibres have an av-

erage conduction velocity of 11 m/s (Griffin & Burke, 1974), medium-size



diameter and represent about half of the population. The remaining W-type
cells, present slow-conducting and small-diameter fibres.

Globally, the electrical behaviour of a myelinated nerve fibre depends on
the geometrical parameters and on the ionic channels at the nodes of Ranvier.

The available information about the primate ON fibres geometry (axon
and fibre diameters, internodal length and active node length) is restricted to
the fibre diameter spectrum: Jonas et al. (1990) report an average value of 1
pm. It seems reasonable to expect that this mean value is representative of
X-fibres population (Stone, 1993). These data, together with the conduction
velocity values reported by Griffin and Burke (1974) are likely to provide
an indirect information source for the estimation of the other geometrical
parameters.

Concerning the membrane description at the nodes of Ranvier, the most
popular model for mammalian applications is probably that proposed by
Chiu et al. (1979). This model includes only voltage-regulated sodium cur-
rents, with no active potassium channels, membrane repolarisation being
completely due to leakage currents. Chiu’s model was validated on the rabbit
sciatic nerve, and has been adopted in the frame of several modelling stud-
ies oriented to peripheral nerve applications (Chintalacharuvu et al., 1991;

Rijkhoff et al., 1994; Goodall et al., 1995; Deurloo et al., 1998).



On the other hand, the only model for the retinal ganglion cell is that
proposed by Fohlmeister et al. (1990) for the repetitive firing of salamander
RGC. This space-clamp model, including six ionic channels (five non-linear
and one leakage), is based on experimental data collected on the cell soma
and not on the myelinated axonal part of the cell which forms the optic nerve.
Moreover, it is not clear whether the species involved is a good animal model
for human applications, the visual system being very species-dependent.

No model for the primate ON fibres is available, nor any study pro-
vides qualitative information about the ionic channels. Such experiments are
clearly bounded by ethical and technical problems.

The purpose of this study is to determine, on the basis of simulations,
the simplest model which adequately predicts the experimental observations
on primate ON fibres (Veraart et al., 1998, Griffin & Burke, 1974).

In this frame, we firstly investigate the suitability of a generalised version
of Chiu’s 2-channels model. We compute the macroscopic electric potential
generated by the implanted cuff electrode using a 3D, inhomogeneous and
anisotropic nerve model, taking into account possible variations of uncertain
parameters (encapsulation tissue thickness and neural tissue conductivity).
Then we calculate theoretical fibre excitation thresholds and conduction ve-

locity, by assuming the 2-channels membrane description and letting the



physical model parameters (ionic channels density and passive cable param-
eters) vary within a reasonable and physiological range. The simulation
results are compared with the experimental perception thresholds given by
Veraart et al. (1998) and the conduction velocities reported by Griffin and
Burke (1974).

In the last part, the addition of a third slow-dynamics channel is consid-
ered and the behaviour of the resulting 3-channels model is again compared

to the experimental data.

2 Methods

2.1 Experimental data

The experimental data provided by Veraart et al. (1998) consist in percep-
tion thresholds, i.e. the minimal pulse amplitude (given the pulse duration,
the stimulation frequency and the number of pulses) which is necessary to
elicit a phosphene. As expected, shorter pulses require stronger currents.
Also, a higher number of pulses or a higher stimulation frequency lowers the
perception threshold indicating central temporal integration (Delbeke et al.,
1999).

Table I reports the perception thresholds for various pulse durations, for
a 17-pulses train at 160 Hz, which are the highest number of pulses and

stimulation frequency reported by Veraart et al. (1998).
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From these data it is possible to deduce upper bounds for fibre activation
thresholds. Indeed, the stimulation period corresponding to 160 Hz (about
6 ms) is much greater than the typical nerve membrane time constant (Grill
& Mortimer, 1995). Therefore, the nerve fibres are activated by each pulse
of the train. Moreover, the phosphenes elicited at threshold are usually
coloured, and this suggests that at least some X-like fibres are activated
(Stone, 1993). It can thus be stated that some X-fibres exist in the nerve,
whose strength-duration curves (Mortimer, 1990) do not lie above the points
of Table I.

Concerning the conduction velocity, we refer to data published by Griffin
and Burke (1974) and discussed by Stone (1993) which show the existence,
in the primate, of a X-like cell group having a velocity of 11 m/s.

The threshold current that has to be injected through an electrode contact
in order to excite a given nerve fibre depends on the electric field distribution
within the nerve (thus, on tissue dimensions and conductivity values), and
also on the microscopic parameters describing the fibre behaviour. On the
other hand, the conduction velocity is only determined by the microscopic

fibre description.



2.2 The volume conductor model

The whole domain is a cylinder (radius 6 mm, length 16 mm) as shown in
Figure 1. The fibres fascicle is modelled as a cylinder of 2.7 mm diameter,
as measured in the volunteer by magnetic resonance imaging. The fascicle is
surrounded by a layer of connective tissue (conductivity: 0.0659 S/m, from
Chintalacharuvu et al., 1991). The implanted cuff is 0.25 mm thick and
6.6 mm long with four recessed disk contacts at four angular positions in
the transverse plane, as shown in the figure; these contacts are modelled as
equivalent squares (contact thickness 0.025 mm, square contact side 0.9 mm,
square window side 0.45 mm, recess 0.08 mm). The nerve and the cuff are
considered immersed in saline (conductivity: 2 S/m, from Geddes & Baker,
1967).

Data from the literature about the thickness of the connective tissue layer
developed by the nerve as a response to the implant, concern either cuff
electrodes implanted around the peripheral nerve (Grill & Mortimer, 1994),
or flat electrodes implanted on the cortex (Brindley & Levin, 1968, reported
a connective tissue layer of about 80 pm). Indeed, the biological response of
the Central Nervous System to an implanted body is, in general different to
that of peripheral nerves. This is the reason why, in our model, we consider

two extreme cases: no encapsulation tissue (zero thickness layer) or a 100



im connective layer.

The nerve fascicle conductivity is also somewhat uncertain: within the
previously published modelling studies, some authors consider 0.1 S/m trans-
versely and 1 S/m longitudinally (eg. Chintalacharuvu et al., 1991), while
others consider 0.08 and 0.5 1 S/m (eg. Goodall et al., 1995). We consider
both situations in our model. Possible variations in connective tissue thick-
ness and nerve conductivity will be taken into account, by defining the four
situations summarised in Table II.

In each case, we evaluate the electric potential distribution by solving
Poisson’s equation in the domain. The numerical technique is a mixed Finite
Elements - Fourier approach which allows the calculation of the 3D solution

at low cost, as described by Parrini et al. (1999).

2.3 The fibre cable equation

Assuming that myelin is a perfect insulator and that the active node length is

much smaller than the internodal one, the myelinated fibre can be described

by an equivalent circuit (McNeal, 1976), whose mathematical description is:
de 1

o d
_ L ionic " A ) ext 1
dt cl * depl L 20 +05") (1)

at each node j, where:

e ¢ is the time (ms)



vf‘”t is the extracellular potential (mV’) at node j; its value is known

from the volume conductor part, thus is affected by the macroscopic

ext

parameters; v;” also depends from the internodal length;

v; is the transmembrane potential (mV’) and is a function of time

(v;(0) = 0);
Azl‘j = xj—l — 21']' + l‘j+1;

the passive cable parameters ¢, d, p, [, L are respectively the mem-
brane capacitance (uFcem™2), the axon diameter (cm), the axoplasm
resistivity (k{2em), the active node length and the internodal distance

(cm).

No direct hystological data are available in the literature about the geo-

metrical cable parameters [, d and L of the human ON. Jonas et al. (1990)

give detailed information about the fibre diameter (D) spectrum, showing a

distribution mean of 1 pm, that we consider representative of the X-fibres

population considered in this study (Stone, 1993). On the basis of this value,

we have to estimate reasonable ranges of variation for [, d and L, using re-

lationships which have been observed in the peripheral nerve and have been

adopted by the related modelling studies. The axon diameter is usually con-

sidered as d = 0.6D (eg. Goodall et al., 1995) or d = 0.7D (McNeal, 1976);
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so, setting D = 10~* em, we consider d varying between 0.6 10~* and 0.7 10~*
cm. The internodal distance is taken as L = 100D by all the previously cited
authors, whereas data reported by Butt and Jenkins (1994) on the mouse
optic nerve suggest L = 200D; thus we let L vary between 0.01 and 0.02 c¢m.
The active node length is always set to 1.5 um whatever the fibre diameter,
in the peripheral nerve case; however, since optic nerve fibres are (more then
10 times) thinner than peripheral ones, one can expect a lower value: we
adopt 1.5 10~* em as the upper bound and 0.5 10~* e¢m as the lower bound
for the [ variation range.

Concerning the electrical cable parameters ¢ and p, they should not differ
according to the nerve, but one can find different values in the literature, so
in practice we adopt a range of variation for them, too. Table IIT summarises
the range of variation considered here for all the cable parameters.

These parameters do not contribute independently to the equations. We

define the ratio:

r=-— (2)

From the previous table and (2), it follows that r varies between 0.36 and 3.5
cm/ms. Clearly, the conduction velocity depends on r, L and i%"/c. Also

the excitation threshold depends on these parameters, plus of course those
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of the volume conductor and the fibre location.
2.4 The 2-channels membrane model

Chiu’s description for ionic currents, adapted by Sweeney et al. (1987) to the
temperature of 37 degrees, includes voltage-regulated sodium channels and

passive leakage ones. At node j:

ijionic — gNam‘?h](U] — ENa) —|— gL(,Uj — EL) (3)

dm;  0.363v; + 96.96 23.8 — v,

(1 =m;) — am(v;)ep(

= ; 4
dt 1+ exp(=4EH) N 4.17 )Jm] “
) 0t () i fm(01)
dh,; 2.5 — v, 15.6
Py futodean(Z2=0) 1~ ) 6)

v

e

\1 + exp(—Lvi:;%) !

ah(vj) /Bh('uj)

where Ey, = 115.64 mV (sodium resting potential) and E;, = —0.011
mV (leakage resting potential). The initial conditions are m;(0) = 0.0033
and h;(0) = 0.7503. The parameters gy, and §;, are related to membrane
channel density; their original values are gy, = 1445 k2~ 'em =2 and §;, = 128
kEQ tem 2. We denote this model, as the CS model. In what follows, we will
also consider a generalised version of the CS model, in which the channels
density parameters gy, and g, are varied. This generalised CS model will

be called the 2-channels model.
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2.5 Implementation and simulation strategy

The volume conductor and the fibre models are implemented in a computer
software. Given the volume conductor parameters, the electric potential
within the whole nerve is computed (Parrini et al., 1999). Then, given the
fibre position within the nerve and the internodal length L, the extracellular
potential v;f"’"t is extracted at the nodes of Ranvier and the ordinary differen-
tial equations system (1) for a given choice of r and ionic current description,
is solved by a 4-5th order Runge-kutta adaptive scheme. The fibre is defined
as excited if the transmembrane potential at the last node of Ranvier (at
the domain boundary) reaches 80 mV. The conduction velocity is evaluated
on the basis of the time interval between the action potential peaks of two
adjacent nodes of Ranvier.

As a first attempt, we adopt the CS ionic current description and try
to reach the desired results (thresholds and conduction velocity) by only
changing the passive cable parameters » and L.

In a second approach, we consider the 2-channels model (generalised CS
model), where the four parameters r, L, gn,/c and ¢, /c are varied simulta-
neously in order to minimise the distance between the model response and

the target one. For this, we use a standard Simplex search algorithm imple-

mented in the MATLAB TM optimisation toolbox. The distance is defined
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as follows:

, thr — thry vel — vely
dist = 2 2 6
istance \/( T )2+ ( oels ) (6)

where (thr, vel) are respectively the predicted threshold for a 0.1 ms pulse
duration and the predicted conduction velocity; (thry,vely) are the desired
values: 0.055 mA and 11 m/s. For each value of gy,/c and g /c, the leakage
resting potential Ey, is evaluated so that the total ionic current given in (3)
is zero at t = 0.

When modifying the ionic channels density, we may change the stability
properties of the system itself. In order to illustrate how these properties may
change, we use the space-clamped system (Grill & Mortimer, 1995), i.e. a
reduced system where only one node of Ranvier is described (no propagation
is considered). This system respects the qualitative behaviour of the full
model and allows simulations at a lower cost.

Finally, we will consider the addition of a third channel (3-channels

model) and analyse the consequent model response.
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3 Results

3.1 Effect of the volume conductor parameters

Figure 2 shows the excitation threshold (for a 0.1 ms pulse duration) in
the four cases CyKo1-1, CoKo.9s—0.5, Cro08o.1—1 and Ci9K.0s—0.5, as defined
in Table II. The fibre is assumed to be parallel to the nerve axis, with a
node of Ranvier on the transverse symmetry plane (most favourable case);
three fibre positions are considered: at the fascicle surface, under the contact
(depth=0); at the fascicle centre (depth=1); at the middle point (depth=0.5).
In all cases the CS ionic current description is assumed, with L = 0.02 em
and 7 = 0.5714 em/ms (d = 0.6 107* ¢m, [ = 1.5 107" ¢m, ¢ = 2 pF/cm?,
p = 0.07 kQem).

We observe that the *Kjos_o5 cases present lower thresholds than the
*Ko.1_1 ones; moreover, the presence of the connective tissue (C’mo* cases)
increases the threshold of the superficial fibre (as expected) but lowers that
of the central one (i.e. connective tissue allows a more uniform current dis-
tribution within the nerve). Although the threshold values calculated here
clearly depend on the fibre model, the relative positions of the curves in Fig-
ure 2 is only determined by the current penetration within the nerve, i.e. by
the volume conductor parameters. Therefore, the qualitative considerations

exposed above are valid whatever the fibre model.
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In what follows, we retain the “best case”, i.e. the CyKjos_o.5 situation
which gives the lowest threshold (0.19 mA) for a superficial fibre. Note that
even in this case, the threshold value obtained with standard fibre parameters
is about 4 times greater than the desired one (0.055 mA). The conduction

velocity predicted with these values is about 6 m/s in all the situations.

3.2 Response of the CS model with varying cable pa-
rameters

Considering a superficial fibre in the Cy Ky 03_g.5 situation and assuming the
CS ionic current description, we compute the conduction velocity and the
excitation threshold for a 0.1 ms pulse duration, when L varies between 0.01
and 0.02 ¢m and r varies between 0.36 and 3.5 em/ms. The results are
illustrated in Figure 3.

The lowest threshold (0.08 mA) is obtained for L = 0.02 ¢m and r >
2.5 ¢cm/ms), but the corresponding velocity is above 15 m/s. Threshold
calculation for other pulse durations with L = 0.02 em and r = 3 em/ms,
shows that the resulting strength-duration curve is definitely not compatible

with the experimental results (Figure 4).
3.3 Response of the generalised 2-channels model

We now let all the parameters gn./c, gr/c, r, L vary according to the op-

timisation algorithm. Considering ¢ = 2.5 uF/cm™2 and the CS values for
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the ionic channel densities, the starting values for gy,/c and gr,/c are respec-
tively 578 and 51.2 ms~!. In searching the optimum answer, the algorithm

monotonously increases the former and decreases the latter. For:

INe _ 1064 ms~, L& = 4.17 ms~Y, r = 0.4601 em/ms, L = 0.02 cm  (7)
C

c

the threshold is 0.057 mA and the velocity is 10.7 m/s. This seems sat-
isfactory, but such big changes in the original channel parameters make us
wonder whether the system stability characteristics are preserved.

Figure 5 shows a threshold simulation in the 2-channels space-clamped
system, when the ionic channel densities are set as in (7): a second equilib-
rium point (v & 36 mV, m =~ 0.9, h ~ 0) appears beside the resting state.
The solution is attracted by this point with dumped oscillations. Such be-
haviour is clearly unphysiological: by modifying the original CS values, we
have denatured the system itself, which has undergone a bifurcation.

Figure 6a illustrates the equilibria v, of the v variable as a function of
gr/c, when gy,/c is kept fixed to its original value: the point (g /c)o =~ 13
ms~! is a bifurcation point, because for g;/c > (gr,/c)o the system has only
one equilibrium point (the resting state), but for g /¢ < (g./c)o there are
two additional equilibria.

The stability and the nature of these equilibria is determined by the

jacobian of the system evaluated at the equilibrium itself.
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In our case, we must determine the physiological region of the plane
(gna/c, gr/c), i.e the values of the channel densities which give only one
equilibrium point. This region is illustrated in Figure 6b.

When we constrain the parameters to vary within this region, the lowest
threshold which can be obtained for a 0.1 ms pulse, is 0.065 mA, correspond-
ing to a conduction velocity of 16 m/s.

In conclusion, the 2-channel model cannot simulate the experimental ob-

servations.
3.4 Addition of a third slow-dynamics channel

Setting the parameters as in (7) resulted in good short-time responses (thresh-
old and conduction velocity) but bad long-time behaviour (oscillations and
a bad final state). The addition of a slow variable may fix the equilibrium
problem, still keeping the threshold and velocity unchanged.

The slow variable n describing the potassium channels, presented by
Hodgkin and Huxley (1952), may be suitable.

We consider a 3-channel ionic currents description as follows:

A

gL JK
?(Uj —Ep) + 7”?(7{7 - Ex) (8

1ONLC

7’3 — dNa
c C

m?hj(vj — ENa) +

where gy,/c = 1064 ms™!, gr/c = 4.17 ms™! as in equation (7), and

Ex = —12 mV (from Hodgkin & Huxley, 1952). The n variable is governed
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by an equation analogous to (4) with the rate constants defined as: «,(v) =
am(v)/20, B,(v) = B, (v)/60. This is a rough imitation of the Hodgkin and
Huxley’s model.

Clearly, for gx/c = 0 ms™" the model reduces to the 2-channels one, thus
exhibiting the unphysiological behaviour. Figure 7 illustrates the equilibria
veg Of the v variable, in the space-clamped system, as a function of §x/c,
when §n,/c and gr/c are kept fixed. For gx/c < (Gx/c)o ~ 1840 ms™!, the
system presents the unphysiological 3 equilibria; for §x /¢ > (g /¢)o only one
equilibrium point (the resting state) is present.

Thus, the third channel can restore the right behaviour provided that
gx/c > 1840 ms~!. Figure 8 shows the response of the space-clamped system
with gx/c = 1850 ms™'.

The complete system (with L = 0.02 ¢m and r = 0.4601 c¢m/ms) predicts
a threshold of 0.057 mA for a 0.1 ms duration and a conduction velocity
of 10.7 m/s, whatever the value of gx/c. Indeed the short-time responses
(threshold and conduction velocity) are independent of the third slow channel
density (results not shown) .

The calculation of the activation thresholds for other pulse durations,
on the basis of this 3-channels model with gx/c = 1850 ms™! | leads to

a strength-duration curve (Figure 9), which is clearly consistent with the
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experimental data.

4 Discussion

The results demonstrate that the 2-channels membrane model proposed by
Chiu et al. (1979) cannot be applied to human optic nerve fibres, because the
obtained behaviour is not compatible with the human perception thresholds
reported by Veraart et al. (1998) and the conduction velocities measured in
primates (Griffin & Burke, 1974), even when the physical model parameters
(ionic channel densities and passive cable parameters) are modified within a
reasonable and physiological range.

This conclusion is based on two assumptions. The first one is that the
monkey is a suitable animal model, so that the conduction velocity of X-like
human optic nerve fibres is about 11 m/s. Actually, as far as the velocity is
lower than 16 m/s, the results are unchanged (see section 3.3). The second
assumption is that human colour-coding fibres are comparable to those of
the other primates (Stone, 1993) and thus contribute to the 1 um peak value
of fibre diameter (Jonas et al., 1990).

Clearly, the construction of an adequate mathematical model needs an
experimental support: not only the action potential shape to be reproduced

must be known, but if one desires a physical (and not a “black box”) model,
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also the specific ionic channels must be identified and their physical properties
measured. Technical problems related to voltage and/or patch clamp of such
small-diameter fibres are a major issue.

On the other hand, the definition of a simple model reproducing all the
experimental data available up to date is very useful to allow for simulation
studies in the frame of human experiments. We have shown that, provided a
new channel is postulated in the fibre membrane, it is possible to obtain the
desired model behaviour. Since many studies demonstrate the existence of
potassium channels in rat ON fibres (Gordon et al., 1988), the new channel
was inspired by the K+ channel model presented by Hodgkin and Huxley
(1952), with slight modifications.

The fact that this 3-channels model adequately simulates the experimen-
tal observations, must not be taken as an evidence that potassium channels
actually take part to the excitation process in human ON fibres, nor that
sodium and potassium are the only active channels. Indeed, the fact that
we doubled the sodium channels density with respect to the peripheral nerve
case, could suggest that a second fast ion species (eg. calcium, see Sun &
Chiu, 1999) could be present and thus “double” the sodium effect. These
points can be established only experimentally. We hope that this study can

stimulate experimental research in order to assess membrane properties in
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primates optic nerve fibres.
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pulse width | threshold
(ms) (mA)
0.025 0.286
0.05 0.100
0.1 0.055
0.2 0.040
0.4 0.034

Table I: Perception thresholds for various pulse durations (17 pulses at 160

Hz). Data from (Veraart et al., 1998).
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case conn.tissue nerve conduct.

thickess (um) | (transv.-longitud. S/m)
CoKo.1-1 0 0.1-1
CoKo.08-0.5 0 0.08-0.5
ChrooKo.1-1 100 0.1-1
Clio0Ko.08-0.5 100 0.08-0.5
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Table II: Four cases are defined in order to take into account possible varia-

tions in connective tissue thickness and nerve conductivity




parameter unit min source max source

¢ pFem™? 2 Goodall et al. (1995) 2.5 Warman et al. (1992)
Rijkhoff et al. (1994)

p kQem 0.05 ~ Warman et al. (1992) 0.11 McNeal (1976)

d cm 0.6 10*  Warman et al. (1992) | 0.7 104 McNeal (1976)
Goodall et al. (1995)

l cm 0.510% speculation 1.510°*  Goodall et al. (1995)

L cm 0.01 McNeal (1976) 0.02  Butt and Jenkins (1994)
Warman et al. (1992)
Goodall et al. (1995)

Table III: Estimated variation ranges for the cable parameters.
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List of figure captions

Figure 1 - Transverse (left) and longitudinal (right) sections of the volume
conductor domain and its subdomains. The drawing is not to scale. See text
for geometrical and electrical parameters.

Figure 2 - Effect of the volume conductor parameters (see Table II) on the
fibre threshold. The CS model is adopted with L = 0.02 ¢m and r» = 0.5714
cm/ms. The vertical axis is log-scaled. The fibre depth (horizontal axis) is
defined as the distance of the fibre from the fascicle surface divided by the
fascicle radius.

Figure 3 - Effect of r and L on the conduction velocity and the excitation
threshold. In the right graph, the same graphic conventions as in the left one
are adopted for the L values.

Figure 4 - Threshold values for various pulse duration as predicted by the
CS model (circles: ’0’), with r = 3 em/ms and L = 0.02 em. The continuous
line shows Hill’s interpolation (Mortimer, 1990) of these data, giving the
strength-duration curve. The experimental data of Table I are also plotted
(asterisks: "*’) for comparison purposes.

Figure 5 - A threshold simulation in the 2-channels space-clamped system,
when the ionic channel densities are set as in (7): a second equilibrium point

(Veq = 36 mV, mey & 0.9, hey = 0) appears beside the resting state.
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Figure 6 - Left: the equilibria of the v variable as a function of g, /c, when
Gna/c is kept fixed to its original value of 578 ms™': the point (gr/c)o ~ 13
ms~" is a bifurcation point . Right: the plane (Jn./c, §r./c) and the boundary
between the physiological and unphysiological regions.

Figure 7 - The equilibria of the v variable as a function of gx /¢, when
Gna/c = 1064 ms™! and gr/c = 4.17 ms~! as in (7): the point (§x/c)o ~
1840 ms ! is a bifurcation point.

Figure 8 - A threshold simulation in the space-clamped 3-channels model
with gr/c = 1850 ms™!: the system comes back to its resting state.

Figure 9 - Threshold values for various pulse duration (circles: ’0’) obtained
with the 3-channels model (gx/c = 1850 ms™!, L = 0.02 ¢m and r =
0.4601 em/ms). The continuous line shows Hill’s interpolation (Mortimer,
1990) of these data, giving the strength-duration curve. The experimental

data of Table I are also plotted (asterisks: "*’) for comparison purposes.
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Figure 1: Transverse (left) and longitudinal (right) sections of the volume
conductor domain and its subdomains. The drawing is not to scale. See text
for geometrical and electrical parameters
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Figure 2: Effect of the volume conductor parameters (see Table II) on the
fibre threshold. The CS model is adopted with L = 0.02 ¢m and r» = 0.5714
cm/ms. The vertical axis is log-scaled. The fibre depth (horizontal axis) is
defined as the distance of the fibre from the fascicle surface divided by the
fascicle radius.
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Figure 3: Effect of r and L on the conduction velocity and the excitation
threshold. In the right graph, the same graphic conventions as in the left one
are adopted for the L values.
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Figure 4: Threshold values for various pulse duration as predicted by the CS
model (circles: ’0’), with 7 = 3 em/ms and L = 0.02 em. The continuous
line shows Hill’s interpolation (Mortimer, 1990) of these data, giving the
strength-duration curve. The experimental data of Table I are also plotted

(asterisks: "*’) for comparison purposes.
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Figure 5: A threshold simulation in the 2-channels space-clamped system,
when the ionic channel densities are set as in (7): a second equilibrium point
(Veq = 36 mV, mey ~ 0.9, hey = 0) appears beside the resting state.
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Figure 6: Left: the equilibria of the v variable as a function of g /¢, when
Gna/c is kept fixed to its original value of 578 ms™': the point (gr/c)o ~ 13
ms~" is a bifurcation point . Right: the plane (gn./c, §r./c) and the boundary
between the physiological and unphysiological regions.
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Figure 7: The equilibria of the v variable as a function of g /¢, when gy, /c =
1064 ms! and gz/c = 4.17 ms~! as in (7): the point (gx/c)o ~ 1840 ms~!
is a bifurcation point.
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Figure 8: A threshold simulation in the space-clamped 3-channels model with
gx/c = 1850 ms~': the system comes back to its resting state.
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Figure 9: Threshold values for various pulse duration (circles: ’0’) obtained
with the 3-channels model (gx/c = 1850 ms™!, L = 0.02 ¢m and r =
0.4601 ¢m/ms). The continuous line shows Hill’s interpolation (Mortimer,
1990) of these data, giving the strength-duration curve. The experimental
data of Table I are also plotted (asterisks: '*’) for comparison purposes.
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