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Abstract

A new Lagrangian particle method for solving transient viscoelastic �ow for both

macroscopic and microscopic stress equations is proposed� In this method� referred to

as the Backward�tracking Lagrangian Particle Method �BLPM�� we specify the particle

locations and calculate the trajectories leading to these locations� This backward

tracking process is stopped after a speci�ed time �possibly only a single time step��

and the initial con�guration for the Lagrangian integration of the stress is obtained

by interpolating a stored Eulerian �eld at that time� In order to demonstrate the
accuracy� e�ciency and stability of the method� we consider two benchmark problems

in the context of the FENE dumbbell kinetic theory of dilute polymer solutions and its

FENE�P approximate constitutive equation� the high eccentricity journal bearing �ow

and the 	�
 contraction �ow� With the help of these examples� we show in which manner

accurate and stable results can be obtained� for transients of both polymer stress and

stream function� with a minimum number of particles and a minimum particle path

length�

Keywords� Lagrangian particle method� backward tracking� viscoelastic �uids� kinetic theory�
constitutive models
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� Introduction

Until recently� numerical simulations of viscoelastic �ow have been based on a purely macro�
scopic description� In this approach� a closed�form constitutive equation is coupled to the
balance equations� Nowadays� the so�called micro�macro approach has also become feasible�
In this formulation� the balance equations are complemented by a kinetic theory model to
describe the rheology of the �uid� The viscoelastic contribution to the stress is obtained
by a coarse�grain model of the molecular dynamics of the �uid� This avoids the need for
questionable closure approximations and provides a direct link between the �ow�induced
development of the microstructure and the �ow operating conditions� Numerical calcula�
tions with kinetic theory models can be performed using appropriate stochastic simulation
techniques� The use of stochastic simulations of complex �ows has been initiated in ���� by
Laso and �Ottinger 	�
� Recently� much progress has been made in micro�macro computations
of complex problems like �ow around a sphere and contraction �ows� Two promising tech�
niques are the Brownian Con�guration Field method described in 	�
 and the Lagrangian
Particle Method 
LPM� developed by Halin et al� 	�
� Brie�y� LPM decouples at each time
step the Eulerian �nite element solution of the conservation equations and the Lagrangian
computation of the polymer stress� A speci�ed number of discrete particles is convected by
the �ow� and the polymer stress carried by the particles is obtained by integrating along the
particle trajectories either the constitutive equation or the stochastic di�erential equation�
By Gallez et al� LPM has been developed further to yield the so�called Adaptive Lagrangian
Particle Method 
ALPM�� Here� new particles are created in regions with a low particle
density and particles are annihilated in regions with a high particle density� ALPM ensures
a minimum and maximum number of particles in each element� In this manner� LPM has
been made suitable for highly graded meshes�

In this article� we improve LPM in a di�erent manner� Instead of dropping the particles
in the �ow and following them through the �ow domain� the particle positions at which the
stress is evaluated are speci�ed a priori� Next� the stress is calculated by tracking the particles
backwards in time and integrating the stress equation along the obtained trajectories� We
refer to the new method as the Backward�tracking Lagrangian Particle Method 
BLPM��

After a short review of the governing equations in Section �� the details of BLPM are
described in Section �� In order to validate the method and to �nd an optimal numerical
parameter setting� BLPM is applied to the smooth high�eccentricity journal bearing �ow in
Section �� We show that the number of particles per element and the tracking backwards
in time can be restricted to a minimum� provided that the initial condition for the stress
integral is obtained in an accurate manner� Next� in Section �� we consider the non�smooth
��� contraction �ow to investigate stability of the optimal method deduced from the journal
bearing �ow� Finally� we conclude in Section ��

� Governing equations

The equations governing the conservation of mass and transport of momentum are for vis�
coelastic incompressible �ow�

r � v � �� 
��

�
Dv

Dt
� �rp �r � 
��sd� � p� � 
��

where � is the �uid density� v the �uid velocity� p the hydrodynamic pressure� and D�Dt
denotes the material derivative� The extra�stress tensor has been split in a polymeric con�
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tribution � p and a solvent contribution with �s the solvent viscosity and d � 
���T ��� the
rate�of�deformation tensor where �T denotes the velocity gradient�

The extra�stress tensor � p may either be obtained by a micro or macrorheological model�
In this paper� we mainly focus on macrorheological models to validate the numerical method�
For these models� we solve an equation for a non�dimensional con�guration tensor A sup�
plemented by an algebraic equation for the stress� Henceforth� we consider the so�called
FENE�P model� Employing the same notation as in 	�
� we have

DA

Dt
� 
� �A�A � �T � �

�kT

�
I �

�H��

�� tr A�Q�
�

A� 
��

where k is the Boltzmann constant� T the absolute temperature� � the friction coe�cient
of Brownian beads� I the unit tensor� H a spring constant� and Q� the maximum spring
length� The polymeric stress is given by

� p � �nkTI � n
H

�� tr A�Q�
�

A� 
��

where n is the dumbbell number density�
As a microscopic model� we use the FENE model which involves the end�to�end vector Q

connecting two beads of a dumbbell� The distribution function � of the end�to�end vector
is governed by a di�usion equation� see 	�
� Here we use the equivalent approach where the
evolution ofQ is governed by a stochastic di�erential equation� The associated It�o stochastic
di�erential equation 
see 	�
� reads�

dQ �

�
� �Q�

�

�
F c
Q�

�
dt�

s
�kT

�
dW � 
��

where F c is the connector force and W the three�dimensional Wiener process� namely a
Gaussian stochastic process with zero mean and covariance hW 
t��W 
t��i � min
t�� t��I�
Here h�i denotes the con�guration space average

R
� � dQ� The polymeric stress can be

obtained by means of the Kramers expression 	�
�

� p � �nkTI � nhQF c
Q�i� 
��

For the Finite Extensible Non�linear Elastic 
FENE� model the connector force is given
by

F c
Q� �
HQ

��Q��Q�
�

� 
��

For the FENE model no macroscopic counterpart exists� However� when the Peterlin closure
approximation

F c
Q� �
HQ

�� hQ�i�Q�
�


��

is used� the FENE�P model of Eqs� 
��� 
�� is obtained� The con�guration tensor is then
related to the end�to�end vector by A � hQQi�

The FENE and FENE�P models involve a time constant � � ���H and a non�dimensional
�nite extensibility parameter b � HQ�

��kT � We also note for further reference that the
polymer contribution to the zero�shear�rate viscosity is �p � nkT�b�
b��� for the FENE�P
�uid and �p � nkT�b�
b� �� for the FENE theory�
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� Numerical method

��� Overall scheme

To allow for di�erent solution methods for the balance equations and the stress equations�
the numerical scheme is decoupled into two parts� The equations of motion are solved with a
�nite element technique� which is well�suited for a di�usion�dominated problem� The stress
equation is solved by means of a method well suited for transport equations� i�e� integration
along the particle trajectories� A typical time step of the overall scheme consists of the
following three stages�

�� Solve the balance equations by a �nite element method to obtain the velocity v
tn�
and pressure p
tn�� using the Eulerian stress �eld �Ep 
tn����

�� Obtain the Lagrangian stress �Lp
tn� carried by the particles by solving the stress
equations by means of a backward tracking procedure�

�� Calculate an Eulerian stress �eld �Ep 
tn� from the Lagrangian stress data �Lp
tn� by
means of a least�squares �t�

We now discuss in some more detail the various stages involved in the method�

��� Equations of motion

The equations of motion 
��� 
�� are discretised by a stabilised Galerkin approach� Choosing
appropriate functional spaces for the solution and the test functions� the weak formulation
becomes� Find 
v� p��� such that for all admissible weighting functions 
u� q�f� we have�

hq�r � vi � �� 
��

hu� �
�v

�t
� �v � rvi � hr � u� pi� hru� ��sd
v� � � p � ��
d
v�� d�i � hu� ti�� 
���

hf ��
v�� �i � �� 
���

where h�� �i and h�� �i� denote appropriate inner products on the domain � and boundary ��
respectively� and t is the contact force� Compared to the regular Galerkin method� an extra
term ��
d
v��d� containing an auxiliary viscosity � and the projected rate�of�deformation
tensor d � 
���T ��� are introduced� This so�called Discrete Elastic�Viscous Stress Splitting

DEVSS� method proposed in 	�
� 	�
 increases the stability of the scheme� It has also been
used to stabilise Discontinuous Galerkin formulations for macroscopic models 	�
 and the
Brownian Con�guration Field method for microscopic models 	�
� Discretisation in time has
been performed by the Euler forward � Euler backward predictor�corrector scheme with a
�xed time step �t� For the discretisation in space of the the velocity we use a biquadratic
continuous polynomial representation� while both pressure and projected velocity gradient
are represented by a bilinear continuous polynomial� For the polymeric stress � p we use a
bilinear discontinuous polynomial representation�

��� Stress equation

The stress equations are solved by means of a backward tracking procedure� It consists of
tracking the particle motion backward in time and integrating the constitutive or stochastic
equation along the obtained particle trajectories� Both stages are discussed in detail in the
remainder of this section�
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����� Backward tracking of particles

In BLPM the particle positions at the current time are speci�ed a priori in each element of
the mesh� Then� the particle trajectories leading to these locations are calculated by tracking
backward in time� This allows us to keep �xed the particle positions at current time� i�e�
they are not a function of time� We will denote this �xed particle position by rB� Only the
particle trajectory leading to that position changes from one time step to the next� so that
usually di�erent Lagrangian particles arrive in rB as time evolves�

A particle trajectory is described by the kinematic equation

dr

dt
� v
r� t� 
���

For a given arbitrary particle position rB in the �ow domain at current time tB� the particle
position rI at time tI 	 tB is simply obtained by means of integration of 
��� backwards in
time�

rI � rB �
Z tB

tI

v dt� 
���

If we apply the same time step as used for the equations of motion� we have tB � tn and
tI � tn�N � and the time integral is divided into N intervals of length �t� For the moment
the number of intervals N remains unspeci�ed� With the help of numerical simulations of
Sections � and �� we discuss a proper choice of this parameter� The time�integral in 
��� is
now discretised as� Z tB

tI

v dt �
nX

i�n�N��

Z ti

ti��

v
r� ti� dt� 
���

which corresponds to calculating N integrals� where integral number i uses the velocity
v
r� ti� along the trajectory between r
ti��� and r
ti�� At the end point of the trajectory
we have r
tn� � rB� Each integral over �t � ti � ti�� is evaluated by using a fourth�order
Runge�Kutta scheme� similar to 	�
� The situation is represented schematically in Fig� �
for one particle and N � �� The evaluation of the whole integral requires all intermediate
velocity �elds between tn�N and tn� so that N �nite element velocity �elds have to be stored�
and the amount of work is N times that of a single time step particle tracking method� The
array containing the N most recent velocity �elds has to be updated every time step� Field
N is annihilated� the �elds �� � � � � N � � become �elds �� � � � � N and the �rst �eld is �lled
with the most recent velocity �eld obtained by solving the equations of motion at the current
time level� The tracking has to be performed for all particles in the �ow� Thus� to keep both
memory requirements and CPU time as low as possible for BLPM� both N and the number
of particles should be kept as small as possible�

During the initial stages of the �ow� the current time might be smaller than the total
tracking timeN�t� In that case the tracking is stopped when the initial time t � � is reached�
This means that the tracking only has to be performed over min
n�N��t� Another special
case occurs when a particle is leaving a domain boundary� Apart from numerical errors in the
tracking� particles should only leave the domain at an inlet boundary for backward tracking�
We denote the time at which a particle crosses the inlet by t�� Next� for the remaining time
to track back tn�N 	 t 	 t�� the particle is assumed to be an Eulerian particle� that is it
has �xed coordinates� This procedure is similar to the handling of inlet boundaries for the
forward tracking method ALPM 	�
� There� Eulerian particles are �xed at the inlet and when
needed a copy of it is dropped in the �ow to ensure that all elements contain a su�cient
number of particles�
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The kinematic equation 
��� is solved on the parent element 	�
� Developing the derivative
of r in terms of the local coordinates � results in the pathline equation in a parent element�

d�

dt
� J�� � v� 
���

where J � �r��� is the Jacobian matrix describing the mapping between the local coordi�
nates � and the global coordinates r� Starting from the local coordinates of the �xed particle
locations� integrating Eq� 
��� gives the local coordinates of the initial locations rI � rn�N �

In case a particle leaves at another boundary than the inlet� we have to proceed slightly
di�erently� Because of the accurate tracking of the particles� we have never encountered this
at non�moving walls� axes of symmetry or outlet boundaries� In our numerical simulations�
we have observed that only for non�straight moving boundaries� such as present in journal
bearing and free surface �ows� particles at or very close to such boundaries may leave the
domain due to small numerical approximation errors� To circumvent this anomalous and
unphysical tracking� the velocity �eld is �ltered to exactly satisfy the boundary conditions
at the parent element� In other words� it is critical for this scheme that the boundary
conditions for tracking are exactly satis�ed� even if it increases slightly the residual error of
the partial di�erential equation� In order to ful�l the boundary conditions� particles that hit
such a boundary are tracked further along it� To do so� the 

� ���velocity d��dt is projected
on the boundary of the reference element by

d�

dt

�

�
d�

dt
� nn �

d�

dt
� 
���

so that we just take into account the component tangential to the boundary� Due to small
numerical errors� a particle on a boundary may also migrate from that boundary into the
interior of the �ow domain� We have chosen not to avoid this� to restrict the particle tracking
as less as possible� Thus a particle encountering a boundary during integral i in Eq� 
����
may return to the interior due to small numerical errors in the consecutive integrals�

����� Integration of constitutive and kinetic theory equations

For the macroscopic FENE�P model 
�� an ordinary di�erential equation along the particle
trajectories is solved for the con�guration tensor� For convenience� the equations are written
in non�dimensional form as in 	��
�

dA

dt
� � �A�A � �T �

�
I �

�

�� tr A�b
A

�
� 
���

where A and � vary along the particle trajectory� Starting from an initial condition An�N �
the con�guration tensor at rB and at current time is obtained by integration of 
��� over the
N intervals of the particle trajectory� using the velocity gradients �	r
ti�� ti
 at the various
time levels� Over each interval the integration is performed with a semi�implicit predictor�
corrector scheme� This scheme ensures that � � tr A 	 b� For the velocity gradients �
ti� we
need an array of ancient velocities v
ti�� This was already needed for the backward tracking�
thus no extra storage for the velocity gradient � has to be performed� However� instead of
the discontinuous velocity gradient �� one may also use the projection of the velocity gradient
� in the right�hand side of Eq� 
���� Then an extra array of projected velocity gradients has
to be stored as well� We will refer to this with the label Continuous Gradients 
CG�� For
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the initial condition� we need a con�guration �eld at time N�t earlier� An�N � Note that�
although we just need An�N at every time step� all intermediate �elds 
at times between
tn�N and tn� have to be stored because every new time step an A �eld at a time �t later
is needed� In principle� one can take N so large that the tracking backward is performed
till t � �� At that time� the initial value can be obtained exactly and the integration of
the con�guration tensor is over the whole particle trajectory� In numerical simulations� of
course� the time to track back has to be kept as small as possible for reasons of e�ciency�

The initialisation process for obtaining the initial value of the con�guration tensor An�N

is very delicate� The numerical scheme fails when the constraints tr A 	 b or detA � � are
violated� There are two main causes for this� The �rst one is in the least�squares method
to obtain an Eulerian �eld at current time tn from the Lagrangian values at the particle
positions� The second cause is the 
non�linear� polynomial interpolation or extrapolation of
this Eulerian �eld N time steps later� to obtain the initial values of the con�guration tensor
at the starting points of the particle trajectories rn�N � In Fig� � the situation is illustrated
with the aid of a simple one�dimensional case� A way to satisfy the constraints would be to
use a least�squares method and interpolation formulas that respect these constraints� For
reasons explained below� we have proceeded di�erently�

To ensure tr A 	 b during the initialisation process we proceed as follows� First we
transform the obtained con�guration tensor at time tn at the particle positions in a tensor
F �

F �
A

�� tr A�b

���

for which the relation � 	 tr F 	� holds� From the values of F at the particle positions� an
Eulerian �eld F E is computed with the help of a least�squares method� Similar to the stress
�eld� we will use discontinuous polynomials to represent F E� A suitable polynomial order
will be explored with the aid of numerical simulations in Sec� �� N time steps later� the �eld
F E is used for initialisation of the Lagrangian tensor F L

n�N at the initial positions of the
particle trajectories rn�N � At these particle positions� we �nally transform the tensor �eld
back to the con�guration tensor to obtain the initial value of A for the integration along
the particle trajectories� By taking the trace of Eq� 
��� and performing some algebraic
operations� it is easily veri�ed that the inverse transformation is given by

A �
F

� � tr F �b
� 
���

By taking the trace of this equation and rewriting its right�hand side as b tr F �
b � tr F ��
immediately shows that the condition tr A 	 b is indeed ful�lled� Performing the least�
square method and interpolation on F instead of A is not only useful to ful�l the constraint
tr A 	 b but also to circumvent large approximation errors� Close to b� small numerical
approximation errors in A may lead to large errors in the stress� because of the factor
��
�� tr A�b��

To ensure that detA � �� a transformation as described above for the trace is not
obvious� As this is only a problem for the FENE�P model� and not for the FENE model� we
have chosen a relatively simple correction method� The method ensures that the constraint
is ful�lled� but it locally decreases the accuracy of the interpolation� Before we transform
F L back into AL at the the initial particle positions rn�N � we correct F L to a tensor with
a small positive determinant � 
note that a positive detA implies a positive detF and vice
versa�� We correct on F because this ensures that we still ful�l the constraint tr A 	 b and
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it avoids large errors in the stress� as explained above� To obtain a positive determinant�
we �rst correct all negative diagonal elements Fii to small positive values �� Then� in case
F��F�� � F �

�� is negative a �D isotropic term is added so that F��F�� � F �
�� � �� The small

parameter is taken as � � ����� From our numerical simulations we have observed that
this correction is only needed in a limited number of positions in the �ow domain� e�g�
near discontinuities or steep gradients� and that it is necessary to avoid divergence of the
integration along the particle trajectories� For example� for the �ne mesh used for the ���
contraction �ow we had to correct the determinant at six particle locations close to the sharp
corner� Finally� we remark that a negative determinant of A could also occur during the
integration along a trajectory� but we did not observe this in our numerical simulations�

To obtain the stress for the FENE kinetic�theory model 
�� we solve a stochastic equa�
tion for the end�to�end vector Q along the particle trajectories� Each particle contains Nd

dumbbells with end�to�end vectors Qj� j � �� � � � � Nd� For each individual realisationQj the
non�dimensional equation 	��
 reads�

dQj �
�
� �Qj �

�

�
F c
Qj�

�
dt� dW j� 
���

where Qj and � vary along the particle trajectory� We adopt the method of variance re�
duction� as described in 	�
 for the Brownian Con�guration Field method� This implies that
the same Wiener process is taken in each j�th dumbbell of each particle� A meaningful
interpolation can thus be performed in the initialisation process� Furthermore� apart from
decreasing the cost of generating the random numbers� variance reduction also dramatically
reduces the spatial �uctuations of the velocity and stress �elds� as pointed out in 	�
� 	��
�

Starting from the previously computed Qj
tn�N � as initial condition for realisation j� the
end�to�end vector Qj
tn� at the �xed particle position rB is obtained by integration along
the particle trajectory� Over each of the N intervals of the trajectory the integration is
performed with a semi�implicit predictor�corrector scheme proposed in 	�
� This scheme is of
weak order two and ensures that � � Q�

j 	 b� The velocity gradients � are handled similarly
as for the FENE�P model� For the initial condition� however� we now need to store Eulerian
�elds for all realisationsQj� For each Qj we take a discontinuous polynomial representation�
as for the polymer stress � p� A suitable polynomial order will be discussed on the basis of
numerical simulations� Also note that� although we just need Qj
tn�N � at every time step�
all intermediate �elds 
at times between tn�N and tn� have to be stored because every new
time step a Qj �eld at a time �t later is needed� And� as we need all realisations Qj� this
severely restricts the number of backward�tracking steps N in the numerical simulations�
For the FENE kinetic theory model the initialisation process is less complicated than for the
FENE�P model� because it is represented by a vector Qj instead of a tensorA� Furthermore�

the dyadic product QjQj is positive by de�nition� For the constraint Q�
j 	 b we apply a

transformation as close as possible to the FENE�P equivalent 
����

F j �

q
Q�

j

��Q�
j�b

Qj 
���

to map Qj to a vector F j for which the length is not bounded�
The polymeric stress 
�� carried by a particle is �nally obtained by taking the ensemble

average of all realisations Qj�

� p � �I �
�

Nd

NdX
j��

QjF
c
Qj�� 
���
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where � p � � p
rB�� Qj � Qj
rB�� and Nd the number of dumbbells per particle�
What still remains is the choice in a reference element of the particle positions at which we

want to calculate the Lagrangian quantity A or Q� It is not a priori clear how to distribute
the particles over the element� To minimise extrapolation� which may easily violate the
constraint on the determinant as discussed above� some particles have to be put on the
boundary and preferably at the corners of an element� Furthermore� information has to be
transported from one element to the other which requires that a number particle trajectories
leave the element� This can easily be understood by considering a moving front in a pure
advection problem� If the trajectories do not leave an element� the solution will always
remain equal to the initial state in case of a discontinuous representation of the transported
variable� For short trajectories this also requires particles very close or at the boundaries� For
these reasons� particles equally distributed over the interior or at the integration points will
not be good options� Keeping the above considerations in mind� we discuss two alternatives�
as depicted in Fig� � for the case of quadratic representations�

�� Particles at the nodal points� Additionally� this avoids problems with negative deter�
minants in the least�squares method� because we have the identity mapping� and it
guarantees a minimal number of particles per element 
ppe��

�� An alternative particle distribution with �� ppe having no particles at the corners�

As the nodal point distribution contains less particles� it is preferable� particularly for kinetic
theory models� The second distribution is mainly included to check for possible numerical
problems when particles are located exactly at discontinuities� For example� this is the case
in a contraction �ow for the �rst distribution� for which we have particles exactly at the
sharp corner�

To conclude this section� we discuss the advantages and possible drawbacks of BLPM�
Because the particle locations where we want to calculate the con�guration quantity is
speci�ed a priori in the reference element� the distribution of the particles is controlled
completely� This means that we can choose particle locations that are well distributed over
each element and the number of particles can be kept as low as possible� even for highly
graded meshes� Furthermore� we also eliminate a priori temporal numerical �uctuations in
the stress observed in ALPM due to changes in particle distributions per element� On the
other hand� the backward tracking method introduces the question of the initial condition for
the integral along a trajectory� In BLPM we track backward in time and integrate N steps
every time step� However� it is not clear beforehand what value of N has to be chosen to
obtain accurate results� For BLPM to be an e�ective method� the number of backward steps
N has to be kept as small as possible� This is particularly true for the microscopic models
for which the integration is CPU�time consuming and much memory is needed to store the
Q �elds� In the remainder� we show that in combination with an accurate initialisation of
Q or A� tracking backward with only a single step 
N � �� is su�cient to obtain accurate
transient results� This makes BLPM an e�cient method indeed�

� High�eccentricity journal bearing �ow

��� Problem description

In this section we consider the transient� planar �ow between eccentric cylinders� The inner
cylinder of radius Ri rotates at a constant angular velocity 
� while the outer cylinder of
radius Ro is kept at rest� The axes of the two cylinders are separated by an eccentricity
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e� The particular �ow parameters used are Ri � �� Ro � ���� e � �� and 
 � ���� For
the �uid parameters� we select � � �� �s � ���� �p � ���� � � �� and b � ��� Here� both
�ow and �uid parameters are expressed in an arbitrary consistent system of units� The
geometry is characterised by the non�dimensional eccentricity � � e�
Ro � Ri� � ���� and
the non�dimensional gap thickness � � 
Ro � Ri��Ri � ���� The �uid �ow is speci�ed by
the Reynolds number Re � �
Ri
Ro � Ri��
�s � �p� � ���� the Deborah number De �
�
Ri�
Ro � Ri� � �� the non�dimensional �nite extensibility parameter b � ��� and the
viscosity ratio � � �s�
�s � �p� � ���� Initially� the �uid is assumed at rest� that is we
specify a vanishing velocity and polymer stress� For the FENE �uid� a vanishing polymer
stress is approximated by solving the equation for the end�to�end vector 
��� with � � � and
taking the obtained Qj as the initial distribution of dumbbells� For the DEVSS method� we
take the auxiliary viscosity equal to the polymeric viscosity� � � �p�

Three meshes have been used� The coarse mesh consists of ��x�� quadrilateral elements�
The medium and �ne meshes are obtained by a re�nement of the coarse mesh with a factor
two and three in both directions� so consisting of ��x�� and ��x��� elements� respectively�
The coarse mesh is depicted in Fig� �� in which we also indicate the location where we
examine the transients of stress�

��� Results

To establish an optimal parameter setting for BLPM� various possibilities for the number of
backward steps N and the order of the �eld F E for initialisation have been investigated for
the macroscopic FENE�P equation� We have used N � �� �� and ���� which corresponds to
a backward tracking time of ���� �� ��� � and ��� �� respectively� Results for the transients
of normal stress N� and shear stress �xy are displayed in Fig� �� obtained with the coarse
mesh and a discontinuous linear �eld F E� Clearly� the value of the parameter N has a big
impact on the results obtained on the coarse mesh with a linear initialisation �eld� Results
for the same values of N and the same mesh� but now using a discontinuous quadratic �eld
F E� are provided in Fig� �� Here� the situation has improved dramatically� For N � ��
and N � ���� the stress transients almost coincide and the di�erence with the transient of
N � � is small as well� This di�erence can be attributed to the coarseness of the mesh�
and is not inherent to BLPM with N � � as shown in Fig� �� There we have repeated the
latter calculations on the medium mesh and an excellent agreement is observed over the
whole transient obtained by BLPM with N � � and N � ���� We remark in passing that�
although not shown in the �gures� the nodal distribution with nine particles per element and
the alternative with thirteen particles per element� do not exhibit any noticeable di�erence
in these cases�

To verify that BLPM converges with mesh re�nement we have used the three di�erent
meshes with N � � and a time step of �t � ���� 
Fig� ��� We observe a good convergence
indeed� The curves for the medium and �ne meshes practically superimpose� so that the
medium mesh is su�ciently re�ned for the current computations� Compared with the coarse
mesh� only some minor di�erences are present in the transient stress curves�

To ensure that accuracy is also maintained for small time steps� we have used N � �
with two smaller time steps �t of ���� and ����� The backward tracking time for the latter
�t corresponds to only ������ �� The results for the coarse mesh in Fig� � show an excellent
agreement� in particular the transients for �t � ���� and �t � ���� do coincide� The small
discrepancy with the solution using �t � ���� near the steady state� can again be attributed
to the coarseness of the mesh� This is con�rmed by Fig� ��� where the stress transients for
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�t � ���� and �t � ���� are displayed on the medium mesh� Furthermore� this �gure
shows that the DEVSS method with � � �p does not noticeably decrease the accuracy of
the transients in this �ow geometry�

In Fig� ��� BLPM is compared to two other methods� The �rst one is the standard
Lagrangian particle method 
LPM� 	�
 using an average number of ���� particles per ele�
ment� The second method is a mixed Galerkin �nite element approach described in 	��
�
The agreement on the coarse mesh is good� except maybe near the steady state where all
methods slightly di�er� Re�ning the mesh diminishes these di�erences drastically� as demon�
strated in Fig� ��� There the results for LPM with ���� particles and BLPM can hardly be
distinguished�

Finally� we demonstrate the ability of BLPM to handle kinetic theory models� Results
have been obtained for the FENE dumbbell model� using the coarse mesh of Fig� �� In Fig� ���
BLPM is compared with the Adaptive Lagrangian Particle Method 
ALPM� described in
	�
� In ALPM� initially each element contains �� particles� each containing ���� dumbbells�
During the �ow� particles are created and destroyed such that a minimum number of � and
a maximum of �� particles per element is guaranteed� For BLPM� to compensate for the
smaller amount of particles per element 
i�e� nine�� we have employed slightly more dumbbells
per particle� namely Nd � ����� Agreement is good for the entire transients� The temporal
�uctuations in the steady�state solution seem however somewhat smaller for BLPM� Also
given in Fig� �� is the FENE�P solution for comparison purposes� Except for the initial
stages� the FENE�P solution lies well above the FENE result� revealing the impact of the
closure approximation�

� ��� contraction �ow

��� Problem description

In this section� we consider the transient� planar �ow in a ��� abrupt contraction� The inlet
and outlet sections are taken equal to �� and �� times the downstream channel half�width L�
respectively� The no�slip boundary condition is assumed to hold at the wall� and a quadratic
velocity pro�le is prescribed at the inlet and outlet� Although a quadratic pro�le does not
exactly match a fully developed �ow� it is found that the �ow is only slightly perturbed
close to the inlet and outlet� Initially� a vanishing velocity and polymeric stress are speci�ed
for the whole domain� For the FENE model� a vanishing stress is simulated by solving the
equation for the end�to�end vector 
��� with � � �� The obtained Qj are then taken as the
initial distribution of dumbbells� For the DEVSS method� we again take � � �p� In this
�ow geometry� the DEVSS stabilisation is found indispensable at high Deborah numbers�
Finally� we have used quadratic initialisation �elds F E� and one backward step 
N � ���

For the �uid parameters we select � � ������ �s � ����� �p � ����� � � ���� and b � ��

expressed in an arbitrary consistent system of units�� The �uid �ow is speci�ed by the
Reynolds number Re � �V L�
�s � �p� � ����� the Deborah number De � �V�L � ���� the
non�dimensional �nite extensibility parameter b � ��� and the viscosity ratio � � �s�
�s �
�p� � ����� For the characteristic velocity V we take the average velocity at the outlet�

We have used two meshes of quadrilateral elements� The coarser mesh consists of ���
elements� The �ner mesh is a re�nement of this mesh with a factor two in both directions�
so consisting of ���� elements� A zoom of the coarse mesh near the sharp corner is depicted
in Fig� ��� where we also indicate the location where we examine the transients of stress�
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��� Results

For the FENE�P model� the development in time of the streamlines are displayed in Fig� ���
Here we have used the DEVSS�CG method which turns out to be slightly more accurate�
because less corrections for the determinant are necessary near the sharp corner than for
DEVSS alone� Initially� a corner vortex develops and increases in intensity� At about t �
����� a lip vortex starts to grow at the re�entrant corner while the corner vortex diminishes�
At t � ����� the two recirculation zones attach� still displaying two vortices� At later times�
these two vortices merge to form one big lip vortex� whose intensity continues to increase�
The steady�state solution is reached between t � � and t � � displaying one large lip vortex�

Figure �� displays the contour lines of the the steady�state values of the stress components
�xx� �xy and �yy� The contours are very smooth indeed� except near the re�entrant corner
where steep gradients exist for all three components� To investigate the dependence on mesh
and distribution of particles� transients of the stress at the corner are plotted in Fig� ��� It
is remarkable that even at the corner point the transients of the stress are smooth� After
about t � �� an oscillation�free steady state is reached for all three curves� However� the
numerical values of the transients and resulting steady states near the sharp corner depend
quite strongly on the particle position and the re�nement of the mesh� as expected� Despite
these large di�erences in the stress� the streamline patterns remain the same as those shown
in Fig� ���

Calculations for the FENE dumbbell model have been performed on the coarse mesh�
The number of dumbbells per particle is Nd � ����� Results for the transient stresses are
provided in Fig� ��� The shear stress is very smooth while the normal stress displays some
small�amplitude oscillations typical of stochastic simulations� Comparison of Figs� �� and ��
shows a signi�cant qualitative di�erence between FENE and FENE�P results� Further mesh
re�nement as well as increased number of dumbbells per particle is needed to establish this
observation� Field contour plots of the stress at time t � �� are provided in Fig� ��� Except
near the sharp corner� where steep gradients are present in all three stress components� the
contour plots are again very smooth� The development in time of the streamline patterns
is displayed in Fig� ��� Noticeable with respect to Fig� �� is that the the lip vortex is less
developed for the FENE model than for the FENE�P constitutive equation� Furthermore�
the maximum values of the stream function are much lower� Although it seems that the
steady state contains two vortices for the FENE model� this is not exactly the case� Despite
the smooth transient stresses� no real steady state value is reached for the streamlines� The
maximum stream function is contained in the interval 	� ����� ��� ����
� and the two vortex
situation is alternated with a single corner vortex� The reason for the non�steady behaviour
of the low�intensity vortices might be the small stochastic oscillations in the stress� Further
mesh re�nement and increasing the number of dumbbells Nd per particle should settle the
issue�

� Conclusions

In this paper� we have demonstrated the ability of BLPM to accurately simulate tran�
sient �ow of viscoelastic �uids� both for macrorheological and microrheological models� The
method consists of tracking in each element a small number of Lagrangian particles N steps
backward in time� These particles have �xed locations in the reference element� only the
particle trajectories change in time� The particle locations can be chosen a priori� so that
an almost optimal distribution of particles can be used to evaluate the stress� Furthermore�
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highly graded meshes can be handled in a straightforward manner� For obtaining an initial
value for the integration along trajectories� an Eulerian con�guration data �eld is stored
every time step� N time steps later� the initial value is calculated from this Eulerian �eld
by means of interpolation�

To establish an optimal numerical parameter setting for BLPM� we have considered two
benchmark problems� high�eccentricity journal bearing and ��� abrupt contraction �ow� For
the smooth journal bearing �ow� the in�uence of the numerical parameters on the accuracy of
the stress transients has been investigated� The key point for the accuracy is the initialisation
step� When a spatially second�order accurate Eulerian �eld is used for initialisation� we have
shown that the accuracy is independent of the number of backward steps N � Only a single
step of integration backward in time is su�cient to obtain accurate results� even for very small
time steps� The stress transients also compare well with results obtained with a conventional
mixed �nite element approach and the forward�tracking Lagrangian particle method LPM�
This applies both to constitutive equations and kinetic theory models� The stability of the
method has been demonstrated for the non�smooth ��� contraction �ow� Smooth transients
for the stresses could be obtained� even near and at the sharp corner� both for the macroscopic
and microscopic stress models� Furthermore� stress contours showed smoothness in space�
except for a small region close to the sharp corner where steep gradients are present�

The bene�t of BLPM lies in its e�ciency� Accurate results are obtained by tracking
backward in time over one single step only� This makes the method attractive to use with
kinetic theory models� for which CPU time and memory requirements are very demanding�
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Figure legend

Figure �� Particle path in �nite element mesh for the case N � �� a � denotes the �xed
location where the stress has to be calculated� a � the intermediate positions on the particle
path leading to it�

Figure �� One�dimensional illustration of violation of constraints due to least�squares �t�
extrapolation and non�linear polynomial interpolation� thick lines indicate parts of the curves
in the non�physical shaded regions�

Figure �� Two examples of distributions of particle positions over an element� � ppe 
nodal
points� and �� ppe�

Figure �� Coarse mesh 
��x�� elements� for journal bearing �ow with indicated in zoom
where stress values are displayed in subsequent �gures�

Figure �� Transients of stress for various values of N for FENE�P model using BLPM� mesh
��x��� �t � ����� DEVSS� linear F E� � ppe�

Figure �� Transients of stress for various values of N for FENE�P model using BLPM� mesh
��x��� �t � ����� DEVSS� quadratic F E� � ppe�

Figure �� Transients of stress for various values of N for FENE�P model using BLPM� mesh
��x��� �t � ����� DEVSS� quadratic F E� � ppe�

Figure �� Behaviour with mesh re�nement of transient of stresses for FENE�P using BLPM�
�t � ����� DEVSS� N � �� quadratic F E� � ppe�

Figure �� Transients of stress for various values of �t for FENE�P using BLPM� mesh ��x���
DEVSS� N � �� quadratic F E� � ppe�

Figure ��� Transients of stress for various values of �t including and excluding DEVSS� for
FENE�P using BLPM� mesh ��x��� N � �� quadratic F E� � ppe�

Figure ��� Comparison of transients of stress for FENE�P using BLPM� with LPM and a
conventional mixed �nite element method� mesh ��x��� �t � ����� BLPM� DEVSS� N � ��
quadratic F E� � ppe� LPM� on average ���� ppe�

Figure ��� Comparison of transients of stress for FENE�P using BLPM� with LPM� mesh
��x��� �t � ����� BLPM� DEVSS� N � �� quadratic F E� � ppe� LPM� on average ����
ppe�

Figure ��� Transients of stress for FENE model using BLPM and ALPM� and FENE�P
curve for reference� mesh ��x��� �t � ����� BLPM� DEVSS� N � �� quadratic F E� � ppe�
ALPM� between � and �� ppe�

Figure ��� Coarse mesh 
��� elements� near sharp corner for ��� contraction �ow with
indicated in zoom where stress values are displayed in subsequent �gures�



Figure ��� Development in time of streamlines and maximum value of stream function "
in recirculation zone for FENE�P model using BLPM� �ne mesh� �t � ����� DEVSS�CG�
N � �� � ppe�

Figure ��� Contour lines of stress in steady state near sharp corner for FENE�P model using
BLPM� �ne mesh� �t � ����� DEVSS�CG� N � �� � ppe� Plotted contour lines� �� �� ��
�� �� �� and all tens� a� �xx� �� contours between ����� and ��� b� �xy� � contours between
����� and ��� c� �yy� � contours between ����� and ���

Figure ��� Transients of stress at corner 
Fig� ��� for FENE�P using BLPM with various
particle locations and meshes� N � �� DEVSS�CG� �t � �����

Figure ��� Transients of stress at and near corner 
Fig� ��� for FENE model using BLPM�
coarse mesh� �t � ����� DEVSS� N � �� � ppe�

Figure ��� Contour lines of stress in steady state near sharp corner for FENE model using
BLPM� coarse mesh� �t � ����� DEVSS� N � �� � ppe� Plotted contour lines� �� �� �� ��
�� �� and all tens� a� �xx� �� contours between ���� and ��� b� �xy� �� contours between ����
and ��� c� �yy� �� contours between ���� and ���

Figure ��� Development in time of streamlines and maximum value of stream function " in
recirculation zone for FENE model using BLPM� coarse mesh� �t � ����� DEVSS� N � ��
� ppe�
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Figure �� Particle path in �nite element mesh for the case N � �� a � denotes the �xed
location where the stress has to be calculated� a � the intermediate positions on the particle
path leading to it�



Figure �� One�dimensional illustration of violation of constraints due to least�squares �t�
extrapolation and non�linear polynomial interpolation� thick lines indicate parts of the curves
in the non�physical shaded regions�



Figure �� Two examples of distributions of particle positions over an element� � ppe 
nodal
points� and �� ppe�
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Figure �� Coarse mesh 
��x�� elements� for journal bearing �ow with indicated in zoom
where stress values are displayed in subsequent �gures�
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Figure �� Transients of stress for various values of N for FENE�P model using BLPM� mesh
��x��� �t � ����� DEVSS� linear F E� � ppe�
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Figure �� Transients of stress for various values of N for FENE�P model using BLPM� mesh
��x��� �t � ����� DEVSS� quadratic F E� � ppe�
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Figure �� Transients of stress for various values of N for FENE�P model using BLPM� mesh
��x��� �t � ����� DEVSS� quadratic F E� � ppe�
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Figure �� Behaviour with mesh re�nement of transient of stresses for FENE�P using BLPM�
�t � ����� DEVSS� N � �� quadratic F E� � ppe�
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Figure �� Transients of stress for various values of �t for FENE�P using BLPM� mesh ��x���
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Figure ��� Transients of stress for various values of �t including and excluding DEVSS� for
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Figure ��� Comparison of transients of stress for FENE�P using BLPM� with LPM and a
conventional mixed �nite element method� mesh ��x��� �t � ����� BLPM� DEVSS� N � ��
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Figure ��� Comparison of transients of stress for FENE�P using BLPM� with LPM� mesh
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Figure ��� Coarse mesh 
��� elements� near sharp corner for ��� contraction �ow with
indicated in zoom where stress values are displayed in subsequent �gures�



t 	 ��
� t 	 ���� t 	 �


� 	 ��� �
�� � 	 ��� �
�� � 	 ��� �
��

t 	 
��� t 	 
�

 t 	 
���

� 	 ��� �
�� � 	 ��� �
�� � 	 ��
 �
��

t 	 
�
� t 	 
��� t 	 
���

� 	 ��� �
�� � 	 ��� �
�� � 	 ��� �
��

Figure ��� Development in time of streamlines and maximum value of stream function "
in recirculation zone for FENE�P model using BLPM� �ne mesh� �t � ����� DEVSS�CG�
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Figure ��� Contour lines of stress in steady state near sharp corner for FENE�P model using
BLPM� �ne mesh� �t � ����� DEVSS�CG� N � �� � ppe� Plotted contour lines� �� �� ��
�� �� �� and all tens� a� �xx� �� contours between ����� and ��� b� �xy� � contours between
����� and ��� c� �yy� � contours between ����� and ���
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Figure ��� Transients of stress at corner 
Fig� ��� for FENE�P using BLPM with various
particle locations and meshes� N � �� DEVSS�CG� �t � �����
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Figure ��� Transients of stress at and near corner 
Fig� ��� for FENE model using BLPM�
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Figure ��� Contour lines of stress in steady state near sharp corner for FENE model using
BLPM� coarse mesh� �t � ����� DEVSS� N � �� � ppe� Plotted contour lines� �� �� �� ��
�� �� and all tens� a� �xx� �� contours between ���� and ��� b� �xy� �� contours between ����
and ��� c� �yy� �� contours between ���� and ���
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Figure ��� Development in time of streamlines and maximum value of stream function " in
recirculation zone for FENE model using BLPM� coarse mesh� �t � ����� DEVSS� N � ��
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