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Mechanics (CESAME) Av. Georges Lemâıtre, 4, B-1348 Louvain-la-Neuve,

Belgium.

(2) Fluent Benelux, Av. Pasteur, 4, B-1300 Wavre, Belgium.

1



Abstract

Twin-screw extruders are often used to distribute and disperse
additives into polymers. The mixing efficiency of the extruders highly
depends on the geometry of the kneading blocks of the mixing section.
In this paper, the impact of some geometrical parameters, such as the
stagger angle and the width of the discs, are investigated by three
dimensional time dependent finite element calculations.

Results are obtained with the finite element software POLYFLOW.
The robustness and the accuracy of the mesh superposition technique

is evaluated. It appears that conclusions obtained by the numerical
experiments can be used to improve the geometry of the kneading
blocks. The mixing efficiency is evaluated by comparing the residence
time and the total shear distributions of a large set of virtual particles
launched in the flow domain.



Introduction

In plastic, rubber and food industry, the mixing of raw materials is a critical
step of the process. The morphology and the specific properties of the final
product depends on the uniformity of the mixture and therefore on the qual-
ity of the mixing. In the literature, a distinction is usually made between the
dispersive and distributive mixing [1]. On one hand, the distributive mixing
consists of creating a flow kinematics that will provide a uniform concentra-
tion of all components. On the other hand, the dispersive mixing consists
of breaking clumps or aggregates into particles of the smallest size as possi-
ble. Both goals can be achieved simultaneously or in several steps. In most
cases, twin-screw extruders are used to distribute and disperse additives into
polymers. The dispersive mixing is obtained by the shear and elongational
stresses created, while the distributive mixing is achieved by frequent stretch-
ing and reorientations of the flow. Each element of the extruders (including
some part of the feed or the devolatization section, for instance) can dramat-
ically affect the quality of the final product. However, the kneading block of
the mixing section of the twin-screw extruders is the most important element.
A kneading block is a discontinuous unit mainly composed of several discs.
The mixing efficiency of the extruder highly depends on the geometry of such
kneading blocks. In this paper, we use the numerical simulation to analyze
the sensibility of some typical parameters characterizing this geometry : the
stagger angle, the width and the number of discs [2].

Previous experimental and numerical investigations were performed in
several contributions in the literature. In 1964, Erdmenger [3] has first de-
scribed the flow mechanism in the kneading disc region. He observed a
forward drag flow when the kneading discs have a right-handed stagger angle
and a backward leakage flow through the tips of the kneading discs. Other
flow visualizations were reported by Sastrohartono et al. [4], Bigio et al. [5],
Todd [6] and Kim et al. [7]. More recently, Bakalis et al. [8] [9] used the
laser Doppler anemometry to investigate local feature of the flow. However,
such experimental approaches are very expensive, time consuming and only
provide a partial information: it is almost impossible to extract all local in-
formation. The main advantage of the numerical and virtual laboratories is
the possibility to provide all local information at any position of the twin-
screw extruder. Of course, it is the information related to a mathematical
model that is only an approximation of the reality. A large number of con-
tributions in the literature demonstrate that the numerical approach seems
to be a useful tool to study mixing devices.

In 1980, Booy [10] already proposed one-dimensional model and extracted



averaged values of the pressure in the flow direction. More recent contribu-
tions of Lozano et al. [11] [12] demonstrate that those simplified 1D models
are still a very interesting way. In 1987, Szydlowski presented bidimensional
results obtained by means of the flow analysis network [13]. The flow in the
radial direction is neglected and a two dimensional mesh is build in a three
dimensional reference. Such an approach is very popular, as illustrated by
some people : Speur et al. [14], Gotsis et al. [15], Bigio et al. [16] and
Potente et al. [17]. It allows to keep some local features. Nevertheless, in an
extruder we have a three dimensional time dependent flow, and to catch all
information, a three dimensional time dependent calculation is required.

Three-dimensional calculations have been recently reported in the liter-
ature. In 2000, Yoshinaga et al. [18] and Ishikiwa et al. [19] reported such
results by generating a new mesh for each position of the screws at each
time step. Time dependent fields are then obtained by interpolation between
the meshes. But this method requires a huge tedious meshing work or very
complex meshing tools. Good agreement between numerical and experimen-
tal results in terms of velocity and pressure profiles have been obtained by
Bravo et al. [20] [21] in 2000. Ishikawa et al. [22] investigate the impact
of different combinations of kneading blocks on the mixing efficiency of a
twin-screw extruder in 2001. As suggested by Rios et al. [23], the boundary
element method offers an alternative to the meshing effort but incorporating
non-linearity of a rheological model is a very tedious issue. In this paper,
we use a constrained finite element formulation for non-conforming meshes.
Using a penalty technique, it allows us to avoid the complex task of meshing
the flow domain. In this so-called mesh superposition technique [24], we only
need to mesh the inner part of the barrel and each screw in an independent
way. The position of the screws mesh is updated at each time step. For each
node of the barrel mesh, we must detect if the node is inside the screws and
if its velocity has to be constrained. In the other case, the velocity is com-
puted by solving the Navier-Stokes equation. This technique can be directly
compared to the fictitious domain method used by Bertrand et al. [25]. They
impose the kinematics constrains by means of Lagrange multipliers and not
by a penalty technique.

Nevertheless, those simulations remain challenging due to the complex-
ity of the three dimensional time dependent flow pattern. Therefore, it is
required to carefully evaluate the robustness and the accuracy of the calcula-
tion : the sensibility of the numerical parameters, the rheological model and
the operating conditions are investigated in this paper. Finally, several three
dimensional time dependent results are presented to analyze the flow pat-
terns generated by different configurations of kneading blocks. Their mixing



efficiency is evaluated in comparing the residence time, the maximum shear
rate and the total shear distributions of a set of virtual particles launched in
the flow domain.

Mathematical Modeling

Let us consider a time-dependent isothermal and incompressible flow of a
generalized Newtonian fluid. The governing partial differential equations
thus read:











ρ
Dv

Dt
= −∇p + ∇ · τ + ρ g

∇ · v = 0

(1)

where D/Dt is the material derivative, v is the velocity, p is the pressure, ρ
is the density, g is the gravity and τ is the extra-stress tensor defined by:

τ = 2η(γ̇)d

with the strain rate tensor d and the kinematic viscosity η. The shear rate γ̇
is defined as the square root of the second invariant of the strain rate tensor,

γ̇ =
√

2d : d

As we consider flows in a twin-screw extruder with a rotational speed of
250 rpm and a flow rate of 0.02 kg/s, we are dealing with Re ∼ 10−2 and
Re/Fr ∼ 10−1. In other words, we consider creeping flow assumption and
neglect gravity effects.

To build a mathematical model of the mixing process of a polyamide
in a twin-screw extruder, several geometrical assumptions and a simplified
constitutive model for the fluid are selected [1]. Even if three dimensional
geometrical issues are very important, a correct balance between the com-
plexity of the geometrical model and the complexity of the rheological model
has to be identified. It is useless to use a complex rheological model with
a relatively coarse geometrical discretization. It is also useless to consider
irrelevant geometrical details with a very poor rheological model. The cost
of large time-dependent three-dimensional calculations and the numerical ac-
curacy that can be obtained have to be taken into account to get a suitable



compromise between the numerical and the modeling error. In view of the
geometrical assumptions that we have to introduce, it seems reasonable to re-
produce only the shear thinning behavior of the polyamide by a Bird-Carreau
model [26] [27] :

η(γ̇) = η0

(

1 + (λγ̇)2
)(n−1)/2

(2)

where η0 = 313 Pas is the zero shear rate viscosity, λ = 0.0025 s is a
natural time and n = 0.5 is the power law index. Those parameters have
been selected to fit experimental measurements at a temperature of 250◦C
as illustrated in Figure 1. The density of this polyamide is 969 kg/m3.

As the goal of the paper is not to analyze the interaction between several
combinations of kneading blocks, but to focus on the geometrical design of
one kneading block, the analysis will be restricted to one kneading block
composed of five or ten discs, as shown in Figure 2. As one major advantage
of such an approach, we are allowed to consider only isothermal flow because
the increase of temperature observed along only one kneading block is quite
small in the considered operating condition. To be able to set boundary
conditions, we add to the computational domain some sufficiently long inlet
and outlet channels where fully developed flows can be assumed. Therefore,
a developed velocity profile is imposed at the inlet section and vanishing
normal velocity and tangential force are imposed as usual at the exit section.
The dimensions of the computational domain are given in Table 1. Along
the barrel and the screws, a full sticking condition is imposed. It is a strong
assumption, as most people observe partial slipping of the polymer along the
screws and the barrel. However, some experiments suggest that a sticking
condition is a better approximation of the reality. Finally, as the amount
of the slipping along the screws is still an open question deserving a full
analysis, it seems to be fair to restrict ourselves to a stick condition. Finally,
the mixing section of the twin-screw extruder is assumed to be fully-filled
because the numerical simulation of a partially filled domain requires both
extremely sophisticated algorithms and prohibitive cost.

As we mainly wish to analyse the impact of the geometrical design of
a kneading block on the flow, let us briefly recall how the geometrical con-
struction of the screw cross section is performed. Basically, the geometry of
a kneading block depends on the following parameters [2]:

• the number and width of the discs. In this analysis, we consider knead-
ing blocks of five or ten discs, with a width of 8 mm or 4 mm respec-
tively. The total width is always 40 mm.



• the stagger angle ǫ between the discs. Typically, we consider the so-
called neutral, pump and reverse elements with stagger angles of 90◦,
45◦ and −45◦ respectively.

• the geometry of the cross-section of the disc. To build the cross-section
of the disc, let us use the same construction as M.L. Booy [28]. A
unique shape for the cross-section of the disc can be defined from a
radius Re, a centerline distance L and a number of tips. In Figure 3,
let us restrict ourselves to a cross-section with two tips. We draw two
circles Γe and Γi with the same center O and radius equal to Re and
Ri = L − Re respectively. From an arbitrary point A of Γe, we define
points B and C lying on Γe such that the angle AOB = π

2
and the

distance AC = L, respectively. The right limit P of the upper tip is
then located midway between B and C. Other limits of tips are located
symmetrically to the axis OA and OB. Finally, the shape of the flank
curve is an arc PF of circle Γf whose the radius is L and the center D
is lying of Γe such that the distance DP = L. The point F is defined as
the intersection of circles Γf and Γi. The last part of the cross section
is defined as the root curve that is the arc FF ′ of the circle Γi. The
numerical parameters of the cross-section used in this analysis are given
in Table 2.

In the mixing of two immiscible polymers, we observe droplets or filaments
of one component in the other one. The evolution of those filaments is the
result of the combination of the shear stress applied by the flow field and
the interfacial force [29]. At a given time, both effects are in competition at
a local level and lead to the break-up into smaller droplets. Deformations
can be, approximately, considered as proportional to the total shear. It is
required that the filament experiences folding and reorientation several times
to observe an exponential increase of the stretching and to guarantee a good
mixing efficiency : the well known baker’s transformation is the classical
exemple of such a requirement. In this study, we will thus estimate the
mixing efficiency by the evolution of the total shear, the shear rate and the
residence time of a particle in the flow domain. In order to obtain a global
stretching efficiency, we also evaluate the ratio between the energy converted
into stretch and the mechanical energy dissipated in the flow. This ratio,
so-called global stretching efficiency, is calculated from the logarithm of the
area stretch ratio and from the strain rate tensor [30].

Obviously, those measures provide a limited insight. Other indicators (the
scale of segregation, the mapping method matrix, the distributive index,. . . )



[31] [32] [33] and micro-macro modeling of the dispersive mixing are required
if we wish to get a better understanding of the process.

Numerical Techniques

To perform simulations, we use a finite element software dedicated to highly
viscous flows: POLYFLOW [34]. In order to get reliable results, a fine de-
sign of the mesh and a suitable selection of the mixed interpolations remain
critical.

Mesh refinement analysis

In general, the design of the mesh between the barrel and the screws is a
very tedious task that has to be repeated for each position of the screws
in a transient simulation. In the mesh superposition technique [24], used in
this analysis, we independently build the mesh of the flow domain and the
mesh of each screw. The mesh of the flow domain and the screws are then
superimposed as illustrated in Figure 4. The position of the screws is updated
at each time step. It is finally required to detect if the node is included in
one of the two screws or in the actual ”fluid” region. Outside the screws, the
velocity of the node is calculated by satisfying the weak formulation of the
Navier-Stokes equations. Otherwise the velocity of the node is constrained
at the velocity of the screws.

This technique presents two major advantages. Firstly, only two meshes
without complex intermeshing regions have to be built to perform a tran-
sient simulation. Secondly, the method is efficient and robust thanks to the
absence of remeshing algorithm. Nevertheless, the accuracy of this method
is lower than the accuracy of a classical method and requires a mesh refine-
ment. Obviously, if the mesh becomes too coarse in some areas, very poor
numerical results can be obtained. Typically, the mass conservation cannot
be always guaranteed; fluid leakage can appear in some critical parts of the
flow domain. Such a bad behavior comes from the penalty formulation used
in the mesh superposition technique that is not formally a conservative nu-
merical technique: we have thus to maintain the mass conservation under
control. The local loss of the mass conservation can modify in a significant
way the flow features.

To maintain an acceptable numerical cost, a first coarse mesh of 15, 570
bricks for the flow domain is built. Nevertheless, it is already a quite costly



calculation and it prohibits performing a classical mesh refinement analysis
uniformly in all the directions. Therefore, we restrict ourselves to the radial
and axial direction, keeping the same azimuthal distribution. Medium and
refined meshes are thus defined with 22, 550 and 32, 220 bricks.

Convergence analysis is performed by comparing the pressure evolution
along the line AA′ illustrated in Figure 2 and defined in Table 1. In Figure 5,
the pressure profiles strongly depend of the mesh refinement. Basically, we
observe convergence of the results especially between the two more refined
meshes. As expected, obtaining a fully converged value for the pressure peak
remains a critical issue and quite more difficult than for the velocity field.
The radial direction is the most critical. As the use of a direct frontal solver
renders radial refinement quite costly, the medium mesh can be viewed as
a compromise between the number of degrees of freedom and the required
accuracy.

Selection of the mixed interpolation

For the Stokes problem, it is well known that the interpolation of the veloc-
ity and pressure has to satisfy the Brezzi-Babuska condition [35] for a usual
Galerkin formulation as used in the software. Otherwise, a stabilized pressure
Petrov Galerkin formulation could be used with an equal-order approxima-
tion. Moreover, in our specific application, the penalty technique applied on
the flow bricks partially superimposed by the screws, requires special care
because locally the ratio between velocities and pressure unknowns is mod-
ified in the wrong way for the stability issue. We investigate three mixed
interpolations defined in Figure 6.

• Q1 − Q0 : hexahedral linear velocity and constant pressure interpola-
tions. Such an element is widely used in a large number of applications
even if it does not formally satisfy the BB condition.

• Q+
1 − Q0 : mini-element velocity and constant pressure interpolation.

The velocity interpolation is a usual hexahedral linear element at which
a scalar degree of freedom is added in each face.

• Q++
1 − Q1 : enriched mini-element velocity and linear pressure inter-

polation. An additional bubble function enriches the velocity field to
define Q++

1 element from Q+
1 element.

The solutions for the same problem solved with the three elements are
compared in Figure 7. A similar pressure drop between the inlet and the



outlet channel is obtained with both Q++
1 − Q1 and Q+

1 − Q0 interpola-
tions. Nevertheless, we observe some spurious oscillations with Q++

1 − Q1

interpolation and an underestimated pressure drop with Q1 − Q0 element.
The best compromise between the numerical cost and the accuracy seems to
be addressed by the Q+

1 − Q0 element for a given mesh. The other mixed
interpolations are too expensive or not very accurate.

Finally, the cost of a simulation with the medium mesh and the Q+
1 −Q0

interpolation remains important. A transient simulation takes around 14
hours for 26 times steps and requires 1387 Mbytes of memory on a DEC
Alpha server (600Mhz-1Gb of memory).

Measure of the mixing quality and efficiency

To evaluate the mixing provided by each kneading block, a very large number
of virtual particles are launched at the same time in the flow domain. Ini-
tially, those particles are randomly distributed in an inlet vertical plane and
their trajectory is calculated from the velocity field [36]. The flow pattern is
assumed to be not affected by the occurence of particles. Such an assumption
is relevant if the concentration of the minor component in the major one is
very small.

A characteristic residence time for all particles can be estimated from a
characteristic flow rate, mixing length and the area of the flow section. If a
particle does not leave the flow domain after forty times such a character-
istic residence time, its history is disregarded for our analysis (typically 16
seconds). Typically, theses particles stick to either the barrel or the screws.
Their axial velocity vanishes and they never reach the end of the mixing sec-
tion. In order to deliver reliable statistics about mean residence time needed
to reach the exit section and othe global feature of the trajectories, it is
essential that all the trajectories used in the mixing analysis reach the end
of the mixing section. Nevertheless, the number of particles that sticks to
the barrel or to the screws can be also representative of the complexity of
the channels created by the motion of the screw. Along each trajectory, we
evaluate current elapsed time, the shear rate and the total shear.

The next step consists in defining three planes : α, β and γ as shown in
Figure 8. In each plane, the distributions of residence time and total shear
of particles crossing this plane are calculated. For example, let us consider
that we wish to obtain the distribution of the residence times required to
reach the plane α. We take into account the first intersection between each
trajectory and the plane. Considering only the first intersection avoids to give



much weight to a particle crossing several times the same plane, as illustrated
by the trajectory Γ3. By collecting all residence time of the particles, it is
thus possible to estimate the residence time distribution for this plane α.
The distribution represents the frequency with which particles with a given
residence time in the global population can be found.

Basically, most distributions are characterized by three parameters de-
fined in Figure 9. For the residence time, for example, we consider the
following parameters : the smallest time observed in a given plane, the time
needed by 75% of the particles to reach the plane and the difference be-
tween both previous values. Those parameters are denoted Tmin, T75 and
∆T = T75 − Tmin, respectively.

Sensibility analysis

Now, we are able to analyse the effect of the material and of the kneading
block geometry on the mixing. More precisely, we investigate the impact
of the stagger angle and the disc width. In Figure 10, we consider three
kneading blocks composed of five discs with a stagger angle of 90◦, 45◦ and
−45◦ respectively and one element with 10 discs and a stagger angle of 90◦.
Stagger angles of 90◦, 45◦ and −45◦ usually define neutral, pump and reverse
elements.

Effect of the rheological model

The impact of the material on the flow is estimated by modifying the effect
of the shear thinning behavior of the model. Three simulations with three
different values of the power law index (n = 0.6, 0.7 and 1) are performed
with the neutral element composed of five discs.

In Figure 11, the peaks of pressure, in the intermeshing zones, decreases
with the power law index. It is in those clearance and intermeshing zones
that the high shear rate leads to significant change of viscosity in the non-
Newtonian model. Differences in the pressure fields only appear in those
areas that are quite small in comparison with the whole flow domain. In
other words, the global pressure drop between the inlet and the outlet section
is not significantly affected by the rheological model. As the use of a Bird-
Carreau law model significantly increases the cost of the calculation without
any major difference in the flow features, it seems attractive to use only a
Newtonian model with a constant viscosity of 313Pas. Such a conclusion is



only valid for a relatively moderate flow rate and has to be revisited if we
dramatically change the operating conditions.

Effect of the stagger angle and disc width on the mixing

quality and mixing efficiency

Firstly, let us compare the flow patterns in terms of pressure for all kneading
blocks. The pump element drags the fluid across the mixing section from
the inlet, the pressure exhibits a progressive increase of 5 bars. On the other
hand, the reverse element tends to create a flow in the opposite direction and
a pressure decrease of 10 bars is now observed. Finally, for the same number
of discs, the neutral element exhibits the smallest pressure drop of 2.5 bars.
Increasing the number of discs for the same length only generates a slightly
higher pressure drop of 3 bars, due to the higher number of reorientations of
the flow.

In the mixing section of the screw, the shear rate distribution can be es-
timated by sampling some particles. Distribution with moderate, high and
very high shear rate are given in Figure 12. Typically, all mixing elements
provide similar distributions. However, in term of maximum shear rate expe-
rienced by the particles, we observe in Table 4 that the neutral element with
10 discs is sharing the best performance with the reverse element. Such an
observation can be directly linked to the ability to perform dispersive mixing.

The next information that we extract from our calculations is the time
distribution given in the Figure 13 and in Table 4. We present the distri-
butions of the time required by the particle to reach the planes α, β and γ
respectively. Differences progressively appear when we enter deeper in the
mixing section from the plane α to the plane γ. The flow in the opposite
direction created by the reverse geometry makes more difficult the crossing
of the mixing section by the particles that need a larger time to reach the last
plane γ. Surprisingly, we do not observe any major difference between the
pump and neutral element with five discs. Finally, a larger number of discs
strongly increases the residence time by a larger number of reorientations of
the flow. For the same length, the neutral element with 10 discs generates
the longest residence time.

The most critical distributions for the distributive efficiency are the total
shear distributions given in Figure 14. To reach a high total shear, a particle
must have a high residence time or exhibit a very high shear rate. Com-
bination of both effects is obviously the best case obtained by the reverse



geometry for the same number of discs. However, increasing the number of
discs improves the situation by increasing the residence time.

We conclude that the reverse geometry and a larger number of discs
increase the mixing quality. Nevertheless, if we take into account the energy
the best compromise is obtained by the neutral element with five discs as
predicted by the global stretching efficiency given in Table 4. The final
selection of the best candidate will be guided by energetic considerations
and mechanical constraints as the total length of the screws.

Finally, good quality of distributive and dispersive mixing is not achieved
if we do not obtain homogeneous distributions of the properties of the final
compound. Typically, large distribution of total shear or residence time is the
sign of inhomogeneities and has to be avoided. In other words, we wish that
all matter exits the mixing section with the same prescribed residence time,
total shear and maximum shear stress. Unfortunately, the element providing
the highest total shear also exhibits the largest distributions. In contrary,
the pump and neutral element provide a more homogeneous product (Table
5).

Conclusion

The mixing of different compounds is a key step of extrusion processes. The
quality of the final product obtained with a twin-extruder depends mainly
on the dispersive and distributive mixing generated by the kneading blocks.
We have used here the numerical simulation to understand the impact of
two classical geometrical parameters on the mixing: the stagger angle and
the number of discs. From our calculations, we are able to rank four typical
kneading blocks. Our conclusions from the numerical experiences appear to
be in very good agreement with global classical interpretation of the flow [37].
It is also in line with guidelines found in reference books. Extension of such
a sensibility analysis to other geometrical parameters is straightforward.

We observe that the finite element simulations are an efficient tool to un-
derstand complex mixing features and allows us to extract global and local
information. Such data are almost inaccessible by the experimental approach.
Finally, we demonstrate that several useful approximations for the rheologi-
cal model and for the mesh design can be introduced. Those approximations
are essential to keep the numerical cost of three dimensional transient cal-
culation reasonable. It is also mandatory to check that physical relevance
and suitable accuracy are still obtained in the simulation. Such a compro-
mise is still a difficult task even if you are using a certified numerical software.
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Figure 1: Viscosity of the polyamide vs. shear rate (⋄) at a temperature
of 250◦C. Experimental data and fitted curve result obtained with Bird-
Carreau law (solid line).
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Figure 2: Geometry of the barrel and position of the line AA’ in the flow.
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Figure 3: Cross section of one disc of a kneading block



Figure 4: Superposition of the meshes of the barrel and the screws.



0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

5

Fine

Medium

Coarse

5040302010

5

4

3

2

1

0

P
re

ss
u
re

(P
a
)

z distance (mm)

Figure 5: Comparison of the pressure profiles along the line AA’ defined in
the Figure 2 for three meshes for the neutral element with five discs.
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Figure 6: The enriched mini-element (Q++
1 ), the mini-element (Q+

1 ), the
linear element (Q1) and the constant element (Q0). The black dots mean
that all components of a vector field are considered as degree of freedom.
The white dots mean that only a normal scalar degree of freedom is defined
for the considered field.
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Figure 7: Comparison of the pressure profiles along the line AA’ defined
in the Figure 2 for three interpolations with the same mesh for the neutral
element with five discs.
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Figure 8: Analysis of the mixing by launching particles from the inlet of
the mixing section. Distributions of residence time and total shear are thus
obtained along three planes α, β and γ. Several cases are illustrated : the
particles stick to the screws (Γ1), the particles reach the end of the mixing
zone in crossing each plane (Γ2), the particles cut several times the same
plane (Γ3).
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Figure 9: Parameters used to characterize the residence time distribution.



Type of kneading block Face View Side view

Neutral element
10 discs
ǫ = 90◦

length = 40mm

(keb 90/10/40)

Neutral element
5 discs
ǫ = 90◦

length = 40mm

(keb 90/5/40)

Pump element
5 discs
ǫ = 45◦

length = 40mm

(keb 45/5/40)

Reverse element
5 discs

ǫ = −45◦

length = 40mm

(keb -45/5/40)

Figure 10: Configurations of kneading blocks investigated.
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Figure 11: Comparison of the pressure profiles along the line AA’ defined in
the Figure 2 for three values of the power law index for the neutral element
with five discs.
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Figure 12: Percentage of fluid mass with a shear rate larger than 50s−1,
150s−1 and 300s−1 respectively.



Evolution of the time distribution T throughout the mixing zone
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Figure 13: Residence time distributions T in the plane α, β and γ for the
different kneading blocks.



Evolution of the total shear distribution Γ throughout the mixing zone
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Figure 14: Total shear distributions Γ in the plane α, β and γ for the different
kneading blocks.



Dimensions of the barrel (mm)
Inlet Channel 20.0 Clearance size 0.37
Mixing Section 40.0 Centerline CL 33.4
Outlet Channel 40.0 Barrel Radius 20.15

Point A x = 16.7 , y = 8.0 , z = 10.0
Point A′ x = 16.7 , y = 8.0 , z = 50.0

Table 1: Dimensions of the barrel



Geometrical parameters of the kneading block
Re 19.78mm Stagger Angle −45◦ or 45◦ or 90◦

Ri 12.90mm Number of disc 5 or 10
L 32.68mm Depth of the disc 8mm or 4mm

Number of tips 2 Total length 40mm

Table 2: Geometrical parameters of the kneading block.



Property Mathematical definition

Shear rate γ̇ =
√

2d : d

Total shear Γ =
t
∫

0

γ̇ (t′) dt′

Global stretching efficiency in exit section γ E =

∫

γ

ln

(

area
stretch
ratio

)

dS

∫

γ

Γ√
2

dS

Table 3: Definition of mixing indicators.



Property

Element

Neutral Neutral Pump Reverse
10 discs 5 discs 5 discs 5 discs
ǫ = 90◦ ǫ = 90◦ ǫ = 45◦ ǫ = −45◦

(keb 90/10/40) (keb 90/5/40) (keb 45/5/40) (keb -45/5/40)

Power(W) 602 548 582 618

Pressure drop (Pa)

∆p = pA′ − pA -3e5 -2.5e5 5e5 -10e5

Residence time(s)

T75

1.41
3.55
10.4

1.08
1.58
2.96

0.92
1.23
2.69

1.21
1.81
6.67

Plane α

Plane β

Plane γ

% of fluid mass
with shear rate

> 50s−1 79
29.6
7.9

80.7
22.2
6.5

78
30

5.97

69.7
22.2

6
> 150s−1

> 300s−1

50th percentile of the
maximum of the 706 492 431 841

shear rate in plane γ (s−1)

Total shear(-)

Γ75

242
413
716

148
224
402

113
173
377

228
389
629

Plane α

Plane β

Plane γ

Global stretching efficiency
in plane γ 4.9e-3 1.3e-2 5.8e-3 5.6e-3

Table 4: Characteristic values for all configurations of kneading blocks.



Property

Element

Neutral Neutral Pump Reverse
10 discs 5 discs 5 discs 5 discs
ǫ = 90◦ ǫ = 90◦ ǫ = 45◦ ǫ = −45◦

(keb 90/10/40) (keb 90/5/40) (keb 45/5/40) (keb -45/5/40)

Residence time (s)

Tmin 0.55 0.50 0.36 0.49
∆T 9.85 2.46 2.33 6.18

Total shear(-)

Γmin 57 47 36 36
∆Γ 659 355 341 593

Table 5: Analysis of inhomogeneities in term of distribution at the exit sec-
tion γ.


