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Abstract

A one-dimensional water column model using the Mellor and Yamada level 2.5
parameterisation of vertical turbulent fluxes is presented. The model equations are
discretized with a mixed finite element scheme. Details of the finite element discrete
equations are given and adaptive mesh refinement strategies are presented. The
refinement criterion is an “a posteriori” error estimator based on stratification,
shear and distance to surface. The model performances are assessed by studying the
stress driven penetration of a turbulent layer into a stratified fluid. This example
illustrates the ability of the presented model to follow some internal structures of
the flow and paves the way for truly generalised vertical coordinates.
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1 Introduction

In many marine modelling applications, a reliable parameterisation of eddy
coefficients is needed to accurately represent vertical turbulent fluxes. Nowa-
days, most ocean models use one- or two-equation turbulence closures. The
most popular are the Mellor and Yamada (1982) level 2.5 model and the k− ε
model (e.g. Rodi, 1987). A detailed comparison of both models has been per-
formed by Burchard et al. (1998) and Burchard and Petersen (1999). Beside
these two models, other two-equation models exist, like the k−ω model, intro-
duced by Wilcox (1988) and extended to buoyancy affected flows by Umlauf
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et al. (2003). Although all three models have very similar physical parameter-
isations (Umlauf and Burchard, 2003), only the model of Mellor and Yamada
took stratification into account since its inception. As a result, it has been
used frequently in atmospheric and oceanic applications (e.g. Yamada, 1983;
Blumberg and Mellor, 1987; Rosati and Miyakoda, 1988; Timmermann and
Beckmann, 2004).

The numerical discretization of such turbulence closures is usually accom-
plished in finite differences, on a staggered or non-staggered grid. Details of
the discretization of the turbulence energy equations, on different finite dif-
ference grids and with various time discretization have been given in Davies
and Jones (1991) and Burchard (2002a). For problems in which the shape of
eddy viscosity is constant in time, although its magnitude may change, func-
tional approaches have been suggested (Davies, 1987). More recently, Bur-
chard (2002b) proposed an energy-conserving discretization of the shear and
production terms for the turbulent kinetic energy. The issue of non-uniform
adaptive vertical grids has been studied by Burchard and Beckers (2004). They
proposed a finite difference scheme using a grid that can follow the relevant
internal structures of the flow.

Common to all the previous works is the use of the finite difference method to
discretize the hydrodynamic equations. However, over recent years other nu-
merical methods have been contemplated for simulating oceanic and coastal
flows. These are mainly the finite element (e.g. Lynch et al., 1996; Le Roux
et al., 2000; Danilov et al., 2004; Ford et al., 2004a,b; Hanert et al., 2005),
the finite volume (e.g. Casulli and Walters, 2000; Chen et al., 2003) and the
spectral element (e.g. Iskandarani et al., 1995, 2003) methods. Their principal
advantage is that they allow the use of unstructured meshes. Such meshes
have proved to be particularly well suited to represent localized phenomena
and complex geometries (Legrand et al., 2000). They also provide a natural
framework to perform dynamical mesh adaptation (Piggot et al., 2005). This
seems to be a very promising tool for use in 3D ocean modelling as it permits
to adapt the mesh in both space and time. Therefore, an optimal use of the
computational power is always possible as the mesh “follows” the dynamically
active regions. Until now, most of the work on unstructured mesh ocean mod-
elling has focused on horizontal processes while little interest has been paid
to the discretization of vertical ones.

The purpose of this paper is to investigate the ability of the finite element
method, combined with adaptive mesh procedures, to discretize vertical oceanic
processes. As a test problem, we simulate the stress-driven deepening of the
ocean mixed layer by using Mellor-Yamada level 2.5 tubulence closure scheme.
This phenomenon exhibits a transient dynamics and is therefore well suited
to assess mesh adaptivity methods. All simulations have been performed with
a MATLAB software, which is freely available at the following address:
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http://www.mema.ucl.ac.be/∼hanert/FEMY25.html. This is a way to pro-
vide all numerical and technical tricks required to obtain an accurate solution
of this non-linear problem. While the MATLAB programming language is
well suited for educational purposes, it is not the most efficient for heavy
computations. In that respect, the finite difference General Ocean Turbulence
Model (GOTM, http://www.gotm.net) provides a comprehensive package of
efficient turbulence models.

2 A simple water column model

For some very idealized situations where all variables are horizontally homo-
geneous, the following one-dimensional water column model may be used:

∂u

∂t
+ fez × u =

∂

∂z

(
Ku

∂u

∂z

)
, (1)

∂b

∂t
=

∂

∂z

(
Kb

∂b

∂z

)
, (2)

where f is the Coriolis factor, z is the vertical coordinate (increasing upward),
ez is the vertical unit vector, Ku is the eddy viscosity and Kb is the eddy
diffusivity. The unknowns are the horizontal velocity u = (u, v) and the buoy-
ancy b = −g(ρ − ρ0)/ρ0, where g is the gravitational acceleration, ρ is the
water density and ρ0 is a reference value of the density. The model domain is
a water column that goes from z = −h to the sea surface (z = 0). The initial
and boundary conditions depend on the problem under consideration and will
be specified later.

In Eqs. (1) and (2), eddy coefficients are parameterised with the Mellor-
Yamada level 2.5 turbulence closure:

Ku = lqSu,

Kb = lqSb,

where l and q are, respectively, an appropriate length scale, termed the tur-
bulence macroscale, and a velocity scale, obtained from the turbulent kinetic
energy k = q2/2. The stability functions Su and Sb are dimensionless functions
of GM and GH :

(GM , GH) =
l2

q2
(M2,−N 2),
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where M and N are the Prandtl and Brunt-Väisälä frequencies, i.e.,

(M2, N 2) =



∥∥∥∥∥
∂u

∂z

∥∥∥∥∥

2

,
∂b

∂z


 .

The usual Eulerian norm is denoted ‖.‖.

The velocity scale and length scales obey the following equations:

∂q2

∂t
= 2KuM

2 − 2KbN
2 − 2q3

16.6 l
+

∂

∂z

(
Kq

∂q2

∂z

)
, (3)

∂q2l

∂t
= 1.8 lKuM

2 − 1.8 lKbN
2 − Wq3

16.6
+

∂

∂z

(
Kq

∂q2l

∂z

)
. (4)

The eddy diffusivity of the turbulence model equations is Kq = 0.2 lq. The
physical meaning of the various terms in Eq. (3) is the following: KuM

2 is the
shear production of turbulent kinetic energy (TKE), KbN

2 is the TKE con-
version into potential energy and q3/(16.6 l) represents the viscous dissipation
of TKE.

To compute Ku and Kb, we use the stability functions designed by Galperin
et al. (1988):

Su =
0.393− 3.085GH

1− 40.803GH + 212.469G2
H

,

Sb =
0.494

1− 34.676GH

.

In addition, the following constraints are necessary:

l2 ≤ 0.28q2

max(0, N 2)
, (5)

−0.28 ≤ GH ≤ 0.0233.

All the empirical parameters used in the turbulence closure model are moti-
vated by Mellor and Yamada (1974), Mellor and Yamada (1982) and Galperin
et al. (1988).

In addition, the Mellor-Yamada model requires the introduction of a wall
proximity function, W , to be able to represent the logarithmic layer near
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boundaries. In the standard implementation of the model, this function is
defined as

W = 1 +
1.33 l2

(κL)2
,

where κ ' 0.4 is the von Karman constant and L is a function of the distance to
the seabed, db, and of the distance to the sea surface, ds: L = dsdb/(ds+db). It
should be noted that when the distance to the sea bottom is assumed infinite,
L = ds = |z|. In that case, the wall proximity function may be written as
W = 1 + 1.33 l2

(κz)2 . Other wall proximity functions have also been suggested

(Burchard et al., 1998; Blumberg et al., 1992).

Beside the necessity to use a wall proximity function, another shortcoming of
the Mellor-Yamada model is that the empirical coefficients for the buoyancy
and for the shear production terms are the same. As a result, the turbulence
closure does not take into account the limiting effects of stable stratification on
the size of turbulent eddies (Galperin et al., 1988). To overcome this issue, the
length scale limitation (5) has been suggested. Another remedy is to properly
calibrate the buoyancy production term. In that case, the model works well
without the length scale limitation (Burchard, 2001). Burchard and Bolding
(2001) have also reported that the maximum value of the Richardson number,
Ri = 0.2, that can be reached with the stability functions of Galperin et al.
(1988) is too small. As a result, the model does not reach high turbulent
Prandtl numbers. The turbulence closure of Mellor-Yamada has been improved
by several authors in recent years (e.g. Kantha and Clayson, 1994; Canuto
et al., 2001).

3 Numerical scheme

3.1 Finite element spatial discretization

The derivation of the finite element discretization is based on a variational
or weak formulation (Ciarlet, 1978; Johnson, 1990) of the model equations
(1)-(4). If the model domain is Ω = [−h, 0], the weak formulation of Eq. (1)
reads:

0∫

−h

∂u

∂t
· û dz +

0∫

−h
f(ez × u) · û dz=

0∫

−h

∂

∂z

(
Ku

∂u

∂z

)
· û dz
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=−
0∫

−h
Ku

∂u

∂z
· ∂û

∂z
dz +

[
Ku

∂u

∂z
· û
]z=0

z=−h
,(6)

where û is an arbitrary weighting function that belongs to the Sobolev space

H1(Ω) and

(
ρKu

∂u

∂z
· û
)

z=zk

(where zk = −h, 0) can be viewed as a momen-

tum flux at the bottom and at the surface respectively. It is readily seen that
Neumann boundary conditions can be naturally enforced in the weak formula-
tion thanks to the integration by parts. The weak formulation of Eqs. (2)-(4)
is derived in the same way.

Afterwards, one has to build a discrete approximation of the exact solution
u. The discrete solution, denoted uh, is associated with a partition of the
computational domain into NE non-overlapping elements or intervals Ωe (1 ≤
e ≤ NE):

Ω̄ =
NE⋃

e=1

Ω̄e and Ωe ∩ Ωf = ∅ for e 6= f,

where Ω̄ is the closure of Ω. The discrete solution can be expressed in terms
of basis functions φi:

uh(t, z) =
N∑

i=1

ui(t)φi(z), (7)

where ui are the unknown velocity nodal values. The number of velocity de-
grees of freedom is denoted N . Basis functions are low order polynomials
(constant, linear, quadratic,...) equal to one on a mesh node and equal to zero
on all the other nodes. They are therefore referred to as piecewise polynomials.
For a given mesh, one may build a number of finite element schemes simply
by changing the nodes distribution on each element. Fig. 1 shows a 1D mesh
where there are either 1, 2, 3 or 4 nodes per element. The corresponding basis
functions are constant, linear, quadratic and cubic respectively.

The nodal values are found by applying the Galerkin procedure, which amounts
to replace u by uh and û by (φi, 0) or (0, φi) (1 ≤ i ≤ N) in (6). Then, one
obtains the following set of discrete equations:

0∫

−h

∂uh

∂t
φi dz − f

0∫

−h
vhφi dz=−

0∫

−h
Ku

∂uh

∂z

∂φi
∂z

dz +

[
Ku

∂uh

∂z
φi

]z=0

z=−h
, (8)
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Figure 1. Example of a 1D finite element mesh with different inter-
polations using, from the left to the right, constant, linear, quadratic
and cubic basis functions. The model variables are computed on mesh
nodes (represented by “•”). For each mesh, the basis function asso-
ciated with node i is represented. The 3 elements of the mesh are
denoted Ωe−1, Ωe and Ωe+1.

0∫

−h

∂vh

∂t
φi dz + f

0∫

−h
uhφi dz=−

0∫

−h
Ku

∂vh

∂z

∂φi
∂z

dz +

[
Ku

∂vh

∂z
φi

]z=0

z=−h
. (9)

It should be noted that more sophisticated techniques, like the Discontinuous
Galerkin method (Johnson, 1990; Cockburn et al., 2000), could also be used
to derive the discrete equations in order to improve the accuracy and the
robustness of the numerical scheme. In particular, this technique is mandatory
for a piecewise constant approximation. By using (7), one may rewrite Eqs.
(8)-(9) in matrix form:

Mij(
duj
dt
− fvj) = Dijuj,

Mij(
dvj
dt

+ fuj) = Dijvj,

where Mij =

0∫

−h
φiφj dz is the mass matrix and Dij = −

0∫

−h
Ku

∂φi
∂z

∂φj
∂z

dz

is the stiffness matrix. These integrals are easily computed as they only in-
volve products of low order polynomials or products of their derivatives. The
derivation of the discrete formulation of Eqs. (2)-(4) is similar, although some
integrals may be more difficult to compute because of the non-linear terms in
the turbulent variables equations.
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In 1D, it is well known that finite element discrete equations are very close
to those obtained with the finite difference method. Indeed, a finite element
scheme using nth order basis functions is similar to a (n + 1)th order finite
difference scheme. It is possible to obtain exactly the same discrete equations
by using a Dirac delta as weighting function in formulation (6). This amounts
to replace û by (δ(x − xi), 0) or (0, δ(x − xi)) (1 ≤ i ≤ N). That method
is usually referred to as collocation. In 1D, the main advantage of the finite
element method is that it may accommodate uniform and non-uniform grids
without any modifications. The accuracy of the method may also be easily
changed by increasing or decreasing the order of the basis functions.

In this work, we have used piecewise linear basis functions to approximate u,
v, b, q2 and q2l. Therefore, the slope of the velocity and buoyancy, as well
as the Prandtl and Brunt-Väisälä frequencies, are piecewise constant. The
eddy coefficients are computed on the vertices and are linearly interpolated
on each element. Theoretically, the numerical scheme is second-order accurate
in space.

3.2 Temporal discretization

Eqs. (1) - (4) are discretized in time by using the following scheme:

un+1 − un

∆t
=−fez ×

un+1 + un

2
+

∂

∂z

(
Kn
u

∂un+1

∂z

)
, (10)

bn+1 − bn
∆t

=
∂

∂z

(
Kn
b

∂bn+1

∂z

)
, (11)

(q2)n+1 − (q2)n

∆t
= 2Kn

u (Mn)2 − 2Kn
b (Nn)2

− 2[(q2)n]5/2

16.6 (q2l)n
+

∂

∂z

(
Kn
q

∂(q2)n+1

∂z

)
, (12)

(q2l)n+1 − (q2l)n

∆t
= 1.8 lnKn

u (Mn)2 − 1.8 lnKn
b (Nn)2

−W
n[(q2)n]3/2

16.6
+

∂

∂z

(
Kn
q

∂(q2)n+1

∂z

)
. (13)

All the non-linear terms are discretized explicitely in order to avoid solving a
non-linear system. For the sake of clarity, we give in Appendix the expression
of Eqs. (12) and (13) where Kn

u , Kn
b , Kn

q , Mn, Nn and W n have been expressed
in terms of un, bn, (q2)n and (q2l)n.

When discretizing Eqs. (3) and (4) in time, use is often made of the pseudo-
implicit discretization of Patankar (1980) in order to avoid generating negative
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values of q2 and q2l (e.g. Deleersnijder and Luyten, 1994; Burchard and Beck-
ers, 2004). This scheme however still requires to impose that l is bigger than
a minimal value as it appears in the denominator of one of the terms in Eq.
(3). However, in our implementation, better results were obtained by strongly
imposing the following constraints:

q2 > q2
min and q2l > (q2l)min

at the end of each time step rather than using a Patankar (1980) scheme. We
therefore introduce q2

min and (q2l)min, the minimal values of q2 and q2l.

4 Numerical example: The Kato-Philips test case

The stress-driven penetration of a turbulent layer into a stratified fluid initially
at rest is a classical test case to assess turbulence closure schemes in the
context of marine modelling (e.g. Deleersnijder and Luyten, 1994; Burchard
et al., 1998; Axell and Liungman, 2001; Burchard and Beckers, 2004). This
experiment was first carried out in laboratory by Kato and Phillips (1969)
with a non-rotating tank of fluid. The water column is considered sufficiently
deep so that the only source of turbulence is the wind stress. Thus, the seabed
has no influence on the flow and the wall proximity function, W , may be
assumed to depend only on the distance to the surface.

The following initial and boundary conditions are used:

[u, b]t=0 =
[
0, N 2

0 z
]
,

[
q2, q2l

]
t=0

=
[
q2
min, (q

2l)min
]
,

[
Ku

∂u

∂z
,Kb

∂b

∂z

]

z=0

= [‖u∗‖u∗, 0] ,

[
q2, q2l

]
z=0

=
[
6.5074u2

∗, 0
]
,

where N0 is the initial Brunt-Väisälä frequency and u∗ is the so-called surface
friction velocity. The minimal values of q2 and q2l are set to q2

min = 5× 10−7

m2s−2 and (q2l)min = 10−5 m3s−2, respectively. At the bottom of the compu-
tational domain, homogeneous Neumann boundary conditions are enforced.
As mentioned before, these conditions have no impact on the flow as the com-
putational domain is supposed to be sufficiently deep. Following Deleersnijder
and Luyten (1994), we transform this laboratory experiment to oceanic di-
mensions by setting ‖u∗‖ = 10−2 ms−1 and N0 = 10−2 s−1. The Coriolis factor
is set to zero.
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Figure 2. L2-error on the discrete buoyancy (◦) and velocity (×) fields
with different uniform meshes. The convergence rate is quadratic in
each case.

The convergence rate of the numerical scheme may be evaluated by comput-
ing the L2-error on the numerical solution with respect to a high resolution
solution computed on a mesh of 400 elements. The error on the velocity and
buoyancy fields are defined as follows:

eu =

√√√√√
0∫

−h
(ur − uh)2 + (vr − vh)2 dz

√√√√√
0∫

−h
(ur)2 + (vr)2 dz

, eb =

√√√√√
0∫

−h
(br − bh)2 dz

√√√√√
0∫

−h
(br)2 dz

,

where the superscript r denotes the high-resolution reference solution. Both
error measures are represented on Fig. 2 when using uniform meshes of 10, 20
and 40 elements and a time step of 60 s. As expected, quadratic convergence
rates are observed.

For the case f = 0, Price (1979) suggested an analytical solution for the
evolution of the mixed-layer depth Dm based on a constant bulk Richardson
number:

Dm(t) = 1.05‖u∗‖N−1/2
0 t1/2.
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Figure 3. Simulated mixed layer deepening compared to the algebraic
solution of Price (1979). The numerical solutions are obtained by
taking TKE threshold values of 10−4 m2s−2 (· · ·) and 10−5 m2s−2

(−). The mesh is uniform and composed of 40 elements.

Fig. 3 shows the evolution of the mixed layer during 30 hours of simulation.
The computational domain is 40 meters deep, the time step is set to 60 s, the
mesh is uniform and composed of 40 elements. The analytical solution of Price
(1979) is compared to numerical results obtained by defining the mixed layer
depth as the depth at which the discrete TKE reaches values of 10−4 and 10−5

m2s−2. Decreasing the TKE threshold value increases the accuracy. However,
for threshold values smaller than 10−5 m2s−2, the computed turbulent layer
depth becomes noisy. Fig. 4 shows the profiles of buoyancy, velocity norm,
TKE and mixing coefficients at the end of the simulation. These results are
totally in line with those obtained by Deleersnijder and Luyten (1994) with a
finite difference model.

5 Adaptive strategies

For applications like the deepening of the mixed layer under the influence of
a wind stress, it is readily seen that better results could be obtained with
non-uniform resolution. Indeed, the velocity and buoyancy solutions are quite
smooth everywhere except near the surface and near the pycnocline (transi-
tion between the mixed and stratified layers). In these regions, the discrete
solutions exhibit stronger gradients. However, since the depth of the mixed
layer continuously increases, the resolution should also change accordingly.
This can be achieved by using adaptive techniques. Such methods allow to
change the resolution dynamically and fit very nicely within the finite element

11



−4 −3 −2 −1 0
x 10−3

−40

−35

−30

−25

−20

−15

−10

−5

0

Buoyancy [ms−2]

D
ep

th
 [m

]
0 0.2 0.4 0.6

−40

−35

−30

−25

−20

−15

−10

−5

0

Velocity norm [ms−1]

D
ep

th
 [m

]
0 2 4 6

x 10−4

−40

−35

−30

−25

−20

−15

−10

−5

0

TKE (q2/2) [m2s−2]

D
ep

th
 [m

]

0 0.01 0.02 0.03
−40

−35

−30

−25

−20

−15

−10

−5

0

Ku and Kb [m2s−1]
D

ep
th

 [m
]

Figure 4. Profiles of buoyancy, velocity norm, TKE and mixing coef-
ficients Ku (−) and Kb (-·-) after 30 hours for the simulation of the
Kato-Phillips experiment. The mesh is uniform and composed of 40
elements.

formalism.

The basic idea behind adaptivity is to compute, for a given discrete solution,
an interpolation error. This can be done by using either an “a priori” or an
“a posteriori” estimator of the discretization error. For instance, an “a priori”
estimator may be based on the convergence order of the numerical method and
an “a posteriori” estimator may be based on the knowledge of the physical
phenomenon. Once the interpolation error is computed, a new mesh is built
in order to evenly distribute the error on each element. In simple words, the
resolution is increased where the error is large and decreased where the error
is small. Our point here is not to review all the theory on which adaptive
methods stand. Instead, we refer to the paper by Piggot et al. (2005) and the
references therein for more information.

In this work, we present a simple example of adaptivity based on an heuristic
“a posteriori” error measure. Following Burchard and Beckers (2004), we define
the error on the numerical solution as:

e= eb + eu + ed + ek
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= cb
max(N 2 −N 2

0 , 0)

∆b
+ cu

M

∆u
+ cd

1

d+ d0

+
ck
dmax

, (14)

where ∆b is a reference buoyancy difference, ∆u is a reference velocity differ-
ence, d is the distance to the surface, d0 is a variable that permits to tune the
near-surface grid zooming and dmax is the depth of the domain. The coefficients
cb, cu, cd and ck allow to set the relative importance of the four components of
the error. The error is expressed in meters. With this expression for e, one may
increase the resolution in region of strong shear, strong stratification and near
the surface. The last component, ek, is a background error that prevents too
coarse resolution in regions with no shear, no stratification and far away from
the surface. Again, we have to stress that this error estimator is very heuris-
tic and only based on our knowledge of the physical phenomenon. Details on
more rigorous “a posteriori” error estimates may be found in Strouboulis and
Oden (1990), Cockburn and Gremaud (1996), Ainsworth and Oden (1997),
Süli (1999) and Larson and Barth (2000).

Once an error measure has been derived, the nodes may be redistributed
accordingly. As the accuracy of the finite element method depends both on the
functional and geometrical discretizations, several strategies exist to uniformly
distribute the interpolation error. One is to locally increase or decrease the
degree of the finite element approximation. In 1D, this is quite straightforward
as elements have at most one node in common. Reduction of the polynomial
degree may be useful not only to reduce the accuracy of the solution, but also
to eliminate spurious oscillations in the solution when non smooth fields are
present. Such an adaptive procedure is generally refered to as p-adaptivity.
It is also possible to modify the numerical scheme accuracy by changing the
geometrical discretization. This might be achieved by either moving the nodes
location or by locally changing the mesh and its connectivity. The former
method, refered to as r-adaptivity, does not change the topology and keeps
the number of elements constant while the latter, refered to as h-adaptivity,
allows to add and remove elements. When the number of elements remains
the same, the movement of the grid may be taken into account by adding an
advection term in the equations. The goal of this term is to counterbalance the
movement of the mesh nodes and the advection velocity is simply the opposite
of the mesh velocity. When the number of elements changes, mesh to mesh
interpolation is required. It should be noted that it is possible to combine
geometrical and functional modifications. in that case, the method is called
hp-adaptive. Some authors also combine h and r methods to take advantage
of both approaches (Piggot et al., 2005).

In this work, we have used only r and h adaptive methods. The r-adaptive
procedure requires the introduction of a transport term in the discrete equa-
tions to compensate the motion of the grid. If the grid nodes are denoted
zi(t) (1 ≤ i ≤ NE + 1), the vertical velocity at which a grid node moves is:
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w̃i(t) = dzi
dt

. A continuous velocity field w̃h may then be built by linearly in-
terpolating between vertical velocity nodal values. As an illustration of the
modified equations, let us present the equation for the first component of the
velocity:

0∫

−h

∂uh

∂t
φi dz +

0∫

−h
w̃h

∂uh

∂z
φi dz − f

0∫

−h
vhφi dz

= −
0∫

−h
Ku

∂uh

∂z

∂φi
∂z

dz + (τh0,x − τh−h,x).

In matrix form, this yields:

Mij(
duj
dt
− fvj) + Aijuj = Dijuj,

where Aij =

0∫

−h
w̃hφi

∂φj
∂z

dz. This advection operator is centered in space and

second order accurate if φi and φj are piecewise linear. This finite element
scheme is conservative but does not guarantee monotonicity.

An example of r-adaptation is shown on Fig. 5. We start with a mesh {xi, 1 ≤
i ≤ NE + 1} and a piecewise constant error field e(x). We compute the error
integral on each element: Ei =

∫ xi+1
xi

e(x) dx and on the whole domain: Etot =
∑NE
i=1 Ei. A new mesh {x∗i , 1 ≤ i ≤ NE + 1} is then built by imposing the

following constraints:

E∗i =

x∗i+1∫

x∗i

e(x) dx =
Etot
NE

,

x∗0 =x0,

x∗NE+1 =xNE+1.

This is achieved by successively moving the inner nodes of the initial mesh.
When using a h method, one has to fix a priori an admissible error level per
element: E∗. In that case, the new mesh is such that E∗i ≤ E∗. The number
of elements may then change during the adaptation process.

Fig. 6 shows the buoyancy field obtained with a r-adaptive scheme. The num-
ber of elements remains equal to 20 and the time step is set to 60 s. The
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Figure 5. Example of mesh adaptation. The initial mesh
{xi, 1 ≤ i ≤ 5} is composed of 4 elements of unit length (top).
By using an r-adaptive procedure, a new mesh {x∗i , 1 ≤ i ≤ 5} is
obtained where the error (e(x)) is evenly distributed (bottom).

following parameters have been used:

cb = 1.2 cu = 0.0 cd = 0.3 ck = 0.75

∆b = 0.002 ms−2 ∆u = 0.2 ms−1 d0 = 5.0 m dmax = 40.0 m

It can be seen that the mesh accurately follows the pycnocline. With an adap-
tive finite element scheme, the mixed layer deepens much more smoothly. This
is illustrated on Fig. 7 where the mesh is only composed of 20 elements instead
of 40 on Fig. 3. Fig. 8 shows the results obtained with a h-adaptive scheme.
The error level per element is set to E∗ = 0.12. The number of elements varies
from 16 at the beginning to 23 by the end of the simulation and the average
number of elements is 19.3. The time step is still equal to 60 s. To interpolate
the discrete fields from the old mesh to the new one, we have used cubic Her-
mite interpolation scheme. This method preserves monotonicity and the shape
of the data. It also has a slight smoothing effect that removes unwanted oscilla-
tions. The best accuracy could be obtained by using a least square projection
as it minimizes the L2-error between the initial and the interpolated fields.
However, this method is not monotonous and may lead to negative buoyancy
or velocity slope values.
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As pointed out by Burchard and Beckers (2004) and Piggot et al. (2005), adap-
tive vertical meshes are expected to play a more important part in 3D ocean
circulation models as they are able to achieve truly hybrid coordinates. Indeed,
the free surface and bathymetry can be easily resolved while, in the mid-ocean,
the mesh is free to follow isopycnals. Within our adaptive procedure, hybrid
vertical coordinates may be obtained by defining an error estimator that de-
pends on the distance to the surface, on the distance to the bottom and on
the stratification. One of the main advantages of this adaptive strategy is that
any “a priori” knowledge of the flow is needed to place vertical coordinates.
As the mesh evolves with the internal structure of the flow, coordinate sur-
faces are always located in an optimal way. This prevents coordinate surfaces
from vanishing when the flow becomes unstratified. It also prevents them from
intersecting the sea surface or the sea bottom.

Finally, it should be noted that, in a 3D finite element model using prismatic
elements, adjacent columns with a different number of elements may occur.
These can result from the use of a h-adaptive scheme to move vertical coordi-
nates or from bathymetry constraints. Indeed, changing the number of vertical
levels may be necessary to represent sharp bathymetry variations, like those
near the shelf-break (Deleersnijder and Beckers, 1992). In that case, the 3D
mesh becomes nonconforming and a suitable numerical treatment should be
performed.

6 Conclusions

We have built a simple finite element water column model using the Mellor
and Yamada level 2.5 turbulence closure. All variables are approximated by
piecewise linear polynomials and the eddy coefficients are piecewise constant.
The model has been assessed by simulating the deepening of a stress driven
turbulent layer into a stratified fluid. Results are comparable to those obtained
with finite difference models.

Some adaptive strategies have also been proposed. These permit to dynami-
cally change the mesh resolution. Hence, the physical phenomenon is always
represented in an optimal way. In this work, we have tested r- and h-adaptive
schemes. The former keeps the number of elements constant and requires the
addition of a transport term while the latter allows to change the number of
elements during the simulation at the cost of mesh to mesh interpolations.
Both methods have proved to be well suited to represent some internal struc-
tures of the flow, like the pycnocline position. Therefore, the finite element
method with adaptive meshes seems to be a very promising method to repre-
sent horizontal but also vertical oceanic processes. Compared to more tradi-
tional numerical methods, it offers a increased flexibility and efficiency, which
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Figure 6. Discrete buoyancy field after 0, 10, 20 and 30 hours (from
left to right) obtained with a r-adaptive scheme. The number of
elements remains constant during the whole simulation. Mesh nodes
are represented by “•”.

allows to resolve a broader range of length scales.
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A Expression of the model equations in terms of the primal vari-
ables

In this section, we present the expression of the model equations in terms of
the primal variables u, b, q2 and q2l. This permits to highlight the nonlinearity
of the Mellor-Yamada level 2.5 turbulence closure. The equations for q2 and
q2l may be written as:

(q2)n+1 − (q2)n

∆t
= 2Kn

u

∥∥∥∥∥
∂un

∂z

∥∥∥∥∥

2

− 2Kn
b

∂bn

∂z

− 2[(q2)n]5/2

16.6 (q2l)n
+

∂

∂z

(
Kn
q

∂(q2)n+1

∂z

)
, (A.1)

(q2l)n+1 − (q2l)n

∆t
= 1.8

(q2l)n

(q2)n
Kn
u

∥∥∥∥∥
∂un

∂z

∥∥∥∥∥

2

− 1.8
(q2l)n

(q2)n
Kn
b

∂bn

∂z

−
(

1 +
1.33[(q2l)n]2

(κz)2[(q2)n]2

)
[(q2)n]3/2

16.6
+

∂

∂z

(
Kn
q

∂(q2)n+1

∂z

)
.(A.2)
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Figure 8. Discrete buoyancy field after 0, 10, 20, 30 hours (from left to
right) obtained with a h-adaptive scheme. The meshes are composed
of 16, 18, 20, 23 elements respectively. The mean number of elements
over the whole simulation is 19.3. Mesh nodes are represented by “•”.

where

Kn
u =

(q2l)n√
(q2)n

0.393 + 3.085
[(q2l)n]2

[(q2)n]3
∂bn

∂z

1 + 40.083
[(q2l)n]2

[(q2)n]3
∂bn

∂z
+ 212.469

[(q2l)n]4

[(q2)n]6

(
∂bn

∂z

)2 ,

Kn
b =

(q2l)n√
(q2)n

0.494

1 + 34.676
[(q2l)n]2

[(q2)n]3
∂bn

∂z

,
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Kn
q = 0.2

(q2l)n√
(q2)n

.
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