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Belgium.
cAustralian Institute of Marine Science (AIMS), PMB No. 3, Townsville MC,

Queensland 4810 Australia

Abstract

Accuracy and mesh generation are key issues for the high-resolution hydrodynamic
modelling of the whole Great Barrier Reef. Our objective is to generate suitable
unstructured grids that can resolve topological and dynamical features like tidal
jets and recirculation eddies in the wake of islands. A new strategy is suggested to
refine the mesh in areas of interest taking into account the bathymetric field and an
approximated distance to islands and reefs. Such a distance is obtained by solving
an elliptic differential operator, with specific boundary conditions. Meshes produced
illustrate both the validity and the efficiency of the adaptive strategy. Selection of
refinement and geometrical parameters is discussed.
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1 Introduction

The Great Barrier Reef comprises over 2800 individual reefs spread over
2600 km length of the Australia’s north-eastern continental shelf, at the west-
ern margin of the Coral Sea. The topography is highly complex, with individual
reefs ranging in area from 0.01 to 100 km2. In some regions, the reefs form a
ribbon separated by narrow passages, and occupy approximately 90% of the
along-shelf length, thus providing a significant barrier to the water flow. In
other regions, the reefs are widely scattered, separated by wide passages and
occupy only about 10% of the along shelf length.

The complex topography, the wind, the tides, and the circulation in the ad-
joining Coral Sea strongly influence the circulation on the Great Barrier Reef
shelf. The latter plays a crucial role in a number of important biological pro-
cesses, including the flushing of Great Barrier Reef waters by Coral Sea waters
(Wolanski and Spagnol, 2000; Brinkman et al., 2002; Wolanski et al., 2003b),
the connectivity of reef populations as a result of the transport of water-
borne larvae between reefs (Wolanski et al., 1997; Armsworth and Bode, 1999;
Wolanski et al., 2004) or the transport of nutrients and pollutants by water
currents (Done, 1988; Bell and Elmetri, 1995; Wolanski et al., 1999). These
processes occur over a wide range of scales in both space and time, ranging
from meters to hundreds of kilometers, and from minutes to years (Wolanski
et al., 2003a).

Among the small scale processes that should be simulated by an eco-hydrodyna-
mic model of the Great Barrier Reef, there are tidal jets and eddies that occur
in the wake of islands. Their length scales range from about hundred meters to
a few kilometers. However, in situ measurements, satellite imagery and small-
scale numerical simulations show that those phenomena are mainly confined
to the neighbourhood of small reefs, islands and passages (Hamner and Hauri,
1981; Wolanski et al., 1988; Wolanski and Hamner, 1988; Deleersnijder et al.,
1992; Wolanski et al., 1996). The mesh resolution should therefore be increased
up to 10 or 100 m only in those regions while it can be much coarser (up to
a few kilometers) in a large fraction of the Great Barrier Reef.

Nowadays, the computational power required to model the whole Great Bar-
rier Reef with a 100 m uniform mesh is hardly affordable. For instance,
the state-of-the-art numerical model of the whole Great Barrier Reef has a
2 km × 2 km uniform grid (Brinkman et al., 2002). Therefore, the use of a
variable-resolution mesh seems to be a better strategy. This may be achieved
either with nested structured grids or with unstructured variable-resolution
meshes. The former have the advantage of retaining the inherent simplicity
of structured meshes while allowing variable resolution. However, the topog-
raphy of the Great Barrier Reef is so complex that the implementation of an
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efficient nested-grid model is likely to be extremely difficult.

On the other hand, the flexibility of unstructured meshes is such that they are
able to represent complex coastlines to a high degree of accuracy. In addition,
it is possible to build an unstructured mesh in which the ratio of the length
of largest elements to that of the smallest is of the order of 100. Therefore, as
unstructured mesh marine modelling now is a rapidly growing field of research
(Hanert et al., 2005; Walters, 2005; Pietrzak et al., 2005), it is conceivable to
develop an unstructured mesh numerical simulation tool of the whole Great
Barrier Reef allowing for high space resolution only in regions where this is
needed. The first step towards such a model is the construction of appropriate
unstructured meshes of the Great Barrier Reef. The original contribution of
this paper lies less in the development of an unstructured mesh generator
(see Appendix A) than in the design of high-resolution, graded unstructured
meshes suitable for the eco-hydrodynamic numerical simulation of the whole
Great Barrier Reef. Indeed, although most refinement strategies used in marine
numerical modelling are based on the bathymetry (Henry and Walters, 1993;
Foreman et al., 1995; Jarosz et al., 2005; Walters, 2005), none of them are able
to produce meshes suitable to accurately simulate the eddies and the jets in
the neighbourhood of the islands and reefs. Therefore, the guiding principle
of the refinement strategy presented in Section 2 consists in blending both
a requirement related to the depth of the water column and a requirement
related to the distance to the coast and reefs. As explained in Section 3, due
to the complexity of the geometry of the Great Barrier Reef, this distance is
estimated by solving an elliptic differential operator with specific boundary
condition. Then, three gauges of mesh quality are introduced in Section 4.
Finally, high-resolution unstructured meshes covering the 2.11 × 105 km2 of
the domain of interest are discussed in Section 5.

2 A refinement strategy for the Great Barrier Reef

When designing a mesh for numerical simulations within a particular domain,
a refinement strategy has to be defined to what the accuracy of the discrete
representation of the unknown fields is prescribed. For the Great Barrier Reef,
this target accuracy mainly depends on two major physical features: the small
recirculation eddies occurring in the wake of islands and reefs, and the tidal
waves propagating throughout the whole Great Barrier Reef.

Fundamental to the method of mesh adaptivity is the definition of a metric
which describes the relevant requirements for the size and the shape of the
elements of the mesh. The metric contains the full description of the mathe-
matical isomorphism linking the reference equilateral element and each phys-
ical element of the mesh. Since no relevant information to design anisotropic
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meshes can be easily obtained from the bathymetric field, we only focus on
isotropic elements. For those meshes, the metric is fully defined by a simple
scalar characteristic length: the target element size h(x). This function of the
position x provides the characteristic length of the element where x is lo-
cated. Obviously, it is an ideal goal that cannot be perfectly satisfied as other
constraints on the mesh generation procedure also apply.

In practice, this target size can be defined either a priori from the knowledge
of the physics of the problem or a posteriori with an error estimator from a
discrete solution computed on a given mesh. However, we do not intend to
present dynamically adjusted meshes throughout the course of the integration
in response to the solution of a given problem. Even if such an adaptive scheme
could appear very attractive, the global handling of a dynamically adaptive
calculation requires major modifications of the flow solver. Therefore, the re-
alistic challenge consists in the design of a graded unstructured mesh from the
eco-hydrodynamic physics of the Great Barrier Reef.

On the one hand, it is well known that the external inertia-gravity wave celerity

is approximatively given by
√

g D(x) where g and D(x) are the gravitational
acceleration and the water column depth, respectively. Our design strategy is
based on the assumption that an efficient mesh would exhibit a local element
size proportional to this tidal wave velocity (Henry and Walters, 1993). It con-
sists in adjusting the resolution in such a way that, over a given time interval,
external inertia gravity waves travel over a distance representing roughly the
same fraction of the mesh size. As a result, a coarse mesh can be used to
simulate the tide propagation in very deep areas and a finer discretisation is
required in shallower regions. Such a requirement can be expressed as follows:

h(x)

hmax

=

√
D(x)

Dmax

,

where hmax denotes the maximal prescribed element size and Dmax denotes
the maximal value of the depth field.

On the other hand, the size of recirculation eddies that develop downstream
of headlands or narrow passages is of the order of hundreds to thousands of
meters. Therefore, in the regions where those eddies are likely to occur, the
element size must be sufficiently small: hmin should range from 50 m to 100 m.

In order to take into account both requirements, we define a blending function

φ(d) based on the distance d(x) to the islands and reefs. This blending function
vanishes in the vicinity of the islands and reefs, is equal to one in remote areas
and connects both parts in a continuous and smooth way. With the help of
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such a blending function, the target element size is then defined as:

h(x) = hmin + φ
(
d(x)

)
√

D(x)

Dmax

(hmax − hmin). (1)

A major ingredient of the mesh design is the purely heuristic definition of the
blending function and the computation of the distance of each location to the
closest island or reef. As a typical blending function, we use a piecewise cubic
polynomial:

φ(d) =





0 0 ≤ d ≤ d0,

3
(

d−d0

d1−d0

)2
− 2

(
d−d0

d1−d0

)3
d0 ≤ d ≤ d1,

1 d1 ≤ d,

(2)

where d0 defines the length of a plateau along the islands in which the ele-
ment size is precribed to hmin. Similarly, the discretisation is fully prescribed
by the tidal wave velocity at a distance from the islands larger than d1. In
the transition area of width dt = d1 − d0, the refinement is obtained as a
compromise characterized by the blending function between the tidal wave
velocity requirement and the necessity to ensure a smooth transition between
both previous regions. The blending function and its geometrical parameters
are illustrated in Figure 1.

In order to illustrate this refinement strategy, let us restrict ourselves to the
simple example shown in Figure 2. A typical bathymetry profile has been
extracted from the data of the Great Barrier Reef. In one dimension, it is easy
to compute the distance to the coastline at the left-hand side and to the two
reefs that are located next to the other side. As can be seen in Figure 2, it is
then possible to define the element target size and to generate a Delaunay-like
triangulation along a strip domain. However, estimating the island distance

d(x) for a two-dimensional problem can be very expensive and difficult.

3 A boundary value problem for the island distance

In view of the complexity of the geometry of the Great Barrier Reef, we re-
ject the naive approach that consists in calculating Euclidian distances to
every island. Inspiration has been sought in the methods other Authors have
developed to tackle similar problems. Some of them had recourse to a phe-
nomenological boundary value problem to obtain an estimated distance to a
given boundary in a two-dimensional or three-dimensional domain (Assaker,
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1998; Assaker et al., 1997; Brasseur et al., 1996). Typically, such an issue oc-
curs in turbulent flow calculations involving a mixing length. According to
those models, the size of large turbulent eddies at a given location is directly
proportional to the distance to the wall. It is not surprising that the most
efficient techniques are based on elliptic partial differential equations. Unfor-
tunately, the most efficient partial differential equations which produce the
best approximation are often highly non-linear and their resolution would be
prohibitive such that we have developed our own two-step approach to obtain
an approximated island distance.

Firstly, we define an island and reef proximity indicator that we call the shore

proximity function σ(x) as the solution of the following linear boundary prob-
lem:





µ2
∇

2σ − σ + 1 = 0

σ = 0 on islands and reefs

n · ∇σ = 0 on other boundaries

(3)

where n is the outward unit normal to the boundary. The stiffness length µ
in front of the elliptic operator sets the length of the smooth transition from
σ = 0 along the islands and reefs to σ = 1 in remote areas. In addition,
the shore proximity function lies in the interval [0, 1] as is demonstrated in
Appendix B.

In a second step, we correlate the estimated island distance and this shore
proximity function. To motivate this, let us consider the shore proximity func-
tion and the island distance in an one-dimensional semi-infinite domain with
an island at the location x = 0. The distance coincide with the space coor-
dinate x and the analytical solution for the shore proximity problem can be
easily derived:

d(x) = x,

σ(x) = 1 − e−x/µ.

By directly extrapolating the correlation existing for this simplified geometry,
we may express the island distance in terms of the shore proximity function:

d(x) = −µ ln
(
1 − σ(x)

)
. (4)

Let us here mention that such an equation is an approximation of the true
connection between the shore proximity function and the island distance. The
latter can be easily evaluated.
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In order to better grasp the meaning of the estimated island distance, it is
possible to combine both Equations (3) and (4) to show that d is in fact the
solution of the following non-linear elliptic problem:





µ ∇
2d − ∇d · ∇d − 1 = 0

d = 0 on islands and reefs

n · ∇d = 0 on other boundaries

(5)

The above problem again exhibits a second-order elliptic operator and a non-
linear dissipative term with the suitable boundary conditions. It is impor-
tant to note that the stiffness length allows us to monitor the impact of the
smoothing effect of the Laplacian term. In a simple intuitive statement, it
can be stated that such a parameter can be viewed as the result of how the
requirement of smoothness and the requirement of accuracy is balanced in the
estimated island distance. Finally, our two steps approach allows to substi-
tute the resolution of the non-linear boundary value problem (5) by the linear
one (3).

The stiffness length µ influences the estimated island distance. On the one
hand, a small stiffness length better incorporates small-scale geometrical fea-
tures in the neighbourhood of the islands and reefs, but the accuracy of the
distance everywhere else is quite poor. In other words, the estimated distance
tends very quickly to a constant limit value. On the other hand, a large stiff-
ness length prevents this but smooths all small geometrical features along
the islands and reefs. All the tests we conducted suggest that selecting 4 km
as the value of the stiffness length offers a satisfactory compromise for most
applications. Therefore, the estimated island distance is calculated with this
value.

In Figure 3, the Great Barrier Reef domain is divided into three regions as a
function of the calculated island distance d in kilometers: [0, 3], [3, 30], [30,∞].
Typically, we identify the islands and the reefs neighbourhood, the transition
part and the remote region as the three parts of the support of the blending
function defined in Equation (2). As a result, the geometrical parameters for
the blending function are defined as follows: d0 = 3 km and d1 = 30 km.
Finally, note that we decide not to refine along the Australian coastline and
the shelfbreak, in this calculation.
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4 Gauges to evaluate the mesh quality for the Great Barrier Reef

The role of the mesh generator is to create the grid that provides the best
numerical accuracy for a given number of degrees of freedoms. Basically, the
target element size requirement has to be satisfied along with two other impor-
tant constraints. For most discretisation techniques like finite volumes or finite
elements, it is necessary to avoid large local discrepancies in element sizes. The
second key-point is to estimate element equilaterality in the suitable metric. In
this section, we define three quality gauges to analyze the geometrical quality
of our generated meshes for the Great Barrier Reef.

4.1 The grading gauge

Local element size discrepancies will mainly appear in the transition area of
the blending function. Therefore, it can be expected that the grading gauge
measuring such local discrepancies could be directly estimated from the design
parameters hmin, hmax and dt = d1 − d0. Those three constants characterize
the sharpness of the target element size function h(x).

The grading gauge α is defined as a characteristic size ratio between adjacent
elements in the most graded transition areas. In a one-dimensional geometrical
distribution of element sizes hi ranging from hmin to hmax in an interval of
length dt, the following relations hold :

hi+1 = α hi, i = 0, 1, ..., n

h0 = hmin,

hn = hmax = αnhmin.

Hence, the geometrical distribution requires:

dt = hmin

n−1∑

i=1

αi,

dt = hmin

α − αn

1 − α
,

dt = hmin

α

1 − α
− hmax

1

1 − α
≃ hmax

1

α − 1
,
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where n, the number of elements in the interval, is assumed to be relatively
large for the last approximation.

In terms of the design parameters, we can then write the grading gauge in the
closed form:

α =
dt + hmax

dt + hmin

. (6)

Limiting the grading gauge is required to avoid large local element size dis-
crepancies, but inhibits the advantages of a non-uniform mesh only refined in
areas of interest.

4.2 The shape gauge

The Delaunay-like triangulation algorithm is based on the idea that a good
computational mesh is made of unitary equilateral triangles in a suitable met-
ric. However, in the physical domain, the corresponding mesh may be highly
anisotropic, even if it is not considered in this paper. Following Dompierre
et al. (2003), the local shape measure of an element Ωe is given by a normal-
ized dimensionless shape gauge βe:

βe =

√√√√ 3 be

3∏

i=1

(be − 2 be
i )

(
be max

i
be
i

) , (7)

where be
i and be = be

1 + be
2 + be

3 are the lengths of the edges Γe
i of the element

Ωe and its perimeter in the metric space defined by the target element size:

(be
i )

2 =
∫

Γe

i

1

h2(x)
dΓ . (8)

From a geometrical point of view, the shape gauge can be viewed as a normal-
ized ratio of the radius of the inscribed circle of the triangular element Ωe with
respect to its perimeter. The normalization ensures that the shape gauge lies
in the interval [0, 1] and is maximal for the ideal case: an equilateral triangle
in the metric space.

Finally, we define a global shape index β as the mean value of the local shape
indexes of all elements of the mesh. The mesh is usually built in such a way
that the value of be

i is close to unity at the end of the site insertion procedure
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(Frey and George, 2000). All the characteristics of the final mesh are therefore
contained in the target element size field h(x).

4.3 The edge gauge

The Watson-Bowyer algorithm does not ensure the strict respect of the target
element size prescribed. In fact, it only tends to produce the mesh such that
all lengths of the edge are close to unity in the metric defined by h(x).

The discrepancy between the prescribed length and the final length of the
edge Γf obtained by the generator is measured by a normalized dimensionless
edge gauge γf :

γf = 1 − |bf − 1| , (9)

The normalization ensures that the edge gauge lies in the interval [0, 1] and is
maximal for the ideal case: bf = 1, i.e. when the obtained length is in perfect
agreement with the target element size field. Finally, we define a global edge
index γ as the mean value of the local indexes of all edges of the mesh.

Figure 4 shows that the selection of the transition distance dt strongly in-
fluences the distributions of both shape and edge gauges. In particular, the
selection of the mesh design parameters to reach a grading gauge α = 1.3 is a
good compromise between the number of elements and the geometrical quality
of mesh estimated by those three gauges.

5 Results

The methodology and the gauges introduced above have been used for gen-
erating high resolution unstructured meshes for the Great Barrier Reef in an
automatic way using our own implementation of the Watson-Bowyer algo-
rithm.

In Figure 5, two recursive close-up views on Whitsunday islands illustrate the
performance of our technique. The design parameters of this first example are
hmin = 1 km, hmax = 20 km, d0 = 3 km and dt = 62 km selected in such
a way that the grading gauge α is 1.3. This example illustrates the ability
of generating high quality graded unstructured meshes for the Great Barrier
Reef. It also illustrates the graded mesh usefulness. Indeed, the gradual mesh
refinement in the neighbourhood of islands and reefs concentrates most degrees
of freedom on those area during a simulation. It must be noted that 82% of

10



the degrees of freedom is concentrated in the area close to islands and reefs.
By contrast, less than 1% of the degrees of freedom covers more 25% of the
whole domain in remote regions. Here, we have assumed that the number of
variables of an eco-hydrodynamical model defined on a given mesh is directly
related to the number of nodes, edges and elements of the mesh. Therefore, the
density of the mesh can be correlated with the number of degrees of freedom
of the upcoming models. Typically, a uniform mesh would require four times
more elements to cover the whole domain with a characteristic size h = hmin.

The total amount of elements and their repartition into the three regions
defined by the blending function depend on the mesh design parameters. As
shown in Figure 6, the relative importance of the three regions is directly
linked to the selection of d0 and dt. Typically, the merging of adjacent islands
and reefs neighbourhoods explains the appearance of a plateau in the surface
occupied by the region close to islands, for an increasing value of d0. On the
other hand, the relative importance of the transition area is directly related
to the value of dt and becomes largely predominant for a large transition
distance. In order to maintain the computational advantage of a graded mesh,
it is therefore mandatory to limit dt to about 30 km. Logically, the relative
importance of the remote regions behaves in an opposite way.

hmin hmax d0 dt α β γ number of number of number of

elements edges nodes

0.4 km 20.0 km 3.0 km 64.9 km 1.3 0.88 0.87 864 670 1 304 356 438 746

0.2 km 10.0 km 3.0 km 32.5 km 1.3 0.86 0.87 2 873 444 4 323 308 1 448 837

0.1 km 5.0 km 3.0 km 16.2 km 1.3 0.87 0.87 10 196 233 15 319 277 5 141 817

Table 1 : Characteristic dimensions of the meshes of Figure 6.

Table 1 gives the characteristic dimensions of some meshes with the corre-
sponding global gauges. In particular, we emphasize that is possible to build a
whole family of meshes for the Great Barrier Reef with a same grading gauge
α = 1.3. Those meshes have been obtained with several minimal and maximal
element sizes in kilometers (hmin, hmax) = (0.4, 20.0), (0.2, 10.0) and (0.1, 5.0).
It allows mesh refinement analysis and hierarchical eco-hydrodynamical mod-
elling of the domain. Figure 6 shows two recursive close-up views for this
family of meshes.
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At this stage, it is important to discuss the data used for generating our
meshes: the bathymetric field. The domain covers 2.11 × 105 km2 from the
Australian coastline to the shelfbreak and from Rockhampton to Cape Di-
rection. Fortunately, high-resolution (500 m × 500 m) bathymetry data from
Lewis (2001) are available. The bathymetry field exhibits sharp gradients from
the occurence of islands and reefs with a relatively smooth slope from the con-
tinental shelf. First of all, the position of the Australian coastline and islands
is deduced by drawing the isobath corresponding to 0 m. The position of the
reefs and the shelfbreak is deduced from the 10-meters and the 200-meters
isobaths respectively. Finally, the bathymetry has also been used to estimate
the tidal wave celerity used for the target element size. In view of the high
gradients, it appears useful to use a smoothed bathymetry field D̃(x) for our
refinement strategy. In fact, this modified bathymetry is obtained as the solu-
tion of the following boundary value problem:





λ2
∇

2D̃ − D̃ + D = 0

D̃ = 0 m on the coastlines

D̃ = 200 m on the shelfbreak

(10)

where λ is a smoothing scale factor. This length scale corresponds to the
length scale of the features we want to smooth. For the meshes displayed in
this paper, we use a scale factor equal to 2.5 km. It must be stressed that this
smoothed bathymetry is only used for the refinement mesh strategy and that
the eco-hydrodynamical model can still be based on the original bathymetry
field.

6 Concluding remarks

Mesh adaptivity can be used to generate efficient high-resolution unstructured
meshes for the Great Barrier Reef taking advantage of the knowledge of the
physics of the problem. From the bathymetry and the island distance, we
build meshes on which finite element or control volume numerical simulations
can be performed. It is possible to optimise the mesh with respect to several
design parameters in order to be able to simulate small scale flow features
along islands and reefs without the need to uniformly cover the whole domain
with a fine resolution.

The analysis of the quality of the meshes by three quality gauges has been
performed and demonstrates that high graded meshes can be obtained with
good geometrical properties. The latter ensure good numerical conditioning
of the hydrodynamical models solved with those grids. The selection of the
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suitable design parameters will be tested in numerical simulations of the flow
in the whole Great Barrier Reef.
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A Unstructured mesh generation

Generating unstructured mesh was the scope of a large number of works and
softwares and is very well documented in the literature (e.g. Henry and Wal-
ters, 1993; Shewchuk, 1996 ; Frey and George, 2000). In this work, we use our
own code to generate Delaunay-like triangulations (Legrand et al., 2000). It is
based on the Watson-Bowyer incremental algorithm (Watson, 1981; Bowyer,
1981) and allows for a dynamical control of the element size, shape and orien-
tation, which is achieved by introducing a prescribed target element metric.

The Watson-Bowyer algorithm generates triangulations by incrementally in-
serting each node of the final triangulation into an intermediate one. The
insertion procedure is performed in two steps. The triangle containing the
new site is first replaced by three new triangles and the quality of the new
triangulation is then improved by swapping well-chosen edges.

The major steps of our mesh generation procedure are as follows:

• Starting from a large triangle containing the whole domain, boundary nodes
are inserted.

• Once all boundary edges are created, useless triangles are removed.
• Then, additional nodes are created to obtain a mesh conformed to the target

element size (Frey, 1987).
• Finally, the mesh quality is optimized by heuristic elliptic techniques that

may be accompanied by edge swaps.

Algorithmic details as well as implementation issues are described in Legrand
et al. (2000).
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B The shore proximity function bounds

Demonstrating that the shore proximity function σ(x) satisfies inequalities
0 ≤ σ(x) ≤ 1 is tantamount to see that the negative part of σ(x)− 0 and the
positive part of σ(x) − 1 are zero. The former and the latter are defined as

[σ(x) − 0]− =
(σ(x) − 0) − |σ(x) − 0|

2
(B.1)

and

[σ(x) − 1]+ =
(σ(x) − 1) + |σ(x) − 1|

2
, (B.2)

respectively. To demonstrate that (B.1) and (B.2) actually are zero, inspi-
ration may be found in Lewandowski (1997) or Deleersnijder et al. (2001).
Accordingly, the Poisson equation (3) is multiplied by [σ(x) − 0]− and, after
integration by parts over the domain of interest Ω and substitution of the
boundary conditions, the following integral is obtained:

∫

Ω

{
µ2

∣∣∣∇ [σ(x) − 0]−
∣∣∣
2
+

∣∣∣[σ(x) − 0]−
∣∣∣

(
1 +

∣∣∣[σ(x) − 0]−
∣∣∣
)}

dΩ = 0.(B.3)

All the terms of the integrand of (B.3) are positive and, yet, this integral is
zero. This is possible if and only if [σ(x) − 0]− is zero at every location x in
the domain of interest.

To show that [σ(x) − 1]+ is also zero, a similar technique is resorted to. The
counterpart of integral (B.3) is then

∫

Ω

{
µ2

∣∣∣∇ [σ(x) − 1]+
∣∣∣
2
+

(
[σ(x) − 1]+

)2
}

dΩ = 0, (B.4)

implying that [σ(x) − 1]+ must be zero. QED.
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son(Paris).

Lewis, A., 2001. Great Barrier Reef depth and elevation model: GBRDEM.
Technical Report 33, CRC Reef Research Centre Ltd, Townsville, Australia,
58 pp.

Pietrzak, J., Deleersnijder, E., Schroeter, J. (Eds.), 2005. The Second Inter-
national Workshop on Unstructured Mesh Numerical Modelling of Coastal,
Shelf and Ocean Flows. Ocean Modelling (special issue) 10, 1-252.

Shewchuk, J.R., 1996. Triangle: Engineering a 2d quality mesh generator and
delaunay triangulator. In: First Workshop on Applied Computational Ge-
ometry (Philadelphia, Pennsylvania). Association for Computing Machin-
ery, pp. 124–133.

Walters, R., 2005. Coastal ocean models: Two useful finite element methods.
Continental Shelf Research 25, 775–793.

Watson, D., 1981. Computing the n-dimensional Delaunay tesselation with
applications to Voronoi polytopes. The Computer Journal 24 (2), 167–172.

Wolanski, E., Asaeda, T., Tanaka, A., Deleersnijder, E., 1996. Three-
dimensional island wakes in the field, laboratory and numerical models.
Continental Shelf Research 16, 1437–1452.

Wolanski, E., Brinkman, R., Spagnol, S., McAllister, F., Steinberg, C., Skirv-
ing, W., Deleersnijder, W., 2003a. Advances in Coastal Modeling. Elsevier,
Ch. Merging scales in models of water circulation: Perspectives from the
Great Barrier Reef, pp. 411–429.

Wolanski, E., Doherty, P., Carleton, J., 1997. Directional swimming of fish
larvae determines connectivity of fish populations on the Great Barrier Reef.
Naturwissenschaften 84, 262–268.

Wolanski, E., Drew, E., Abel, K., O’Brien, J., 1988. Tidal jets, nutrient up-
welling and their influence on the productivity of the algal Halimeda in the
Ribbon Reefs, Great Barrier Reef. Estuarine, Coastal and Shelf Science 26,
169–201.

Wolanski, E., Hamner, W., 1988. Topographically controlled fronts in the
ocean and their biological influence. Science 241, 177–181.

Wolanski, E., King, B., Spagnol, S., 1999. Perspectives in Integrated Coastal
Zone Management. Springer-Verlag, Berlin, Ch. The implication of oceano-
graphic chaos for coastal management, pp. 129–141.

Wolanski, E., Marshall, K., Spagnol, S., 2003b. Nepheloid layer dynamics in
coastal waters of the Great Barrier Reef, Australia. Journal of Coastal Re-
search 19, 748–752.

16



Wolanski, E., Richmond, R., McCook, L., 2004. A model of the effects of land-
based, human activities on the health of coral reefs in the Great Barrier Reef
and in Fouha Bay, Guam, Micronesia. Journal of Marine Systems 46, 133–
144.

Wolanski, E., Spagnol, S., 2000. Pollution by mud of Great Barrier Reef coastal
waters. Journal of Coastal Research 16, 1151–1156.

17



List of Figures

B.1 Definition of the geometrical parameters of the blending
function φ(d). 19

B.2 Target element size and generated mesh obtained by the blend
of the bathymetry and the refinement required along the
islands and reefs. 20

B.3 Partition of the domain into three regions. The dark area
close to islands and reefs requires a fine discretization. The
white part of the continental shelf far from islands and reefs is
covered only by a coarse discretization. The grey area provides
a smooth transition between the regions previously defined. 21

B.4 Impact of the transition distance on the generated meshes and
on the normalized distributions of the shape gauge and the
edge gauge. The black triangles point out the gauges value of
the worst quality triangle. The smallest and biggest element
sizes are 0.1 and 5 km, respectively. 22

B.5 Mesh of the Great Barrier Reef with two recursive close
up views illustrating the large spectrum of element sizes.
The minimal and the maximal mesh sizes are 1 and 20 km,
respectively. The number of elements and nodes are 95 843 and
184 142, respectively. 23

B.6 Meshes produced for a refinement analysis with sizes of h, h/2
and h/4 and the same geometrical parameters. 24

18



0

1

d0 dt

d1

B
le

n
d
in

g
fu

n
ct

io
n

φ
(d

)

Island distance d

Fig. B.1. Definition of the geometrical parameters of the blending function φ(d).
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Fig. B.2. Target element size and generated mesh obtained by the blend of the
bathymetry and the refinement required along the islands and reefs.
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Fig. B.3. Partition of the domain into three regions. The dark area close to islands
and reefs requires a fine discretization. The white part of the continental shelf far
from islands and reefs is covered only by a coarse discretization. The grey area
provides a smooth transition between the regions previously defined.
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Fig. B.4. Impact of the transition distance on the generated meshes and on the
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point out the gauges value of the worst quality triangle. The smallest and biggest
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Fig. B.5. Mesh of the Great Barrier Reef with two recursive close up views illustrat-
ing the large spectrum of element sizes. The minimal and the maximal mesh sizes
are 1 and 20 km, respectively. The number of elements and nodes are 95 843 and
184 142, respectively.
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Fig. B.6. Meshes produced for a refinement analysis with sizes of h, h/2 and h/4
and the same geometrical parameters.
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