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Abstract

Several numerical methods are employed to solve the linear shallow-water equations describ-
ing the propagation of Poincaré waves within a one-dimensional finite domain. An analytical
solution to the problem, set off by a discontinuous steplike elevation, is known and allows for
assessing the accuracy and robustness of each method and in particular their ability to capture
the traveling discontinuities without generating spurious oscillations. The following methods
are implemented: the method of characteristics, the Galerkin finite element method (FEM),
the discontinuous Galerkin FEM and the discontinuous Riemann-Galerkin FEM.

Key words: Poincaré waves; Method of characteristics; Discontinuous finite elements; Rie-
mann solver

1 Introduction

Motion in the ocean spans a very wide range of timescales. While the large-scale circulation is
characterized by velocities on the order of up to one meter per second and timescales that can be
as large as hundreds of years, the fast-propagating inertia-gravity waves exhibit phase velocities on
the order of hundreds of meters per second and much smaller timescales. Internal gravity waves
propagate with velocities on the order of one meter per second or less. The vast disparity of ocean
processes timescales poses a challenge in numerical ocean modeling. If an explicit time step is used,
it is limited by the so-called Courant-Friedrichs-Lewy (CFL) condition, which states that the time
step should not be larger than the travel time of the fastest physical process over the smallest
space increment. In free-surface ocean models that allow for the existence of external inertia-gravity
(Poincaré) waves, the upper bound on the time step is far smaller than more practical time steps that
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would permit time integration over thousands of years on today’s computers. The first attempt on
circumventing this problem by replacing the free surface by a rigid lid – thereby eliminating external
inertia-gravity waves – has been widely dismissed. Among the rationales for such a design are that
a rigid lid distorts the properties of large-scale barotropic Rossby waves, does not permit tidal
modeling and complicates inclusion of fresh water flux surface boundary condition (Killworth et al,
1991; Dukowicz and Smith, 1994; Deleersnijder and Campin, 1995; Hallberg, 1997; Higdon and de
Szoeke, 1997).

A common alternative no longer relies on the rigid-lid approximation. The ocean surface is
free and remains a prognostic variable but the governing equations are split into subsystems that
model the fast and slow motions separately. These subsystems are generally referred to as the
barotropic and baroclinic systems, respectively, or the external and internal modes, respectively.
Fast motions are approximately independent of the vertical coordinate z so that the external mode
is two-dimensional and is well represented by the shallow-water equations that model the motion
of fluid layers of constant density. Slow motions are fully three-dimensional, however, but the
restriction on the time step is dictated by the internal dynamics, of which timescales are several
orders of magnitude larger than that of the external mode. The latter can be solved explicitely with
small time steps or implicitely with larger time steps. Choosing an implicit treatment eliminates the
constraint imposed by the CFL condition but leads to large systems to be solved at each time step.
This choice can be made for tidal and tsunami calculations provided that a reduced time step be
used. If an explicit approach is considered for the barotropic mode, the number of small barotropic
time steps for each large baroclinic time step is roughly the ratio of barotropic inertia-gravity wave
speed to baroclinic internal gravity wave speed (Killworth et al, 1991). Details on mode splitting
implementations can be found in Blumberg and Mellor (1987), Hallberg (1997), Higdon and de
Szoeke (1997) and Higdon (2002).

Large-scale oceanic motions roughly obey the geostrophic equilibrium. When imbalances occur,
the geostrophic balance is restored by means of Poincaré waves. In strongly stratified seas, internal
inertia-gravity waves are generated when displacement of density surfaces occurs. Those waves
respond to the same physical mechanism as external Poincaré waves (Gill, 1982). In models allowing
for the existence of inertia-gravity waves, it is of paramount importance to represent those waves
accurately. In that respect, the coupled issues of time and space discretization ought to be focused
on. Time stepping is not the subject of this paper (see e.g., Beckers and Deleersnijder, 1993)
as we concentrate on spatial discretization. A one-dimensional benchmark for the propagation of
Poincaré waves is proposed. This problem bears many similarities with the classical geostrophic
adjustment initially studied by Rossby and further investigated by Gill (1976) for the linear part
and Kuo and Polvani (1996) for its nonlinear counterpart. In this paper, the linearized shallow-
water equations, in which homogeneity is assumed in the y-direction, are solved in a domain of finite
length with an initial discontinuous elevation field. The design difference with adjustment problems
lies in the finiteness of the domain in the x-direction. Whereas in adjustment problems, an infinite
domain in the x-direction is considered, we study the case of Poincaré waves propagation in a finite
domain. In so doing, no end state is ever reached and, in the absence of friction, wave propagation
goes on forever within the domain. The persistence of the discontinuities is the prominent feature
of the time-dependent solution presented by Gill (1976). It also appears in the solution to our
benchmark, thereby posing a challenge for classical numerical methods to solve the problem. A
numerical method will be appraised based upon its ability to capture the traveling discontinuity
without generating spurious oscillations. The following methods are considered in this paper: the
method of characteristics, the Galerkin finite element method (FEM), the discontinuous Galerkin
FEM and the discontinuous Riemann-Galerkin FEM.
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2 A one-dimensional benchmark

The linearized governing equations for a single, inviscid, homogeneous shallow layer of fluid on
an f -plane are the shallow-water equations, given by

∂u

∂t
− fv = − g

∂η

∂x
,

∂v

∂t
+ fu = − g

∂η

∂y
,

∂η

∂t
+ h

∂u

∂x
+ h

∂v

∂y
= 0,

(1)

where u and v are the vertically-averaged horizontal velocity components in the x- and y-directions,
respectively. The reference layer thickness is constant and denoted by h while η represents the free
surface elevation. The Coriolis parameter f is taken to be constant under the f -plane approximation.
Finally, g is the gravitational acceleration.

Linearization implies getting rid of advective terms and assuming that the free surface elevation
be much smaller than the constant reference depth (i.e., η � h). The disposal of advective terms
is legitimate as long as the Rossby number is much smaller than 1, in which case inertial terms are
not dominant. We decide to focus on a set of linear equations, mainly for the sake of simplicity and
because we will be able to interpret the results in the best way.

Within the frame of this work, we will further assume homogeneity in the y-direction so that all
derivatives with respect to y vanish. The domain is thus infinite in the y-direction, which reduces
the problem to a one-dimensional case. The domain remains finite in the x-direction. It should be
noted that the problem we propose to solve does not consist of an adjustment problem as in Gill
(1976) in which the domain is infinite – or large enough so that it can be deemed so numerically,
as explained in Kuo and Polvani (1996). In that respect, we do not focus on the final state, which
does not exist for finite domains. Instead, we study the wave propagation phenomenon. Reducing
the system (1) to the unique x-direction yields

∂u

∂t
− fv = − g

∂η

∂x
,

∂v

∂t
+ fu = 0,

∂η

∂t
+ h

∂u

∂x
= 0,

(2)

where x ∈ [−L/2, L/2] and t ≥ 0. The boundary conditions are u(x = −L/2, t) = 0 and u(x =
L/2, t) = 0, which merely consists of boundary impermeability. We study the time evolution of an
initially motionless fluid layer with a discontinuity in the elevation field. Thus, at t = 0

u(x, 0) = v(x, 0) = 0,

η(x, 0) = ηosign(x) =

{
−ηo if −L/2 ≤ x < 0
ηo if 0 < x ≤ L/2.

Nondimensionalization of (2) is obtained by introducing the following characteristic scales: f−1, L,
ηo, Lh−1fηo, for the time, the space, the elevation and the velocities, respectively. Using the same
symbols, the nondimensional equations become
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∂u

∂t
− v = −α2 ∂η

∂x
, (3)

∂v

∂t
+ u = 0, (4)

∂η

∂t
+

∂u

∂x
= 0. (5)

We have defined α =
√

gh
fL , which is the ratio of the Rossby radius of deformation to the length scale,

or a nondimensional Rossby radius of deformation. Note that (3)-(5) is now defined for t ≥ 0 and
x ∈ [−1/2, 1/2]. Boundary and initial conditions are adapted accordingly.

2.1 Analytical solution

As a first step, we present the analytical solution to (3)-(5). Differentiation of (3) and (5) with
respect to t and x, respectively, gives rise to

∂2u

∂t2
− ∂v

∂t
= −α2 ∂2η

∂t∂x
,

∂2η

∂x∂t
+

∂2u

∂x2
= 0.

Elimination of the mixed derivative and substitution of −∂v
∂t by u from (4) leads to a single equation

for the zonal velocity u:
∂2u

∂t2
+ u = α2 ∂2u

∂x2
. (6)

Equation (6) can be analytically solved using the separation of variables method. This is shown in
details in appendix A. Solution to (3)-(5) is

u(x, t) =
∞∑

n=1

Hn(−1)n+1 α2kn

ωn
sin (ωnt) cos (knx),

v(x, t) =
∞∑

n=1

Hn(−1)n+1 α2kn

ω2
n

[cos (ωnt) − 1] cos (knx),

η(x, t) =
∞∑

n=1

Hn(−1)n sin (knx)
{

1 − α2k2
n

ω2
n

[1 − cos (ωnt)]
}

,

(7)

where coefficients Hn amount to Hn = 4(−1)n

kn
. In Figure (1), we show the solution (7) for the

elevation at different times and compare it with Gill’s analytical solution to the adjustment problem
(Gill, 1976). Solutions were computed with α =

√
10/10. Left panels of Figure (1) show the solution

within the left part of the finite domain (x < 0). Right panels show the solution within the right
part of the infinite domain (x > 0). Thus, the panels separation is the axis x = 0. In both situations,
the front moves at a speed equal to α, to the left and to the right, for the left and right panels,
respectively. As long as the front does not hit the boundary of the finite domain, both solutions are
the same (although antisymmetric). After reflection at the boundary, Poincaré waves evolve within
the finite domain. For the adjustment problem, the front keeps moving to the right, trailing a wake
of Poincaré waves behind it.
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x < 0

η

x > 0

η

Figure 1: Exact solution for the elevation η. Left panels show solutions for the finite domain (x < 0) and
right panels show solutions for the adjustment problem (x > 0), as provided by Gill (1976). The axis x = 0
separates left and right panels. Left panels are 0.5-unit long and right panels are 3-unit long. The ticks on
the y-axis are one unit of elevation apart, the middle one being 0. From top to bottom, solutions are shown
at t = 1, t = 5, t = 10 t = 100 and t = 1000. The paramater α is

√
10/10.
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2.2 A hyperbolic problem

Because (3)-(5) is a system of first-order hyperbolic equations, there exist three real characteristics.
We can write the system in compact form:

A
∂u
∂t

+ B
∂u
∂x

= d,

where A, B, u and d are defined to obtain the following expression:⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ ∂

∂t

⎡
⎣ η

u
v

⎤
⎦ +

⎡
⎣ 0 1 0

α2 0 0
0 0 0

⎤
⎦ ∂

∂x

⎡
⎣ η

u
v

⎤
⎦ =

⎡
⎣ 0

v
−u

⎤
⎦ .

In order to reduce (3)-(5) to a system of three ordinary differential equations (ODEs), we now
compute the eigenvalues and eigenvectors of the generalized problem:

zT
i · (B − λiA) = 0
det (B − λiA) = 0

for which we have

λ1 = 0 z1 = [0 0 1]T ,

λ2 = α z2 = [α 1 0]T ,

λ3 = −α z3 = [α − 1 0]T .

For each eigenvector zi, an ODE is obtained by computing the following expression:

zT
i · d

dt
u = zT

i · d.

The system of ODEs then is ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

d

dt
v = −u on

dx

dt
= 0,

d

dt
(αη + u) = v on

dx

dt
= α,

d

dt
(αη − u) = −v on

dx

dt
= −α.

(8)

The foregoing procedure has allowed for transforming the system of partial differential equations
(3)-(5) into the system of ODEs (8) in the characteristic variables v, αη + u and αη − u. Each
ordinary differential equation is written on a characteristic curve (x(t), t) defined by dx

dt = λi, where
λ1 = 0, λ2 = α and λ3 = −α, for the first, second and third ODE. Because the position is dependent
on time, only time integration needs be performed to compute the characteristic variables, as long
as we remain located on the associated characteristic curve.
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3 Analysis of some numerical methods

From our standpoint, the main interest of this problem lies in its ability to be a benchmark
for numerical methods. Therefore, we may compare the accuracy and robustness between several
numerical techniques to solve (3)-(5). The difficulty in solving these equations lies in the presence
of the discontinuity. Any numerical scheme ought to be assessed based upon its ability to capture
this discontinuity without generating spurious oscillations. In this section, we present the following
methods: the method of characteristics, the galerkin finite element method (FEM), the discontinuous
Galerkin FEM and the discontinuous Riemann-Galerkin FEM. All numerical experiments were
conducted with f = 10−4 s−1, g = 10 m s−2, h = 100 m, L = 106 m, ηo = 1 m, leading to
α =

√
10/10.

3.1 Method of characteristics

n

n + 1
k

k − 1 k k + 1∆x

∆t
dx
dt = 0

dx
dt = −αdx

dt = α

Figure 2: Time integration must be performed along characteristics. Indices k and n identify space and
time discretization points, respectively.

Classical finite difference schemes may now be employed to solve (8), for which we are constrained
to use a time step and a spatial increment satisfying ∆x

∆t = α, as suggested in Figure (2). For the
sake of clarity, let us define the characteristic variables w

.= αη+u and q
.= αη−u. A forward Euler

stencil applied to (8) yields ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

vn+1
k − vn

k

∆t
= un

k ,

wn+1
k − wn

k−1

∆t
= vn

k−1,

qn+1
k − qn

k+1

∆t
= −vn

k+1,

(9)

where all information at time step n has been taken along appropriate characteristics.
The essence of the method of characteristics resides in its ability to carry the information along

characteristics, which allows to focus solely on time integration. Therefore, we expect the method
to be able to capture the traveling discontinuity at any time step provided that the time integration
be sufficiently accurate. This issue is illustrated in Figure (3), where the forward Euler and the
second-order Runge-Kutta stencils have been used with ∆t = 0.01. Solution for the elevation η

7



is compared with the exact solution at dimensionless time t = 200. Notice how the approximate
solution obtained with the first-order Euler scheme captures the discontinuity at the right location
but is highly inaccurate overall. The second-order Runge-Kutta method performs much better with
almost no extra computational cost. It should be borne in mind that, however efficient the method of
characteristics may be for this benchmark, a major drawback lies in the fact that such an approach
cannot be straightforwardly extended to two-dimensional computations.

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

−2

−1

0

1

2

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

−2

−1

0

1

2

Figure 3: Approximate and exact solutions for η at dimensionless time t = 200 for the first-order forward
Euler method (top) and the second-order Runge-Kutta method (bottom) with a time step of ∆t = 0.01.
The solid line represents the exact solution.

3.2 Continuous Galerkin

The easiest technique that can be readily extended to two- and three-dimensional compuations
is the classical Galerkin FEM. A variational formulation can be derived by first time-discretizing
(3)-(5). Each resulting equation is then mutliplied by a test function (symbolized by a hat) living
in an appropriate functional space and integrated over the entire domain Ω = [−1/2, 1/2]. The
structure of those functional spaces is described below. If a so-called θ-scheme is employed for time
discretization, the variational formulation consists in finding un+1 ∈ U , vn+1 ∈ V and ηn+1 ∈ E
such that ∫

Ω

(
un+1 − un

∆t
û − vn+θû + α2 ∂ηn+θ

∂x
û

)
dx = 0 ∀û ∈ U ,∫

Ω

(
vn+1 − vn

∆t
v̂ + un+θv̂

)
dx = 0 ∀v̂ ∈ V ,∫

Ω

(
ηn+1 − ηn

∆t
η̂ +

∂un+θ

∂x
η̂

)
dx = 0 ∀η̂ ∈ E ,

(10)
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Xi Xi+1

Ui

Ui+1

Ωi−1 Ωi Ωi+1

Figure 4: One-dimensional mesh for the Galerkin FEM using a continuous approximation. The derivative
of the approximation is piecewise constant.

where an+θ = θan+1 + (1− θ)an and θ is an adjustable parameter that allows for choosing between
time schemes. The so-called Crank-Nicolson scheme is obtained with θ = 0.5. Note that un, vn and
ηn denote the functions evaluated at the previous time step and live in the same functional spaces
as the unknowns. That is to say, a finite element problem is solved at each time step. We may also
consider using the following alternative scheme that likens the classical forward-backward scheme,
in which case a variational formulation consists in finding un+1 ∈ U , vn+1 ∈ V and ηn+1 ∈ E such
that ∫

Ω

(
un+1 − un

∆t
û − 1

2
(vn+1 + vn)û + α2 ∂ηn+1

∂x
û

)
dx = 0 ∀û ∈ U ,∫

Ω

(
vn+1 − vn

∆t
v̂ +

1
2
(un+1 + un)v̂

)
dx = 0 ∀v̂ ∈ V ,∫

Ω

(
ηn+1 − ηn

∆t
η̂ +

∂un

∂x
η̂

)
dx = 0 ∀η̂ ∈ E ,

(11)

where ηn+1 is first computed from the continuity equation and used in the subsequent calculation
of (un+1, vn+1). The Coriolis term is treated semi-implicitely in both formulations so as to not
artificially generate nor dissipate energy, which complies with the fact that the Coriolis force does
not work. In formulations (10) and (11), the unknown variables un+1, vn+1 and ηn+1 belong to
suitable functional spaces. Linear approximations are used so that each variable an+1 is written as

an+1 �
N∑

j=1

An+1
i φi (x) ,

where An+1
i are the nodal values and φi are the linear basis functions, taking on 1 at node Xi and

0 at Xj if j �= i. That is, we have φi(Xj) = δij . A schematic of such approximation is shown in
Figure (4). The functional spaces are then defined as follows:

U = H1
0 (Ω),

V = L2(Ω),

E = H1(Ω).

(12)
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The Sobolev space L2(Ω) is the set of measurable, square-integrable functions defined on Ω. That
is, L2(Ω) =

{
f : Ω → R, measurable :

∫
Ω
|f |2dx < ∞}

. The Sobolev space H1(Ω) is the set of
functions in L2(Ω), whose weak derivatives lie in L2(Ω). Finally, H1

0 (Ω) contains those functions of
H1(Ω) that vanish on ∂Ω. Linear approximations are used for all variables for the sake of simplicity
and for an easier interpretation. We bear in mind, however, that pressure modes may appear in two
and three dimensions when the same interpolant order is used for the velocity and the elevation.
Experiments with quadratic elements for the velocity and linear elements for the elevation, as well
as linear elements for the velocity and constant elements for the elevation, have been conducted.
The conclusions are the same as those presented hereafter.

In Figure (5), we show the elevation field obtained at time t = 20 using the forward-backward
scheme. Spurious oscillations pollute the 100-element and the 400-element approximations. Exper-
iments with finer meshes have been carried out and no improvment is brought about by the use
of smaller element sizes. Nevertheless, if we set off the time integration with a smoother initial
condition, the use of smaller elements eliminates spurious oscillations. In that respect, a hyperbolic
tangent profile has been chosen for the initial elevation field, that is,

η(x, 0) = tanh(Rx), (13)

where R, the steepness parameter, controls how steep the transition is between -1 and 1. The larger
R, the closer this initial condition will be to the sign function. The foregoing experiments have been
repeated with the hyperbolic tangent initial condition (13), with a steepness parameter R = 100,
and results are shown in Figure (6). Note that in the case of a hyperbolic tangent initial elevation
field, coefficients Hn that appear in the exact solution (7) must be numerically evaluated.

The assessment of the finite-element scheme is not trivial because it includes both time and
space discretizations. We do not wish to go into details regarding time dscretization techniques in
this paper and for the convergence analysis, only the Crank-Nicholson (CN) and forward-backward
(FB) schemes have been explored. A comparison between approximate and exact solutions at
dimensionless time t = 20 was performed on gradually-refined uniform meshes. The Courant number
was kept constant at C = α∆t

h = 0.0632, where ∆t and h are the time step and the element size,
respectively. Constraining the Courant number to be constant implies proportionally reducing
the time step whenever the mesh is refined. Convergence analysis was carried out on a solution
set off by a smooth initial condition given by the hyperbolic tangent with steepness parameter
R = 10. Approximate solutions were computed on meshes containing 10, 20, 40, 80, 160, 320 and
640 elements. We started with a dimensionless time step of 0.02, dividing it by two when h is
divided by two. The L2-norm of the error in the elevation field η is displayed in Figure (7), where
the triangle represents a second-order rate of convergence in error behavior as the mesh is refined.

3.3 Discontinuous Galerkin

The Discontinuous Galerkin method (DGM) provides an appealing approach to address problems
having discontinuities. A broad review may be found in Cockburn et al (2000). In the DGM, the
solution is a piecewise-continuous function relative to a mesh. As such, it is not required that the
sought solution assume the same value at each physical mesh node because two computational nodes
belong to the same physical node (in a one-dimensional mesh – see Figure 8). This property provides
more flexibility in representing steep gradients and discontinuities. A steplike initial condition for
the elevation field will be exactly represented, which is not the case with continuous methods.
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Figure 5: The Galerkin finite-element approximations at dimensionless time t = 20 with 100 elements
(top) and 400 elements (bottom) when the steplike initial elevation field is used. The time step is 0.001.
The solid line is the exact solution.

In continuous finite element methods, two neighboring elements share a common computational
node. This common node allows information to be conveyed from one element to its neighbor. In
discontinuous methods, all the nodes lie in their respective element so that, a priori, there is no
transfer of information between neighboring elements. One has to keep that in mind when deriving
the weak formulation. In that respect, the weak formulation (11) will be altered in such a way that
neighboring elements are able to exchange information between them. As for the continuous case,
a variational formulation is obtained from the time-discretized equations. For the FB scheme, the
problem consists in finding un+1, vn+1 and ηn+1 in U , V and E – defined by (12)–, respectively,
such that

Ne∑
e=1

∫
Ωe

(
un+1 − un

∆t
û − 1

2
(vn+1 + vn)û + α2 ∂ηn+1

∂x
û

)
dx +

Ne∑
e=1

∣∣a(û)
[
α2ηn+1

]∣∣
∂Ωe︸ ︷︷ ︸

S1

= 0 ∀û ∈ U ,

Ne∑
e=1

∫
Ωe

(
vn+1 − vn

∆t
v̂ +

1
2
(un+1 + un)v̂

)
dx = 0 ∀v̂ ∈ V ,

Ne∑
e=1

∫
Ωe

(
ηn+1 − ηn

∆t
η̂ +

∂un

∂x
η̂

)
dx +

Ne∑
e=1

|a(η̂) [un]|∂Ωe︸ ︷︷ ︸
S2

= 0 ∀η̂ ∈ V .

(14)

whete Ne is the number of elements. The role of S1 and S2 in the first and third equations is to

11



−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−1

−0.5

0

0.5

1

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−1

−0.5

0

0.5

1

Figure 6: The Galerkin finite-element approximations at dimensionless time t = 20 with 100 elements
(top) and 400 elements (bottom) when a hyperbolic tangent profile is used for the initial elevation field
(R = 100). The time step is 0.001. The solid line is the exact solution.

weakly enforce continuity of ηn+1 and un+1, respectively. The vertical bars indicate that expressions
must be evaluated along the boundary of element Ωe, that is at the extremities of element Ωe for
one-dimensional problems. The function a(û) is defined as

a(û) .=
(

λ − 1
2

sign(n̂)
)

û

where n̂ is the outward-pointing normal at each element boundary ∂Ω. The interelement jump
in the nodal values at a given physical node is defined as [un(Xi)] = U−

i − U+
i . The parameter

λ ∈ [−1/2, 1/2] is tunable in the sense that it allows for the interelement jump to be weighted. For
example, the jump [un] evaluated at the physical node Xi in Figure (8) is weighted by (λ − 1/2)
on computational node i− and by (λ + 1/2) on computational node i+, given that the signs of
the normal n̂ at nodes i− and i+, are +1 and −1, respectively. A centered scheme is obtained by
choosing λ = 0, in which case no preference is given to any of the nodes i− or i+. For transport
problems, it is common to give more weight to node i+ (or node i−) if the advective flux is known
to travel from left to right (respectively from right to left). As in Hanert et al (2004), an alternative
formulation can be derived by integrating the spatial derivatives by parts. In so doing, (14) expands
to
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Figure 7: L2-norm of the error in the elevation η on gradually-refined meshes. Circles and squares
correspond to errors using the Crank-Nicholson (CN) and forward-backward (FN) schemes, respectively.
Least-square approximations are represented by the solid and dashed lines, for the CN and FB schemes,
respectively. NE stands for the number of elements.
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Figure 8: One-dimensional mesh for the discontinuous Galerkin method: there are two computational

nodes (i.e., two nodal values, U−
i and U+

i ) at each physical node, Xi.
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Ne∑
e=1

∫
Ωe

(
un+1 − un

∆t
û − 1

2
(vn+1 + vn)û − α2ηn+1 ∂û

∂x

)
dx

+ α2
Nv∑
i=1

{〈
ηn+1(Xi)

〉
[û(Xi)] +

[
ηn+1(Xi)

] 〈û(Xi)〉
}

+ α2
Nv∑
i=1

[a(û(Xi))]
[
ηn+1(Xi)

]
= 0,

Ne∑
e=1

∫
Ωe

(
vn+1 − vn

∆t
v̂ +

1
2
(un+1 + un)v̂

)
dx = 0,

Ne∑
e=1

∫
Ωe

(
ηn+1 − ηn

∆t
η̂ − un ∂η̂

∂x

)
dx

+
Nv∑
i=1

{〈un(Xi)〉 [η̂(Xi)] + [un(Xi)] 〈η̂(Xi)〉} +
Nv∑
i=1

[a(η̂(Xi))] [un(Xi)] = 0,

(15)

where Nv is the number of physical nodes and 〈f(Xi)〉 denotes the average of f at Xi, that is

〈f(Xi)〉 =
1
2
(f(X−

i ) + f(X+
i )).

By combining all the terms involved in the summations, the foregoing formulation reduces to

Ne∑
e=1

∫
Ωe

(
un+1 − un

∆t
û − 1

2
(vn+1 + vn)û − α2ηn+1 ∂û

∂x

)
dx + α2

Nv∑
i=1

〈
ηn+1(Xi)

〉
λ

[û(Xi)] = 0,

Ne∑
e=1

∫
Ωe

(
vn+1 − vn

∆t
v̂ +

1
2
(un+1 + un)v̂

)
dx = 0,

Ne∑
e=1

∫
Ωe

(
ηn+1 − ηn

∆t
η̂ − un ∂η̂

∂x

)
dx +

Nv∑
i=1

〈un(Xi)〉λ [η̂(Xi)] = 0,

(16)

where 〈f(Xi)〉λ is the weighted average of f at Xi, defined as

〈f(Xi)〉λ = (
1
2

+ λ)f(X−
i ) + (

1
2
− λ)f(X+

i ).

In appendix B, we show how formulations (15) and (16) are derived.

The discontinuous finite element formulation (14) has been used to solve our benchmark problem
with 100 and 400 elements. Results are shown in Figure (9) where approximate and exact solutions
are compared at t = 2. A centered scheme is employed here (λ = 0). Severe oscillations pollute the
solutions. The classical forward-backward time scheme is employed for better stability properties
when boundary terms S1 and S2 are involved. In Figure (10), the top panel reproduces the 400-
element solution with λ = 0 while the bottom panel shows the solution obtained with λ = 0.001.
Hence, Figure (10) permits to compare a centered and a slightly off-centered scheme. The aim
of these numerical experiments is twofold. Firstly, we wish to verify whether weakly enforcing
continuity on uh and ηh ensures stability of the formulation (14). Secondly, we would like to
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lower the level of arbitrariness associated with the weak enforcement of continuity by appraising
the sensitivity of the parameter λ. It should be pointed out that choosing a centered scheme
makes sense in that we deal with hyperbolic equations for which the way information travels is
symmetric, as implied by the definition of characteristics (8). Indeed, since information flows along
characteristics defined by dx

dt = ±α, no extra weight should be given to neither node i− nor node
i+. Light can be shed on this statement by looking at Figure (10). Whereas both choices – the
centered and the slightly off-centered schemes – do no prevent spurious oscillations, the off-centered
scheme makes it even worse, strengthening our argument that symmetry plays a leading role. Other
experiments have been performed to test higher values (as well as negative values) of λ, only to
further conclude that λ = 0.0 is the best choice. In Figure (11), we show how the solution behaves
when the hyperbolic tangent (13) is used as initial condition (with R = 100). The same experiment
as with the continuous Galerkin method has been conducted here. Figure (11) is to be compared
with Figure (6) showing the solution obtained with the continuous Galerkin method. The latter
clearly outperforms the DGM. The presence of spurious oscillations reveals that, even for centered
schemes, the weak enforcement of continuity remains an issue. In particular, the following question
arises: What variables should we weakly enforce the continuity of?
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Figure 9: Discontinuous Galerkin finite-element approximation with 100 elements (top) and 400 elements
(bottom) at dimensionless time t = 2 with a steplike initial condition. The time step is 0.001. Continuity
is weakly enforced using λ = 0.0.

3.4 Discontinuous Riemann - Galerkin

To answer the previous question, a closer look at the method of characteristics is advisable. Since
information is carried along characteristic curves by characteristic variables, a better approach would
be to enforce continuity of those very variables that transport information. In addition, we know
the direction of propagation of those variables so that weighting can adequately be adapted. This
approach is commonly referred to as a Riemann solver. A variational formulation similar to (14)
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Figure 10: Discontinuous Galerkin finite-element approximation with 400 elements at dimensionless time
t = 2 with a steplike initial condition. The time step is 0.001. Continuity is weakly enforced using λ = 0.0
(top) and λ = 0.001 (bottom).

may be derived. The difference will lie in the way continuity is enforced. The problem consists in
finding uh, vh and ηh in U , V and E , respectively, such that

Ne∑
e=1

∫
Ωe

(
un+1 − un

∆t
û − 1

2
(vn+1 + vn)û + α2 ∂ηn+1

∂x
û

)
dx

+
Ne∑
e=1

∣∣a(û)
[
αun + α2ηn+1

]∣∣
∂Ωe

+
Ne∑
e=1

∣∣b(û)
[
αun − α2ηn+1

]∣∣
∂Ωe

= 0 ∀û ∈ U ,

Ne∑
e=1

∫
Ωe

(
vn+1 − vn

∆t
v̂ +

1
2
(un+1 + un)v̂

)
dx = 0 ∀v̂ ∈ V ,

Ne∑
e=1

∫
Ωe

(
ηn+1 − ηn

∆t
η̂ +

∂un

∂x
η̂

)
dx

+
Ne∑
e=1

|a(η̂) [αηn + un]|∂Ωe
+

Ne∑
e=1

|b(η̂) [αηn − un]|∂Ωe
= 0 ∀η̂ ∈ H.

(17)

where functions a(û) and b(û) are defined as follows:

16



−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−1

−0.5

0

0.5

1

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−1

−0.5

0

0.5

1

Figure 11: The discontinuous Galerkin finite-element approximations at dimensionless time t = 20 with
100 elements (top) and 400 elements (bottom) when a hyperbolic tangent profile is used for the initial
elevation field (R = 100). The time step is 0.001 and continuity is weakly enforced with λ = 0. The solid
line is the exact solution.
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a(û) .=
1
2

(
1
2
− λ sign(n̂)

)
û,

b(û) .=
1
2

(
1
2

+ λ sign(n̂)
)

û,

where we usually take λ = 1/2. Again, an alternative formulation can be obtained by integrating
the spatial derivatives by parts and combining the sums, as we have achieved for the previous DG
formulation. It can be shown that (17) is equivalent to

Ne∑
e=1

∫
Ωe

(
un+1 − un

∆t
û − 1

2
(vn+1 + vn)û − α2ηn+1 ∂û

∂x

)
dx

+
1
2
α

Nv∑
i=1

[û(Xi)]
{(

αηn+1(X−
i ) + un(X−

i )
)

+
(
αηn+1(X+

i ) − un(X+
i )

)}

+ (1 − 2λ)
Nv∑
i=1

[
α2ηn+1(Xi)

] 〈û(Xi)〉 = 0,

Ne∑
e=1

∫
Ωe

(
vn+1 − vn

∆t
v̂ +

1
2
(un+1 + un)v̂

)
dx = 0,

Ne∑
e=1

∫
Ωe

(
ηn+1 − ηn

∆t
η̂ − un ∂η̂

∂x

)
dx

+
1
2

Nv∑
i=1

[η̂(Xi)]
{(

αηn(X−
i ) + un(X−

i )
) − (

αηn(X+
i ) − un(X+

i )
)}

+ (1 − 2λ)
Nv∑
i=1

[un(Xi)] 〈η̂(Xi)〉 = 0.

(18)

Setting λ = 1/2 further reduces the foregoing formulation and we obtain

Ne∑
e=1

∫
Ωe

(
un+1 − un

∆t
û − 1

2
(vn+1 + vn)û − α2ηn+1 ∂û

∂x

)
dx

+
1
2
α

Nv∑
i=1

[û(Xi)]
{(

αηn+1(X−
i ) + un(X−

i )
)

+
(
αηn+1(X+

i ) − un(X+
i )

)}
= 0,

Ne∑
e=1

∫
Ωe

(
vn+1 − vn

∆t
v̂ +

1
2
(un+1 + un)v̂

)
dx = 0,

Ne∑
e=1

∫
Ωe

(
ηn+1 − ηn

∆t
η̂ − un ∂η̂

∂x

)
dx

+
1
2

Nv∑
i=1

[η̂(Xi)]
{(

αηn(X−
i ) + un(X−

i )
) − (

αηn(X+
i ) − un(X+

i )
)}

= 0.

(19)

Formulation (19) is elegant. In the first equation, the summation involves an average of charac-
teristic variables at each physical node Xi. In particular, the average is computed by taking the
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characteristic variables αη + u and αη − u at nodes X−
i and X+

i , which merely reflects the way
information propagates. A similar comment can be made on the third equation where jumps of
characteristic variables make up the summation.

Now, to understand the seemingly complicated formulation (17), let us evaluate the expressions
that weakly enforce continuity of the characteristic variables. We focus on the first equation and
assume û = φ−

i , that is the shape function associated with computational node i−. We further
assume that the shape function is evaluated at node X−

i .The outward-pointing normal is +1 so that
the functions a and b take on the following expressions

a(φ−
i ) =

1
2

(1/2 − λ) ,

b(φ−
i ) =

1
2

(1/2 + λ) ,

and the expression associated with node i− is

1
2

(1/2 − λ) [αun + α2ηn+1] +
1
2

(1/2 + λ) [αun − α2ηn+1].

If we take λ = 1/2, the latter expression simply becomes 1
2 [αun −α2ηn+1]. Concretely, this is what

has to be added to row i− of the linear system. The same reasoning applied to node i+ (i.e., shape
function φ+

i ) gives rise to 1
2 [αun+α2ηn+1]. One can see that in both expressions, a linear combination

of one of the characteristic variables is involved. The jump of α(u − αη) is associated with node
i− while the jump of α(u + αη) is associated with node i+. This pattern consistently translates
the way information is conveyed. So as to compare with the previous dicontinuous method, the
same experiment has been performed (a 400-element mesh and a solution analyzed at t = 2) with
the Riemann-Galerkin formulation (17). Results are shown in Figure (12), where the superiority of
the Riemann-Galerkin formulation is manifest when compared with Figure (9). Let us emphasize
that the quality of the approximate solution suffers from numerical dissipation when long time
integration is performed, a trend already observed by Kuo and Polvani (1996) with their shock-
capturing numerical methods. This effect is illustrated in Figure (13) where the approximate solution
is unable to capture higher-frequency features that make up the exact solution. Higher-order time
discretization schemes should be able to tackle this problem, though, and it is indispensable to
investigate the effect of such techniques on the accuracy. As a final note, it must be stressed that
such high resolutions as those previously employed are never used in large-scale ocean models.
Using 400 elements on a 1000-km wide domain leads to a mesh resolution of 2.5 km, which is
generally impracticable in ocean general circulation models. In Figure (14), the Galerkin and the
discontinuous Riemann-Galerkin FEM are compared when solving the same problem with different
mesh resolutions, starting at 100 km and increasing it to 20 km and 5 km. For the discontinuous
Riemann-Galerkin method, using a coarse mesh does not impair the smoothness of the solution,
even though high-frequency features are filtered out. The same experiment has been carried out
with the continuous Galerkin FEM, only to conclude that oscillations that characterize the method
amplify when the resolution decreases. They do, however, remain finite.

4 Conclusions

A benchmark for the propagation of Poincaré waves within a one-dimensional finite domain has
been proposed and a comparison between four numerical methods to resolve it has been accom-
plished. The use of a steplike – and thus discontinuous – initial elevation field makes it challenging
for numerical techniques to capture the traveling discontinuity without spawning spurious oscilla-
tions. Because the equations describing the physics of the problem are hyperbolic, the method of
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Figure 12: Discontinuous Riemann-Galerkin finite-element approximation with 100 elements (top) and
400 elements (bottom) at dimensionless time t = 2 with a steplike initial condition. The time step is 0.001.

characteristics is a suitable way of solving for the wave propagation. If a sufficiently accurate time
scheme is employed, this technique is able to solve the benchmark very satisfyingly. Nonetheless, it
should be pointed out that, however efficient the method of characteristics may be for this bench-
mark, a major drawback lies in the fact that such an approach cannot be straightforwardly extended
to two-dimensional computations.

This is where more general numerical methods come into play. In the considerations that follow,
we bear in mind that the issue of time discretization must be thoroughly investigated as well. As we
already said it, this was not the subject of this work. The classical continuous Galerkin FEM has
difficulties capturing steep gradients, let alone discontinuities. This was revealed by the experiment
carried out with the hyperbolic tangent initial elevation field. Increasing the number of elements
is not really a solution by itself, for an infinite number is necessary to resolve the discontinuity. In
that respect, the discontinuous Galerkin method (DGM) is appealing due to the very discontinuous
representation of its solutions. However, this may constitute an asset as much as a drawback in the
sense that one has to carefully choose the variable of which continuity is weakly enforced. That
statement is illustrated by comparing the classical DGM and the so-called dicontinuous Riemann-
Galerkin method. In the former, we enforce continuity of the variables whose spatial derivatives
appear in the formulation. A centered scheme, though the best choice, is outperfomrmed by the
classical galerkin method. When continuity is enforced on the characteristic variables, we obtain
results that are quite outstanding compared with the previous ones. It goes without saying that the
Riemann-Galerkin method, together with mesh adaptivity, would produce even better results. This
benchmark could be a starting point of more general test cases for two-dimensional wave propagation
problems, which would model the barotropic systems of ocean models.
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Figure 13: Discontinuous Riemann-Galerkin finite-element approximation with 300 elements at dimen-
sionless time t = 200 with a steplike initial condition. The time step is 0.002.
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A Analytical solution

The solution to (6) on [0, 1], subject to an arbitrary initial condition on the elevation, say η0(x),
is developed herein. Using the method of seperation of variables, we define u(x, t) to be

u(x, t) = F (x)T (t)

so that replacing u by that product into (6) yields

T ′′F + TF = α2TF ′′

or
T ′′

T
= α2 F ′′

F
− 1 = C
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Galerkin Disc. Riemann-Galerkin

Exact solution

h = 0.1

h = 0.02

h = 0.005

Figure 14: Comparison of the Galerkin and the discontinuous Riemann-Galerkin FEM at time t = 20 for a
time step of 0.001. Left and right panels are the solutions for the Galerkin and the discontinuous Riemann-
Galerkin method, respectively. The first, second and third rows show results for meshes containing 10
(h = 0.1), 50 (h = 0.02) and 200 (h = 0.005) elements. The bottom graph is the exact solution.
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where C is a constant expressing the fact that both sides of the first equality must not depend upon
neither x nor t. The solution to the time-dependent part, T (t), must be of the form

T (t) = A sin(ωt)

to account for the initial condition on u. Note that the constant C is deemed negative to avoid
growing exponential-type solutions in time. By twice differentiating T , the constant C is found to
be: C = −ω2. The space-dependent part, F (x), obeys

F ′′ = −ω2 − 1
α2

F,

where it is required that ω2 > 1 to avoid an exponential dependence on x, which could not satisfy
the boundary conditions. For the same reason, solutions involving cosine cannot exist. Thus, we
have

F (x) = B sin(kx),

where k2 = ω2−1
α2 . Now, to satisfy both boundary conditions, we must have k = kn = (2n − 1)π,

which constrains ω to ω = ωn =
√

1 + α2k2
n. Combining the time and space dependences, the

velocity u(x, t) is given by an infinite sum of those harmonics:

u(x, t) =
∞∑

n=1

Dn sin (ωnt) sin (knx), (20)

where the constant Dn is to be determined. To do so, we may write Eq. (3) at t = 0:

α2 ∂η

∂x
= −∂u

∂t

= −
∞∑

n=1

Dnωn sin (knx).

This equality is satisfied provided that the initial elevation field η0(x) take the following form

η0(x) =
∞∑

n=1

Hn cos (knx),

where the coefficients Hn are given by

Hn = 2
∫ 1

0

η0(x) cos (knx) dx. (21)

Thus, for each n, we have

Dn =
α2kn

ωn
Hn

and the final expression for u(x, t) is

u(x, t) =
∞∑

n=1

Hn
α2kn

ωn
sin (ωnt) sin (knx). (22)
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Now that u(x, t) is known, we may seek the expression for v(x, t) by using Eq. (4) and the initial
condition v(x, 0) = 0, which yields

v(x, t) =
∞∑

n=1

Hn
α2kn

ω2
n

[cos (ωnt) − 1] sin (knx). (23)

Finally, the elevation field η(x, t) is easily infered from Eq. (3). A few algebraic manipulations lead
to

η(x, t) =
∞∑

n=1

Hn cos (knx)
{

1 − α2k2
n

ω2
n

[1 − cos (ωnt)]
}

. (24)

Depending on the initial condition, an analytical expression can be found for Hn. For the sign
function, coefficients Hn amount to

Hn =
4(−1)n

kn
.

B Derivation of the variational formulation for the DGM

We focus on the continuity equation to show how formulations (15) and (16) are derived. In-
tegration by parts of the term involving the spatial derivative generates an extra term, as shown
hereafter:

Ne∑
e=1

∫
Ωe

∂un

∂x
η̂ dx = −

Ne∑
e=1

∫
Ωe

un ∂η̂

∂x
dx +

Ne∑
e=1

|unη̂|∂Ωe
. (25)

The last sum of (25) may be expanded so that the index now runs on physical nodes:

Ne∑
e=1

|unη̂|∂Ωe
=

Nv∑
i=1

{
un(X−

i )η̂(X−
i ) − un(X+

i )η̂(X+
i )

}

=
Nv∑
i=1

{〈un(Xi)〉 [η̂(Xi)] + [un(Xi)] 〈η̂(Xi)〉} ,

(26)

where 〈f(Xi)〉 and [f(Xi)] are the average and jump of f at physical node Xi, defined as

〈f(Xi)〉 =
1
2

(
f(X−

i ) + f(X+
i )

)
[f(Xi)] = f(X−

i ) − f(X+
i ).

The last sum of (26) is obtained from the following equality:

ac − bd =
1
2

(a + b) (c − d) +
1
2

(a − b) (c + d) .

Next, the sum S2 in (14) may be rewritten so as to run on physical node indices as well. We have
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Ne∑
e=1

|a(η̂) [un]|∂Ωe
=

Ne∑
e=1

a
(
η̂(X−

e+1)
)
[un(Xe+1)] − a

(
η̂(X+

e )
)
[un(Xe)]

=
Nv∑
i=1

[a(η̂(Xi))] [un(Xi)] .

(27)

Combining (25), (26) and (27) yields formulation (15). Finally, we arrive at formulation (16) by
putting together both sums. That is, we can write

Nv∑
i=1

〈un(Xi)〉 [η̂(Xi)] + [un(Xi)] 〈η̂(Xi)〉 + [a(η̂(Xi))] [un(Xi)]

=
Nv∑
i=1

〈un(Xi)〉 [η̂(Xi)] + [un(Xi)]
(
〈η̂(Xi)〉 +

(
λ − 1

2

)
η̂(X−

i ) −
(

λ +
1
2

)
η̂(X+

i )
)

=
Nv∑
i=1

〈un(Xi)〉 [η̂(Xi)] + [un(Xi)] λ [η̂(Xi)]

=
Nv∑
i=1

[η̂(Xi)] 〈un(Xi)〉λ ,

(28)

where 〈f(Xi)〉λ is a weighted average:

〈f(Xi)〉λ =
(

1
2

+ λ

)
f(X−

i ) +
(

1
2
− λ

)
f(X+

i ).
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