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Abstract. In this paper, we present an h-adaptive discontinu-
ous Galerkin formulation of the shallow water equations. For
a discontinuous Galerkin scheme using polynomials up to or-
der p, the spatial error of discretization of the method can
be shown to be of the order of hp+1, where h is the mesh
spacing. It can be shown by rigorous error analysis that the
discontinuous Galerkin method discretization error can be
related to the amplitude of the inter-element jumps. There-
fore we use the information contained in jumps to build error
metrics and size field. Results are presented for ocean mod-
eling problems. A first experiment shows that the theoretical
convergence rate is reached with the discontinuous Galerkin
high-order h-adaptive method applied to the Stommel wind-
driven gyre. A second experiment shows the propagation of
an anticyclonic eddy in the Gulf of Mexico.

1 Introduction

The discontinuous Galerkin (DG) method has become a
very attractive method especially for advection-dominated
problems (e.g. CKS00; ADFK02; BR97). The main advan-
tage is its flexibility in terms of mesh and shape functions.
Moreover, the compactness of the stencil is maintained
for high order efficient parallel implementation. Recent
advances coming from the integration-free version of the
formulation (e.g. LA99; AS98) allow for an enhancement
of the computational efficiency of the DG method. The
quadrature free implementation is especially useful at high
polynomials orders.

In our work, we aim to develop a global ocean circulation
model where the geometry is complex enough to justify the

shift from traditional structured grids models to unstruc-
tured meshes (e.g. HRLD04; PDE05). In ocean modeling,
important dynamics features like meso-scale eddies have
to be followed in time and solved accurately. The ocean
exhibits many different length scales in time and space,
with very unsteady behaviour and almost discontinuous
fields. The meso-scale processes contain a huge part of
the ocean energy and have to be captured. Dynamic mesh
adaptation strategies following those structures represent
a great potential in the field of ocean modeling (e.g.
Beh98; HH02; NTL05; GHW02). In this framework of a new
unstructured ocean model, we believe that the DG method is
a good candidate because it provides a simple and efficient
error estimator for any order p, which means a simple and
efficient way to deal with mesh adaptivity. Moreover, the DG
method ensures local conservation which may be a critical
issue in ocean modeling, and is particularly efficient for
advection-dominated problems.

Recent applications (e.g. Bak97; SB97; GBL02;
CXH+05) show that transient mesh adaptation technologies
are mature enough to tackle difficult problems. The com-
putational overhead of modifying the mesh is negligible
compared to the overall gain in computation time and
accuracy.

Starting from a fast implementation of the DG method,
originally developed to solve wave propagation problems
(e.g. CRG+05), we first discuss the implementation of the
shallow water equations, in particular the choice of an appro-
priate Riemann solver. After a brief description of the mesh-
adaptation package, MeshAdapt developed at SCOREC1 (e.g.
RLSF05; Li03), we detail the mesh adaptation strategy based

1 SCOREC, Scientific Computation Research Center, Rensselaer
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on the error estimation for the DG method. We then provide
some preliminary validations of the method by solving the
classical Stommel model, before turning to an idealized sim-
ulation of an anticyclonic baroclinic eddy in the Gulf of Mex-
ico.

2 Discontinuous Galerkin Method for shallow water
equations

It is only recently that the DG method has been applied to the
shallow water equations (e.g. SK00; DP02; DP04; NTL05;
GHW02). These equations have been used for many years for
solving a variety of problems, such as atmospheric, oceanic,
dam breaking (e.g. SZ02a; RSLS06) or river flow problems
(e.g. Vre94).

2.1 Shallow water equations

The shallow water equations describe the flow of a thin
layer of incompressible fluid, with no stratification, under
the influence of a gravitational force. This model is based
on the assumption that the vertical dimension is very small
compared to the horizontal one. A vertical integration over
the depth of the fluid layer H(x, t) = h(x) + η(x, t) (where
h is the unperturbed height of the water column and η the
surface elevation measured from a reference height (Figure
(1))) is then performed on the 3D Navier-Stokes equations.
The bottom and the surface of the ocean are impermeable,
which yields the two boundary conditions required for
integration.

The two-dimensional, conservative form of the shallow
water equations is then obtained, not in terms of pressure and
velocity, but in terms of water depth and mean velocity:

∂H

∂t
+ ∇ · (Hv) = 0 , (1)

∂Hv
∂t

+ ∇ · (Hvv) + gH∇η + fez × Hv =
τ s − τ b

ρ
,(2)

where t is time, f is the Coriolis parameter, v is the
depth-averaged horizontal velocity, g is the gravitational
acceleration, τ s and τ b denote the surface and bottom
stresses, respectively.

The main parameters are

– the Rossby number: Ro = U
Lf , with U a characteristic ve-

locity and L a characteristic length. The Rossby number
is the ratio between the Earth period and the flow period.
It represents the relative importance of the Coriolis effect.

– the Froude number: Fr = U
c , with c the speed of the

gravity waves. The Froude number represents the ratio
between the flow velocity and the gravity waves velocity.

It is similar to the Mach number in compressible fluid
dynamics problems. The flow is said to be critical when
the Froude number reaches Fr = 1.

The free surface allows propagation of gravity waves at
speed c =

√
gH (those are equivalent to sound waves in Eu-

ler equations). In the case of an ocean modeling problem, the
speed of gravity waves is typically one hundred to one thou-
sand times faster than the speed of the fluid itself.

2.2 Discontinuous Galerkin Method applied to shallow
water equations

We consider a closed two dimensional domain Ω. Its bound-
ary ∂Ω has a normal n defined everywhere. We seek to de-
termine the vector of unknowns U(Ω, t) as the solution of a
system of conservation laws:

∂U
∂t

+ ∇ ·F(U) = S , (3)

where F is the flux matrix and S is the vector containing the
source terms.

We multiply (3) by a test function w and integrate on the
domain Ω to obtain this classical weak formulation:

〈∂tU,w〉Ω + 〈∇ · F(U),w〉Ω = 〈S,w〉Ω , (4)

with the scalar product: 〈a, b〉v =
∫

v
ab dv.

The computational domain is divided into a set of ele-
ments Ωe called a mesh. In the case of a DG method, we
approximate the unknown fields using piecewise discontin-
uous polynomial approximations: in element Ωe, the fields
U are approximated using p-order polynomials in each ele-
ment with no inter element continuity requirements. The total
number of degrees of freedom for a fully triangular mesh of
N elements is therefore equal to N × [(p+1)(p+2)/2]×m,
with m the number of unknown fields, i.e. three in the shallow
water case. Because all approximations are disconnected, the
weak form (4) can be written in each element. After having
integrated the divergence of fluxes by parts in (4), we obtain

〈∂tU,w〉Ωe
− 〈F(U),∇w〉Ωe

+ 〈F(U) · n,w〉∂Ωe
(5)

= 〈S,w〉Ωe
.

A numerical flux function has to be supplied to the formu-
lation because unknowns U are multiply valued at element
interfaces ∂Ωe.

Two neighboring elements in continuous FEM share com-
mon nodes that ensure the continuity of the finite element ap-
proximation. With the DG method, fields are discontinuous
through element edges. Jumps at element interfaces have to
be controlled by a numerical flux function. In this paper, we
consider triangular meshes exclusively. The boundary ∂Ω e of
a triangle Ωe is composed of three edges ∂Ωek

, k = 1, . . . , 3.
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The flux function is computed on those three edges using a
combination of the fields on both sides of the edge, i.e. us-
ing the unknown fields U inside element Ωe and using the
unknown fields Uk in the neighboring triangle across edge
∂Ωek

. We have:

〈F(U) · n,w〉∂Ωe
=

3∑
k=1

〈
Fn(U,Uk),w

〉
∂Ωek

.

The centered DG scheme uses the average of fluxes as the
flux function:

Fn(U,Uk) =
1
2
(
F(U) + F(Uk)

) · n.

Though producing no spatial dissipation, the use of a cen-
tered scheme may cause advective unstabilities when the dis-
cretization is unable to resolve a certain range of wave num-
bers (e.g. CRG+05). Riemann solvers are the extension of
upwind schemes to non-linear systems of conservation laws.

The idea of the Riemann solver consists in upwinding the
characteristics variables. The projection of (3) without source
terms on the normal direction n is written as:

∂U
∂t

+
∂Fn(U)

∂n
=

∂U
∂t

+ An
∂U
∂n

= 0 , (6)

where An = ∂Fn

∂U is the jacobian matrix of the flux vec-
tor in the normal direction Fn. This jacobian matrix can be
written as An = RΛR−1 with matrices of eigenvectors R
and eigenvalues Λ. We can then derive the following one-
dimensional transport equation:

∂U∗

∂t
+ Λ

∂U∗

∂x
= 0 . (7)

The characteristics variables U∗ = R−1U, the Riemann
invariants, are convected along the normal direction to
the edge of the element. The transport velocities are the
eigenvalues of the problem which are used to choose the ap-
propriate values on the edge. More precisely, upwinding can
be applied on the characteristics variables convected across
the edge. Note that the source terms S are not taken into
account in equation (6) since they have no influence on the
Riemann invariants or on the sign of the eigenvalues neither.
Note also that no diffusion term was considered, since the
Riemann solver only deals with advection. This diffusion
term can be solved in the usual way with an integration by
part and a centered scheme to define the interface values.
It has been shown that this Riemann solver introduces the
minimum numerical dissipation required to stabilize the
numerical scheme in the presence of transport terms.

The shallow water equations lead to the following expres-
sions for U and F:

U =


 H

Hu
Hv


 , F(U) =


 Hu Hv

Huu + g H2

2 Huv

Hvu Hvv + g H2

2


 .

The eigenvalues matrix read:

Λ =


v · n + c 0 0

0 v · n − c 0
0 0 v · n


 ,

where c =
√

gh is the gravity waves velocity.

In order to keep the same general formulation (3), the
transport terms require the use of the conservative formu-
lation. Advection terms are thus expressed as a divergence
∇·(Hvv). This conservative form is non linear, even without
transport terms, because of the presence of the elevation

term ∇
(

H2

2

)
. But the transport terms lead to a complex and

computationally prohibitive exact Riemann solver. Approxi-
mate Riemann solvers are proved to produce more numerical
dissipation than the exact solver, but numerical experience
suggests that this choice does not have a significant impact
on the accuracy of the solution, especially when polynomial
degree increases. The conservative formulation can thus be
solved with, for example, a Roe solver, which consists of
the exact solution to a linearized Riemann problem, and is
consistent with the discrete entropy condition (e.g. Roe81).
The basic idea consists in considering that over a small
time step, the characteristics curves propagating information
can be replaced by straight lines. This approximation leads
to consider as constant the eigenvalues and eigenvectors
matrices Λ and R.

The Roe numerical flux for shallow water equations (e.g.
RSLS06; SZ02b) can be written as:

Fn(U,Uk) =
1
2
[
F(U) + F(Uk)

] · n +

1
2
Fr
[
F(U) − F(Uk)

] · n +

1
2
cA(1 − Fr2)

[
U− Uk

]
. (8)

The first term corresponds to the centered flux, the others are
dissipation terms. The average Froude number Fr is defined
as:

Fr =
vA · n

cA
, (9)

with vA a Roe-averaged velocity and cA a Roe-averaged
wave speed that are computed as

uA =
u
√

h + uk
√

hk

√
h +

√
hk

,

vA =
v
√

h + vk
√

hk

√
h +

√
hk

,

cA =

√
g
h + hk

2
.
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3 Mesh-adaptation

Efforts on the development of mesh adaptation techniques
have been underway for over twenty years and have provided
a number of important theoretical and practical results (e.g.
RLSF05; Bak97; SB97; GBL02).

It is only recently that mesh adaptation has been applied
to transient flow problems and in particular to ocean applica-
tions (e.g. PPG+05). It has been shown that DG techniques
allow to control the quality of a solution transfer between two
consecutive adaptive meshes (e.g. RLSF05). It is indeed pos-
sible to adapt the mesh very often and project solutions with-
out alteration.

We have recently developed mesh adaptation algorithms
that allow to locally modify a given 2D or 3D mesh in order
to make it conform to a given size field (e.g. RLSF05; Li03;
LRCS04). The MeshAdapt software package performs local
mesh modifications, essentially edge swaps, edge collapses
and edge splits. Note that we use here only a small set of
the package capabilities: MeshAdapt is able to perform 3D
anisotropic mesh adaptation in parallel.
It is obvious that an anisotropic mesh is the optimal choice,
especially where the flow is itself anisotropic (e.g. RLSF05).
But in this framework of a first experiment in coupling ocean
modeling and mesh adaptation, only isotropic meshes were
considered in order to simplify the mesh metric definition.

3.1 Description of the MeshAdapt package

A mesh metric field is a smooth positive function M(x, y)
defined over the domain Ω. The length of a mesh edge e
is computed as le =

∫
e

√M(x, y)dl. The aim of the mesh
adaptation procedure is to modify an existing mesh to make
it a unit mesh, i.e. a mesh for which every edge is of size
le = 1. At one given time step, a metric field is computed
at every node of the mesh using the results of an a posteriori
error estimation procedure. The mesh adaptation algorithm
then modifies locally the present mesh by:

– Splitting all the long edges,
– Collapsing all the short edges.

Edge swaps are also performed in order to optimize the qual-
ity of the resulting mesh. The mesh adaptation procedure is
applied iteratively until a convergence criterion is satisfied.
The different local mesh modifications used here are depicted
in Figure 2.

Typically, the algorithm stops when every edge of the do-
main has a dimensionless size in the interval le ∈ [0.5; 1.4].
A long edge is an edge such that le > 1.4 and a short edge is
an edge of size le < 0.5. Using this interval for short and long
edges ensures that the two new edges created by a bisection
will not be short edges. Oscillations between refinements and
coarsenings are therefore prevented. More details about this
mesh adaptation procedure can be found in previous papers
(e.g. RLSF05; Li03; LRCS04).

As an example, we see on Figure 3 two mesh size fields
together with the respective adaptive meshes. Those results
come out of a simulation that will be described below in more
details. Both plots on top of Figure 3 were computed at an
early stage of the simulation while the bottom plots are the
result of about 100 adaptations.

3.2 Error estimation

Here, we only consider the spatial error of discretization.
Note that it has been shown (e.g. CHG+05) that, using an
explicit Runge-Kutta time stepping of order p + 1 in time
together with a DG method of order p in space, the spatial
error is at least one order of magnitude higher than the error
in time.

The approximated fields in a DG method are discontin-
uous at inter-element boundaries. It has been shown (e.g.
MCR05) that the inter-element jumps of the solution are con-
verging at the same rate as the discretization error. If we con-
sider the situation depicted at Figure 4, the jump at one point
pk of edge ∂Ωek

converges at the same rate as the DG error:

[U − Uk](pk) = O (hp+1
)

,

where h is the local mesh size. Notice that h always denotes
the local mesh size in the following section.

It has been shown that the DG solution was supercon-
vergent at downwind faces (e.g. MCR05). This means that,
on ∂Ωek

, either U or Uk is a good approximation (at order
h2p+1) of the exact solution. Here, we choose the average
value to be the approximation of the exact solution U ex:

Uex(pk) � 1
2
[
U + Uk

]
(pk).

We have then:

E(pk) = [U − Uex](pk) � 1
2
[
U − Uk

]
(pk).

The jumps are therefore a good image of the discretization
error and can be used as an error indicator. Here, we show
that, using an appropriate measure of the jumps, we are able
to use the jumps as an error estimator. We will compute local
and global effectivity indices and show that they are optimal.
We consider an average error along each edge.

e2
∂Ωek

=
1

|∂Ωek
|
∫

∂Ωek

E2ds � 1
4

1
|∂Ωek

|
∫

∂Ωek

[U−Uk]2ds,

e∂Ωek
= O (hp+1

)
.

For each element Ωe, we compute an a posteriori error esti-
mator by the following rule:

e2
Ωe

=
1
3
|Ωe|

3∑
k=1

e2
∂Ωek

, (10)
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where |Ωe| is the area of Ωe. Note that the three mid-edge
points of the triangle form a Gauss quadrature rule. Clearly,
using this simple approach, the error is constant in one el-
ement and the resulting size field is still constant in each
high order triangle. More complex rules can be computed for
higher order polynomial approximations. The total error is
calculated as the sum of all elementary errors

e2 =
∫

Ω

E2dv =
∑

e

e2
Ωe

. (11)

The relative error is defined as:

ε2 =

∫
Ω E2dv

2
∫

Ω
U2dv

=
e2

2 ‖U‖2
L2

= O (hp+1
)

(12)

implying that it is smaller than 1. We define the local relative
error as:

ε2
Ωe

=
e2

Ωe

2 ‖U‖2
L2

, with
∑

e

ε2
Ωe

= ε2.

Our aim could be either to control the discretization error
with a minimum number of elements or to control the num-
ber of elements in the optimal mesh while minimizing the
discretization error.

Let us consider Ωe an element of the initial mesh for
which we have computed an error of εΩe . We know that, if he

is the size of Ωe (its circumscribed radius for example) and
if h∗

e is the size of the elements of the optimal mesh on the
region coverd by Ωe, we have:

εΩe

ε∗Ωe

=
(

he

h∗
e

)p+1

. (13)

where ε∗Ωe
is the relative error defined in the region enclosed

by Ωe in the optimal mesh. The total error in the optimal
mesh is then:

ε∗2 =
∑

e

ε∗2
Ωe

=
∑

e

ε2
Ωe

(
h∗

e

he

)2(p+1)

=
∑

e

ε2
Ωe

r−2(p+1)
e ,

(14)

where re is a factor that represents the reduction of element
sizes in element Ωe. The number of elements N ∗ in the opti-
mal mesh can be computed using the re’s. Clearly,

N∗ =
∑

e

rd
e ,

where d is the dimension of the problem. Here d = 2. The
problem is either to minimize N ∗ while controlling ε∗ = ε̄ or
to minimize ε∗ while controlling N ∗ = N̄ . The first problem
leads to the following saddle point optimization problem:

min
re

max
λ

∑
e

r2
e + λ

(∑
e

ε2
Ωe

r−2(p+1)
e − ε̄2

)
,

where λ is a Lagrange multiplier. We find easily that:

r2
e =

(
λ(p + 1)ε2

Ωe

)1/(p+2)
. (15)

The solution of the problem can be computed in a closed form
if p is constant:

re = ε̄1/(p+1)ε
−1/(p+2)
Ωe

[∑
e

ε
2/(p+2)
Ωe

]−1/(2p+2)

. (16)

The second problem leads to:

min
re

max
λ

∑
e

ε2
Ωe

r−2(p+1)
e + λ

(∑
e

r2
e − N̄∗

)
,

where λ is another Lagrange multiplier. The solution is, for p
constant:

re =
√

N∗ε1/(p+2)
Ωe

[∑
e

ε
2/(p+2)
Ωe

]−1/2

.

The re’s define the size field used to build the adapted mesh
by means of local mesh modifications.

3.3 Projection of the solution

Once the mesh has been adapted, the solution on the previous
mesh is projected on the adapted one. This is done by means
of an L2 projection. The DG method allows this projection
to be done element by element. Another advantage of the DG
method is that, during the edge split operation, the projection
is exact and no error is introduced. The edge collapse oper-
ator is only used in regions of the domain where the error is
low, so no significative error is introduced with this coarsen-
ing operation. Finally, the introduction of numerical diffusion
is only expected when the swapping operation is applied. It
is recommended to use an accurate integration scheme in the
L2 projection: the solution may be discontinuous across the
edge that is swapped. Here, we do not consider node repo-
sitioning, typically Laplacian smoothing, because this mesh
modification pattern introduces an excessive amount of nu-
merical dissipation.

4 Application to Ocean modeling

In this section, we first perform a validation step on a bench-
mark problem: the Stommel model. An adaptive convergence
experiment is performed in order to test both the convergent
behavior of the DG scheme and the efficiency of the adaptive
strategy. In a second experiment, we simulate the propaga-
tion of a typical anticyclonic baroclinic eddy in the realistic
domain of the Gulf of Mexico.
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4.1 Adaptive convergence applied to the Stommel gyre

Interesting simplifications can be done to the shallow water
equations in order to obtain the Stommel model, used to
perform the following convergence study.

First, the non linear transport terms ∇ · (Hvv) are ne-
glected. Then we assume a constant bathymetry and the β-
plane approximation, according to which the Coriolis param-
eter is a linear function of one space coordinate, i.e. f =
f0+β0y, where f0 ≈ 10−4 s−1 and β0 ≈ 10−11 m−1s−1 are
constants. The dissipation term is parametrized as τ b = γHv
where γ is a constant friction coefficient. The typical sur-
face stress is given by τ s = τ0 sin(πy′) with y′ = y

Ly
∈

[−0.5; 0.5] the non-dimensional coordinate with Ly the typi-
cal size of the domain along the y-dimension. Finally, the rel-
ative elevation is neglected compared to the bathymetry, lead-
ing to the following classical linearization: H = h + η ∼= h.
With those approximations, the linearized form of the shal-
low water equations becomes:

∂η

∂t
+ ∇ · (hv) = 0 , (17)

∂v
∂t

+ g∇η + (f0 + β0y)ez × v = −γv +
τ s

hρ
. (18)

Equations (17) and (18) are sometimes called the Stommel
model which leads to the typical “Stommel gyre” (Figure(5))
(e.g. Sto48).

The Stommel equations are solved on a square of one
thousand kilometers of side, and compared to the analytical
solution. The Coriolis effect leads to a geostrophic balance,
creating a recirculation cell. The linear part βy of the
Coriolis factor f tends to move the eddy westward (for the
northern hemisphere parameters), leading to a boundary
layer at the western boundary of the domain. The size of this
boundary layer is determined by the ratio γ

βLx
. The adaptive

method is therefore very useful in order to capture the large
gradients on this western boundary, while the eastern part of
the domain does not require such a fine discretization. The
analytical solution can be found in appendix A. On Figure
(5), the typical Stommel stream function is shown with its
western boundary layer.

Two different polynomial orders (P1 and P4 elements)
have been used, giving two different theorical convergence
rates, according to hp+1

e from relation (13) where he is the
local element size.

Figure (6.a) presents the evolution of the L2 error norm
with the characteristic element size on uniformly refined
meshes. The numerical results show that the theoretical
asymptotic behaviour is only attained using dense uniform
meshes.

The Figure (6.b) presents the evolution of the L2 norm of
the error versus the characteristic size of the elements cor-

responding to a given target error. The numerical results are
compared to the theorical convergence rates lines.

Numerical results fit the theorical rates, both with fixed
regular mesh and adapted mesh. A kind of oscillatory
behaviour is still present on the adaptive mesh which can be
explained with the use of the interval [0.5; 1.4] to transform
the error estimation into a new edge size field, as discussed
in the previous paragraph. To reach the same error norm
of approximatly 5 × 10−3 with linear shape functions, the
non-adaptive structured regular mesh required 648 elements
while the adaptive method needs only 79 elements. On the
same mesh, the error is more than a hundred times smaller
with P4 element than with P1.

For the same convergence experiment, we plot the
maximum error compared to the degrees of freedom. As we
see on Figure 7-(a), for the same maximum error of 10−2, the
adaptive strategy with first order elements leads to use five
times less degrees of freedom. And with the use of fourth
order elements, we obtain about one hundred less degrees
of freedom for this same maximum error. The meshes on
Figures 7-(b) and 7-(c) are respectively those obtained with
the first and fourth order adaptive meshes.

Finally, a classical way to quantify the quality of an error
estimator is the effectivity index (e.g. Ain04), defined as the
ratio between the norm of the error estimator ε and the norm
of the exact error e. The global index is:

θ =
‖ ε ‖L2

‖ e ‖L2

, (19)

while the local one is defined in the same way on each el-
ement.With the first order elements, mean jumps have been
defined on each node as the mean of the jumps on adjacents
elements to compute the norm ‖ ε ‖L2 . Figure (8) shows the
evolution of this index with the number of elements. The local
index on this figure is defined as the simple mean of locals in-
dexes on the whole domain. The global index tends to a value
of 1.03. A value so close to one indicates that the jumps seem
to be relevant as error estimator. The local effectivity field is
depicted on Figure (9).

Our choice of mesh size field based on the only interface
element jump leads to the right convergence rate, regardless
of polynomial order. Adaptivity and the use of high order
elements both seem useful, but combining the two seems
particularly efficient and simple with the DG method.

4.2 Propagation of a baroclinic anticyclonic eddy at
midlatitudes

The following results concern the propagation of a typical
baroclinic anticyclonic eddy at midlatitudes (e.g. HRLD05)
in the Gulf of Mexico. The basin is assumed closed, the
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Yucatan Channel and the Florida Straits with their inflow
and outflow are ignored. Altough this experiment is highly
idealized, it is expected to represent some of the features of
the life cycle of anticyclonic eddies with the adaptive capture
of eddies propagation.

To model the flow in the Gulf of Mexico, it is essen-
tial to take into account its baroclinic aspects. In this re-
spect, the simplest approach consists in assuming that the
domain is divided into two constant density layers sepa-
rated by a free, impermeable interface: the pycnocline. As
the lower layer is much deeper than the top layer, it is pos-
sible to further simplify the model to a reduced-gravity one.
Such a model is widely used in oceanography and limnology
(e.g. NDP03; LO85; WLO89; BO80). To establish reduced-
gravity equations, a closure hypothesis on the pressure force
is needed, that eventually leads to a closed set of equations
governing the motion in the surface layer. Accordingly, the
downward displacement of the pycnocline, ξ, and the depth-
averaged velocity in the surface layer, v, obey equations that
are similar to the classical shallow-water equations intro-
duced in section 2:

∂ξ

∂t
+ ∇ · (Hv) = 0 , (20)

∂Hv
∂t

+ ∇ · (Hvv) + fez × v = −g′H∇ξ , (21)

where H = h + ξ is the actual depth of the upper layer
(Figure(10)), given that h is the unperturbed equilibrium
height of the surface layer; g ′ is the so-called reduced
gravity. The latter is defined as g ′ = gδ, with g the gravity
and δ = ∆ρ

ρ the relative density difference between the
bottom and the surface layers.

A Gaussian distribution of water elevation η is assumed
at initial time:

η(x, y, t = 0) = C exp[−D(x2 + y2)] , (22)

with C = 68.2 m and D = 5.92 × 10−11 m−2. The β-
plane assumption is made (i.e. f = f0+βy) with the Coriolis
parameters taken at 25N : f0

∼= 6.1635 10−5 s−1 and β0
∼=

2.0746 10−11m−1s−1. An initial velocity field is taken to be
in geostrophic balance, which means:

u(x, t = 0) = − g

f

∂η

∂y
= 2

g′

f0 + β0y
CDy exp[−D(x2 + y2)],

v(x, t = 0) =
g

f

∂η

∂x
= −2

g′

f0 + β0y
CDx exp[−D(x2 + y2)],

leading to a maximum initial flow speed of 1 ms−1 with
g′ = 0.137 ms−2 and h = 100 m. The maximum Froude
number reached during the simulation is max(Fr) = 0.5,
which is very high compared to the simple Stommel model,
and the Rossby number is Ro ∼= 9 × 10−3.

No wind forcing and no bottom friction is applied. The
Coriolis effect is thus the only source term responsible for
moving the eddy westward. This propagation of slow Rossby
waves, represented with the shallow water equations, is
due to the β-effect. Such waves have a major effect on the
large scale circulation, and thus on weather and climate.
For instance, Rossby waves can intensify western boundary
currents, which transport huge quantities of heat. Even a
minor shift in the position of the current can thus affect
weather over large areas of the globe.

Figure (11) represents the evolution of the eddy with the
Coriolis forcing. Its westward propagation is captured by the
mesh evolution (right column): a minimum size field of ten
kilometers has been applied to keep a low number of ele-
ments.
After one week of physical time simulation, the mesh has
been adapted three times to capture the regions with larger
variations: the eddy region, and the coast lines, where gravity
waves come and bounce back. At this time, the mesh presents
approximately 3000 elements. The eddy keeps moving west-
ward until approximately week 11, when it reaches the coast.
Then, its shape is modified when a second eddy appears, spin-
ning in the opposite direction. The number of elements grows
up to 7000 in order to fit this large variation region. On week
14, one can see the slow creation of a western boundary cur-
rent, flowing southward. As the eddy keeps moving south-
ward, the mesh seems to perfectly capture the evolution of
this current and the eddy generated at the southern extremity
of the golf on week 23. The initial eddy then collapses to gen-
erate smaller eddies which keep spinning and mixing on the
western boundary. The number of elements decreases then to
the initial value of approximatly 3000.
The mesh has been well adapted to eddies and currents, but
large field variations and mesh refinement must also be no-
ticed on sharp and non regular coasts, as on the north and
east-north of the Gulf. A restriction of ten kilometers has
been applied on the size of elements on adaptive mesh. To
reach the same size with a non-adaptive mesh, about 34000
elements would be required with the first order polynomial
shape functions.

5 Conclusion

In this paper we show that both high-order elements
and mesh adaptivity, coupled with discontinuous Galerkin
method, can be a very attractive approach to simulate ocean
flows. The DG method provides a simple and efficient way
to deal with those two techniques, by providing an efficient
error estimator. This DG method has been successfully
applied to the shallow water equations, and seems to be
particularly promising in this framework of a new ocean
model.
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Of course, in terms of the physic that need to be modeled,
lots of work need to be done in code implementation in
order to compare with established ocean model. Our next
step toward this goal will be the ability to deal with realistic
bathymetry. On the mesh adaptation side of the work, we
plan to take full advantage of the anisotropic mesh adaptation
features of the MeshAdapt package.
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A Analytical solution of the Stommel problem

The analytical steady solution is given by :

Ψ(x, y) =
D3τ0Ly

π2γρ
f1(x) cos(πy)

U(x, y) =
Dτ0

πγρ
f1(x) sin(πy)

V (x, y) =
Dτ0

πγρδ
f2(x) cos(πy)

η(x, y) =
Dτ0f0Lx

πγρδgh

[
−Cdrag

δπ
f2(x) sin(πy)

+
1
π

f1(x)
(

cos(πy)(1 + βy) − β

π
sin(πy)

)]

with the following functions :

f1(x) =
π

D
(

1 +
(ez− − 1)ez+x + (1 − ez+)ez−x

ez+ − ez−

)

f2(x) =
1
D

(ez− − 1)z+ez+x + (1 − ez+)z−ez−x

ez+ − ez−

D =
(ez− − 1)z+ + (1 − ez+)z−

ez+ − ez−

z+
− =

−1 ±√1 + (2πδε)2

2ε

The dimensionless parameters used are : the aspect ratio of
the domain δ = Lx

Ly
, the ration between bottom friction and

Coriolis effect Cdrag = γ
f0

and ε = γ
Lxβ0

the parameter
defining the boundary layer width.

2 SLIM, Second-Generation Louvain-la-Neuve Ice-ocean Model,
www.climate.be/SLIM
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Fig. 1. Shallow water notations for water depth H with a time-independent bathymetry h. Notice that the relative elevation η is usually several
orders of magnitude smaller than the unperturbed depth.
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Fig. 2. Local mesh modifications. Edge split (top), edge collapse (middle) and edge swap (bottom). The zone depicted in bold represents the
cavity that is modified by the local mesh modification.
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Fig. 3. Mesh size fields and adaptive meshes obtained at different time steps, for the propagation of a typical anticyclonic eddy in the Gulf of
Mexico (cf. section 4.2). The mesh on top includes 14545 triangles while the one on bottom includes 9618 triangles.
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Fig. 5. Isolines of the stream function obtained for the Stommel model with the following parameters : f0 = 10−4 s−1, β0 =
2 10−11 m−1s−1, τ0 = 10−1 Nm−2, γ = 10−6 s−1, g = 10 ms−2, h = 103 m, ρ = 103 kgm−3 and Lx = Ly = 106 m the
length of the domain along the x and y dimensions.
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Fig. 7. The evolution of the maximum error, located in the western boundary layer for this Stommel model, showing the advantages of
coupling both adaptivity and high order elements, which can be done in a simple and efficient way with the DG method.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

ef
fe

ct
iv

ity
 in

de
x

# elements

local index
global index
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as efficient error estimators.
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(a) 3200 elements structured grid (b) 20000 elements structured grid

Fig. 9. The local effectivity fields present the same “boundary layer structure”
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Fig. 10. Notations for the shallow water reduced gravity model, with the time-independant height h and ξ the downward displacement of the
interface between the two layers.
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Fig. 11. Isolines of elevation field and velocity norm, and the corresponding adaptive mesh, respectively, at different times of the eddy
propagation. On each plot, the 40 iso-η lines extend from −35 m (blue lines) to 65 m (red lines), while the 20 isovelocity lines extend from
0 m/s to 1.5 m/s.


