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Abstract. A method for generating computational meshes
for applications in ocean modeling is presented. The method
uses a standard engineering approach for describing the ge-
ometry of the domain that requires meshing. The underly-
ing sphere is parametrized using stereographic coordinates.
Then, coastlines are described with cubic splines drawn in the
stereographic parametric space. The mesh generation algo-
rithm builds the mesh in the parametric plane using available
techniques. The method enables to import coastlines from
different data sets, and consequently to build meshes of do-
mains with highly variable length scales. The results include
meshes together with numerical simulations of various kinds.

1 Introduction

Finite elements have been used in engineering analysis for
several decades. Since the nineties, geometric domains that
are used in finite element analysis and design are built using
Computer Aided Design (CAD) programs. Today’s CAD sys-
tems are highly reliable: they deal with most of the complex
geometric features of industrial parts or assemblies.

Traditional ocean models are based on finite differences
schemes on Cartesian grids (Griffies et al., 2000). It is only
recently that finite elements and unstructured meshes have
been used in ocean modeling (e.g. Piggott et al., 2007; White
et al., 2008; Danilov et al., 2005). One of the advantages of
unstructured grids is their ability to conform to coastlines.

As unstructured grid ocean models began to appear, mesh
generation algorithms were either specifically developed or
simply adapted from classical engineering tools. Le Provost
et al. (1994) use the mesh generation tools of Henry and Wal-
ters (1993) on several subdomains to obtain a mesh of the
world ocean, aiming at global scale tidal modeling. Further,
Lyard et al. (2006) use a higher resolution version of the same
kind of meshes with the state of the art FES2004 tidal model.
Hagen et al. (2001) give two algorithms to generate meshes

of coastal domains, and use them to model tides in the Gulf of
Mexico. Legrand et al. (2006) show high-resolution meshes
of the Great Barrier Reef (Australia). At the global scale,
Legrand et al. (2000) and Gorman et al. (2007) developed
specific algorithms to obtain meshes of the world ocean.

Our domain of interest is the Earth’s surface, i.e., within
a sufficiently good approximation, a sphere S centered at the
origin and of radiusR of about 6370 km. The World Ocean is
bounded by continents and islands coastlines. The first aim of
the paper is to describe an automatic procedure that enables
to build a boundary representation (BRep) of the geometry
of the World Ocean within a prescribed accuracy. This proce-
dure takes advantage of various sets of data: high resolution
shoreline databases (Wessel and Smith, 1996), global relief
data (National Geographic Data Center, 2006), local carto-
graphic data, etc.

Even if accurate data is available, it cannot be envisaged
to build a BRep with the maximal available resolution every-
where. For example, the up to date in 2008 global shoreline
database has a resolution of about 50m, which would lead
to a huge number of control points (9,451,331) ! Our pro-
cedure enables to construct a model with an adaptive geo-
metrical accuracy. Some regions of interest of the globe are
discretized with the maximal available geometrical accuracy
while other regions are approximated in a coarser way. Our
technique also allows to mix various data sets as input.

Numerical analysis procedures utilize meshes, i.e., dis-
cretized versions of the domains described by CAD mod-
els. In this paper, we have decided not to develop a new
mesh generation algorithm specifically designed for doing
meshes that can be used in finite element marine modeling.
Here, we have rather decided to build a CAD model that can
serve as input for any surface mesher. In the last decade,
mesh generation procedures have evolved with the objec-
tive of being able to interact directly with CAD models (e.g.
Geuzaine and Remacle, 2008; Beall and Shephard, 1997;
Haimes, 2000). More specifically, some of the authors of this
paper have developed Gmsh: a three-dimensional finite ele-
ment mesh generator with built-in pre- and post-processing
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facilities (Geuzaine and Remacle, 2008). The specific nature
of the model—the Earth surface with several thousands of
islands, including hundreds of thousands of control points—
have led us to greatly improve the meshing procedures imple-
mented in Gmsh. Those specific features are also explained in
the paper.

The paper is divided in three sections. The first section
deals with the procedure for building CAD models of ocean
geometries. The second section describes mesh generation
procedures. In the last section, we provide illustrative exam-
ples with diverse simulation results.

2 A geometric model for the World Ocean

Any 3-D model can be defined using its Boundary Represen-
tation (BRep): a volume (called region) is bounded by a set
of surfaces, and a surface is bounded by a series of curves;
a curve is bounded by two end points. Therefore, three kinds
of model entities are used: model vertices G0

i (dimension 0),
model edges G1

i (dimension 1), and model faces G2
i (dimen-

sion 2).
Model entities are topological entities, i.e., they only deal

with adjacencies in the model. A geometry has to be associ-
ated to each model entity. The geometry of curves and sur-
faces are their shapes. A parametrization of the shapes, typi-
cally a mapping, is usually available.

The geometry of a model edge is its undelying curve de-
fined by the parametrization:

t ∈ R 7→ p(t) ∈ R3.

Similarly, the geometry of a model face is its underlying sur-
face defined by the parametrization:

(u, v) ∈ R2 7→ p(u, v) ∈ R3.

If a curve is included within a surface, it is usually drawn on
the parameter plane (u, v) of the surface:

t ∈ R 7→ (u(t), v(t)) ∈ R2 7→ p (u(t), v(t)) ∈ R3.

As an illustration, let us consider the surface represented
in Figure 1. Most important features of model entities are
highlighted in this example:
– The surface is periodic. A seam curve has been introduced

in the list of boundary edges of the surface to define its
closure properly.

– The surface is trimmed: it contains four holes and one of
those holes is crossed by the seam.

– One of the model edges on the closure of the model face
is degenerated. Degenerated edges are used to take into
account singularities of the mapping. Such degeneracy is
present in many surface geometries: spheres, cones and
other surfaces of revolution.
From an engineering point of view, dealing with the ge-

ometry of the ocean is dealing with a trimmed sphere—i.e.,
a surface that is periodic, that is bounded by continents and
islands and that has degeneracies at both poles.

Fig. 1. Figures show a model face in both real and parametric coor-
dinates. The seam of the surface is highlighted in the right Figure.

2.1 Parametrization of the sphere

Several parametrizations exist for the sphere. CAD systems
use spherical coordinates. In geosciences, most of the avail-
able data are expressed in the geographic coordinate system,
which has the same properties as the spherical coordinate sys-
tem. Spherical coordinates suffers from all the problems that
we have just mentioned before: there exist two singular points
in the mapping, leading to the definition of two degenerated
edges in the model; one of the coordinate directions is peri-
odic, leading to the introduction of one seam edge; shorelines
may cross the seam edge, leading to complexity in the defi-
nition of the geometry. It is indeed impossible to choose the
seam edge so that it does not cross any shoreline. In Figure
2, a mesh of the World Ocean built using the spherical coor-
dinate system is shown. The seam passes through the Bering
strait and crosses the Pacific ocean, ending somewhere in the
coastline of Antarctica.

Moreover, the spherical coordinates, as most of the
parametrizations, are not conformal. A conformal mapping
will conserve angle at which curves cross each other. Conse-
quently, in order to obtain an isotropic mesh in the real space,
one has to build an anisotropic mesh in the parametric plane.
In the case of spherical coordinates, the mapping is highly
distorted near the singularities, i.e., near the poles. Robust
surface meshers might be able to deal with that issue, as il-
lustrated in Figure 2. Anyway, it is always better to use a
conformal mapping, such as the stereographic projection of
Figure 3.

Let us consider a sphere S centered at the origin and of
radius R, and one point s. This point lies on the surface of
the sphere, does no belong to the oceans, and will be the only
singular point of the mapping. A suitable choice for s could
be a location in the middle of Kazakhstan but here, we choose
s = {0, 0,−R}. It corresponds to the South Pole. Antarctica
being a continent, this choice makes sense for ocean mod-
eling applications. The stereographic projection consists in
projecting points p of the sphere on the plane z = R.
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Fig. 2. Mesh of the World Ocean using the spherical coordinate system. The seam edge is visible on the right plot.
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Fig. 3. Stereographic projection.

The stereographic projection u(x) = {u, v} of a point
x = {x, y, z} is the intersection of vector q − p with z = R:

u = {u, v} =
{

2R
R+ z

x,
2R
R+ z

y

}
,

x = {x, y, z} =
4R2

u2 + v2 + 4R2

{
u, v,R(4R2 − u2 + v2)

}
.

Figure 4 shows the World Ocean in stereographic coordi-
nates {u, v}. The outside loop surrounding the domain is the
stereographic projection of the Antarctica. The radius of the
Earth is chosen arbitrarily to R = 1. No seam is required to
define the overall domain and no singular point exists in the
domain of interest.

2.2 Coastlines definition

Today, the most accurate shoreline database is, to date, the
Global Self-consistent Hierarchical High-resolution Shore-
lines (GSHHS, (Wessel and Smith, 1996)). This data set de-

Fig. 4. The World Ocean in stereographic coordinates.

scribes the Earth’s coastlines with a global resolution of about
50 m. GSHHS data are guaranteed to be self-consistent, i.e.,
coastlines in the database do not intersect themselves. In our
approach, we define a size field γ(x) that expresses the geo-
metrical requested accuracy of the model at any point x. The
GSHHS data set is coarsened with respect to this size field
and every successive points at x that are closer than γ(x) are
collapsed.

A coastline is defined in practice as a periodic curve. A
first approach could be to use a piecewise linear definition for
defining such a curve. A first naive approach would consist
in defining such a curve by a piecewise linear interpolation.
However, in order to enjoy more flexibility, we use here cubic
B-splines with control points taken in the GSHHS database.
As B-splines remain inside the convex hull defined by the
control points, it can be derived that if the piecewise linear
representation is convex and consistent, then the curvilinear
B-splines representation is also consistent.

In Figure 5, we generate the coastlines of Great Britain
and Ireland with different resolutions. With a resolution γ =
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Fig. 5. Great Britain and Ireland with a resolution of 100 km
(top/left), 15 km (top/right), 1.5 km (bottom/left) and 150 m (bot-
tom/right). Splines control points are depicted on the geometry with
the two lowest resolutions.

100 km, we only consider Ireland and Great Britain, and we
neglect all smaller islands. With a resolution of γ = 15 km,
15 contours appear in the domain. Typically, the Isle of Wight
is now included. With a resolution of γ = 1.5 km, the domain
contains 152 islands. With a resolution of γ = 150 m, the
domain contains 2176 islands and a total of 83,277 control
points.

3 Mesh generation

As an accurate representation of the boundaries is now avail-
able, the next task involve the generation of finite element
meshes on curved surface. Two major approaches are avail-
able:

– Techniques for which the surface mesh is generated di-
rectly in the real 3D space.

– Techniques for which the surface mesh is generated in the
parametric plane of the surface.

When a smooth parametrization of the surface exists,
building the mesh in the parametric plane appears to be the
most robust choice.

3.1 Definition of a local mesh size field

The aim of the mesh generation process is to build elements
of controlled shape and size. Mesh generators are usually able
to adapt to a so called mesh size field. An isotropic mesh size
field is a scalar function δ(x) that defines the optimal length
of an edge at position x of the real space. In the domain of
ocean modeling, there exist some heuristics on the way mesh
sizes should be distributed in the World Ocean.

The mesh should take into account the bathymetry. The
bathymetry H(x) is taken into account in two ways, leading
to two fields f1 and f2. Gravity waves move at speed

√
gH

with g being the acceleration of gravity. The lengthscale λ of
a gravity wave is therefore proportional to λ = O(1/

√
H). If

we consider that N mesh sizes are necessary to capture one
wavelength, and if λmin is the smallest wavelength that has to
be captured for a reference bathymetry Href , we define f1 as

f1(x) =
λmin

N

√
Href

H(x)
.

Another way of taking into account the bathymetry is to
force the mesh to capture its variations with a given accuracy
(Gorman et al., 2006). Bathymetry can be seen as a scalar
field defined at mesh vertices and interpolated piecewise lin-
early. As the first term of error in its interpolation is supposed
to depend on λmax the greatest (in absolute value) eigenvalue
of the HessianH(x),

H(x) = ∇∇
(
H(x)
Href

)
,

we define the second field :

f2(x) =
1√
λmax

.

In order to well represent to coastlines and to capture the
small scales phenomenons generated by the friction on the
coasts, mesh size should be even smaller near coastlines. This
criterion has already been used in the literature (e.g. Legrand
et al., 2006). We define a first field f3(x) as the distance to
the closest shoreline:

f3(x) = d(x).

This field f3 is also called a shore proximity function.
This distance can be computed in place using the Ap-

proximated Nearest Neighbor Algorithm (ANN, (Arya et al.,
1998)).

For each criterion field fi, a mesh size field δi is computed
as follow:

δi(x) = δsmall
i + αi(x)(δlarge

i − δsmall
i ),

where

αi(x) =


0 if fi(x) ≤ fmin

i
fi(x)−fmin

i

fmax
i −fmin

i
if fmin

i < fi(x) < fmax
i

1 if fi(x) ≥ fmax
i

with δlarge
i and δsmall

i a large and a small desired mesh size,
fmax

i and fmin
i two field values that define the zone of refine-

ment. The final size field is simply computed as the minimum
of all size fields:

δ(x) = min (δ1(x), δ2(x), . . . ).
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Fig. 6. Three parametrizations of a straight edge.

Finally, it is always possible to add other size fields, as error
estimators that may depend on the finite element solution.

In Figure 6, we consider a straight edge e described by its
vector e in the parametric plane, where the mesh generation
process is performed. Its length L is computed as follows:

L =
∫

e

√
‖dx‖2 =

∫
e

√
du T JT Jdu =

∫ 1

0

√
e T Me dt

where J = ∂x/∂u is the Jacobian of the mapping and
M = JT J is the metric tensor. In the case of a stereographic
projection, both eigenvalues of M are positive, and equal:

λ(u) =
(

4R2

u2 + v2 + 4R2

)
.

To obtain the mesh in the parametric space but with the
right sizing in the real space, a suitable mesh size field δu(u)
has to be defined in this parametric plane. As the stereo-
graphic projection is a conforming mapping, it can be defined
with a simple scaling:

δu(u) = δ(x(u))
1

λ(u)
.

3.2 Coastlines mesh generation

Let us consider a curve in the parametric plane u(t) :
[0, 1] → R2. It is easy to show that the number of subdi-
visions N of the curve is the following function of the size
field

N =
∫ 1

0

1
δu(u(t))

‖dtu‖dt,

where ‖dtu‖ =
√

(∂tu)2 + (∂tv)2. The N + 1 mesh points
on the curve are located at coordinates {t0, . . . , tN} where ti
is computed using the following rule:

i =
∫ ti

t0

1
δu(u(t))

‖dtc‖dt.

Integration of those expressions must be performed with
and adaptive trapeze rule, as coastlines are discretized with

cubic splines that contain a large number of control points.
Typically, Europe and Asia are discretized by only one spline
with more than twenty thousand control points, in Figure 4.

However, this algorithm does not guarantee that, even if
the model edges G1

j that constitute the boundaries of the
domain are non intersecting, the corresponding 1D meshes
do not self intersect. Figure 7 shows two islands very close
to each other. Yet, even the geometry is itself not self-
intersecting, the first 1D generated mesh intersects itself. This
can be been considered as a critical issue: modifying the mesh
size field by hand locally cannot be considered when several
thousand of islands are to be involved. It is therefore manda-
tory to define a systematic recovery procedure. Such an algo-
rithm illustrated in Figure 7 works as follow:

1. A Delaunay mesh that contains all points of the 1D mesh
is initially constructed using a divide and conquer algo-
rithm (Dwyer, 1986).

2. Missing edges are recovered using edge swaps (Weather-
ill, 1990). If a mesh edge ei that belongs to the 1D mesh
is to be swapped for recovering edge ej , then the mesh
edges ei and ej that both belong to the 1D mesh intersect.

3. All intersecting edges ek are split in 2 segments and the
new point is snapped onto the geometry. Then, we go
back to the first step until the list of intersecting edges
is empty.

If an intersecting edge is smaller than the geometrical toler-
ance, then an error message is thrown claiming that the geom-
etry is self intersecting. Note that when a unique mesh edge
connects two different islands, those islands are numerically
merged if a non slip boundary condition is applied along their
coastlines.

3.3 Surface mesh generation

To generate a mesh on the sphere, three approaches are avail-
able in Gmsh software. All of them start with an initial De-
launay mesh that contains all the mesh vertices of the con-
tours. Then, every mesh edge of the 1D mesh is recovered
using edge swaps. Then, internal vertices are iteratively in-
serted inside the domain. The way points are inserted differ
in the three algorithms:

– The del2d algorithm is inspired from the work of the
GAMMA team at INRIA (George and Frey, 2000). New
points are inserted sequentially at the circumcenter of the
element that has the largest adimensional circumradius.
The mesh is then reconnected using an anisotropic De-
launay criterion.

– In the frontal algorithm (Rebay, 1993) new points are in-
serted optimally on Voronoı̈ edges. The mesh is then re-
connected using the same anisotropic Delaunay criterion
as the one in the del2d algorithm. Note that this algo-
rithm’s implementation only differs slightly from the one
of algorithm del2d.
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Fig. 9. Mesh of the World Ocean. The mesh size field is defined using a shore proximity function, the bathymetry and its Hessian.

Fig. 10. Close up of the mesh of Figure (9) in the north Pacific ocean, color levels represent the bathymetry (in m.). The effects of the three
refinement rules are clearly visible
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Fig. 7. A geometry with two islands that are very close to each other.
The first image shows the initial 1D mesh that respects mesh size
field. The second image shows the first iteration of the recovery al-
gorithm. The third image shows the final mesh that was possible to
realize after 2 recovery iterations

– The meshadapt algorithm is very different to the two first
ones. It is based on local mesh modification (Geuzaine
and Remacle, 2008): this technique makes use of edge
swaps, splits and collapses. Long edges are split, short
edges are collapsed and edges are swapped if a better ge-
ometrical configuration is obtained.

The frontal algorithm usually gives the highest quality
meshes while the del2d algorithm is the fastest: it produces
about 5 million triangles a minute, if the size field δ is not
too complex to compute. Figure 8 presents three meshes of
one of the model of Figure 5 for which we have used a shore
proximity function as the only size field. Meshes have respec-
tively 18698, 19514 and 17154 triangles. The percentage of
elements that have an aspect ratio ρ > 0.9 is respectively
93.2% 88.1% and 84.5%. CPU time for generating meshes
was respectively 0.7 seconds, 0.5 seconds and 5.7 seconds.

a) Mesh done using the frontal algorithm

b) Mesh done using the del2d algorithm

c) Mesh done using the meshadapt algorithm

Fig. 8. Meshes of the same domain using three different algorithms.

Figures 9 and 10 present a mesh of the World Ocean that
makes use of all size fields defined in Section 3.1:

– A shore proximity function f1 is used with δsmall
1 = 30

km, δlarge
1 = 200 km, fmin

1 = 0 and fmax
1 = 500 km.

– We use f2 and refine the mesh proportionally to the
square root of the ocean depth. The size field δ2 ranges
from 25 km to 500 km.
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– We use f3 to capture the bathymetry. The size field δ3
ranges from 25 km to 500 km.

The resulting mesh is generated of 436,409 triangles and the
whole mesh generation process (data loading, coastline re-
duction, 1d mesh generation, 2d mesh generation, output files
writing) takes 35 seconds on a recent laptop. Those timings
compare advantageously with alternative techniques based on
mesh decimation (Gorman et al., 2006). The memory foot-
print of the meshing algorithms is low: about 12 million tri-
angles (6 million nodes) can be generated per Gigabyte of
memory.

4 Examples

In the mesh generation community, it is assumed that a good
paper should present nice pictures of meshes. We will not
circumvent that prerequisite. Yet, mesh generation is usually
considered as a tool, not as an aim. Therefore, the meshes
that we present in this section are accompanied with some
simulation results.

4.1 Sea ice modeling

The mesh presented on Figure 11 was used to investigate the
sensitivity of the Arctic sea ice cover features to the reso-
lution of the narrow straits constituting the Canadian Arc-
tic Archipelago. This mesh is constituted of 17,053 triangles
with a resolution of 20 km near the islands in the archipelago
and 40 km elsewhere. Far from coasts and islands the res-
olution decreases up to 300 km. Model results are shown
on Figure 12. A complete description of the model and its
validation can be found in Lietaer et al. (2008, in press, doi
10.1016/j.ocemod.2008.06.002).

4.2 Multiscale model of the Scheldt river

Within the framework of the multi-disciplinary project TIM-
OTHY 1, our team is presently involved in the development of
a two-dimensional hydrodynamic model of the Scheldt Estu-
ary, in the Netherlands. Our main goal in this project is to take
advantage of the finite element method to study very specific
ecological problems, such as the dynamics of faecal bacteria
or heavy metals. We also intend to study the characteristic
time scales determining the physics and the biology in the es-
tuary. In this model, the tide is forced at the shelf break, which
is more than 1000 km far from the mouth of the estuary, and
the upstream boundary is situated in the areas of Antwerp,
where the river width is a few hundreds of meters. The multi-
scale character of the problem is then one of its main feature

1 TIMOTHY, Tracing and Integrated Modeling of Natural and
Anthropogenic Effects on Hydrosystems : The Scheldt River basin
and adjacent coastal North Sea,
http://www.climate.be/TIMOTHY

Fig. 11. Mesh of the Arctic region (north of the parallel 50 degrees
North) especially refined along coastlines and in the Canadian Arctic
Archipelago.

Fig. 12. Detail of the mesh of Figure 11. Mean March sea ice
thickness pattern (in m) in the western part of the Canadian Arc-
tic Archipelago as computed by the finite element sea ice model
(1979-2005).

and the use of an unstructured grid is thus totally appropri-
ate. Figure 13 presents a mesh 27,472 elements used in our
preliminary runs. Various criteria based on the distance from
coasts, islands and shelf break are used to define de mesh size
fields. The element size range from 150 m in the Scheldt river
near Antwerp to about 50 km far from the coastlines.

4.3 The Great Barrier Reef

Our research team has developed the first multiscale hydrody-
namic model of the whole Great Barrier Reef. The Great Bar-
rier Reef is on the continental shelf of the Australian north-
eastern coastline. There are over 2500 coral reefs in a strip

http://www.climate.be/TIMOTHY
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Fig. 13. Multiscale mesh: north sea and Scheld river estuary. Color
levels represent the amplitude of the M2 tidal component (in m).

that is about 2600 km in length and 200 km in width. The sim-
ulation that is presented here make use of most the specific
mesh generation features that were presented in this paper: a
geometric domain with multiple scales, use of a shore prox-
imity function, grid adaptation with respect to the bathymetry,
special refinement in the domain of interest. A complete sim-
ulation is described in Lambrechts et al. (2008). Figure 15
shows a mesh built to run small simulation on a single CPU
to study a specific region while keeping the boundary con-
ditions of the complete simulation. Around a specific island
(Lizard Island), the resolution is sufficient to capture some
small scale hydrodynamic features like tidal jets in small
interreefs passages and recirculations around islands. Else-
where on the shelf, the resolution is very coarse, those regions
are only used as boundary conditions. 70% of the 20,384 el-
ements are located in the refined region. A plot of velocity
vectors is also presented. Tidal jets and eddies due to the in-
teraction of the flow with the topography near the open-sea
boundary are clearly visible. Those small scale features were
captured thanks to the accurate description of the bottom to-
pography.

5 Conclusion

A CAD based mesh generation procedure for ocean model-
ing has been developed. The new approach has the advan-
tage to rely on existing well known engineering mesh gener-
ation procedures. The CAD model, based on a smooth bound-
ary representation of the domain, allows to build a compact,

Fig. 14. Coarse mesh of the Great Barrier Reef refined around Lizard
Island.

Fig. 15. Details of the simulation computed on the mesh of Figure
14. Color levels show the depth and the arrows indicate the bidimen-
sional velocity field.

self consistent and portable geometric model. Existing robust
meshing procedures can be applied to the CAD model. Vari-
ous meshes can be constructed based on the same CAD def-
inition and various meshing algorithms can be used as well.
Last, but not least, everything that has been described in this
paper is now part of Gmsh, a three-dimensional finite ele-
ment mesh generator with built-in pre- and post-processing
facilities (http://www.geuz.org/gmsh, Geuzaine and
Remacle (2008)). Gmsh being open source (under the GNU
General Public License), anyone within the finite element
marine modeling community has the opportunity to use this
freely.
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