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Abstract

Though narrow straits may have a strong influence on the large-scale sea ice mass
balance, they are often crudely represented in coarse resolution sea ice models. Unstructured
meshes, with their natural ability to fit boundaries and locally increase the mesh resolution,
propose an alternative framework to capture the complex oceanic areas formed by coasts and
islands. In this paper, we develop a finite element sea ice model to investigate the sensitivity
of the Arctic sea ice cover features to the resolution of the narrow straits constituting the
Canadian Arctic Archipelago. The model is a two-level dynamic-thermodynamic sea ice
model, including a viscous-plastic rheology. The model is run over 1979-2005, forced by
daily NCEP/NCAR reanalysis data. Confronting qualitatively numerical experiments with
observations shows a good agreement with satellite and buoys measurements. Due to its
simple representation of the oceanic interactions, the model overestimates the sea ice extent
during winter in the southernmost parts of the Arctic, while the Baffin Bay and Kara Sea
remain ice-covered during summer. Advantages of unstructured meshes include a better
representation of shelf water polynyas thanks to an increased mesh resolution near the
coastlines. In order to isolate the benefits from resolving the Canadian Archipelago, a
numerical experiment is performed where we artificially close the Archipelago. Focusing on
the large-scale sea ice thickness pattern, no significant change is found in our model, except
in the close surroundings of the Archipelago. However, the local and short-term influences
of the ice exchanges are nonnegligible. In particular, we show that the ice volume associated
to the Canadian Archipelago represents 10 % of the Northern Hemisphere sea ice volume
and that the annual mean ice export towards Baffin Bay amounts to 125 km3 yr−1, which
may play an important role on the convective overturning in the Labrador Sea.

Keywords: Sea ice model, Unstructured mesh, Finite element method, Canadian Archipelago

1 Introduction

Sea ice is a key component of the high latitudes climate (e.g., Serreze et al., 2007). In regions
where the incoming solar radiation at the top of the atmosphere is higher during local summer
than elsewhere on Earth (e.g., Wallace and Hobbs , 1977), most of the downwelling shortwave
radiation is reflected due to the high snow and ice albedos (e.g., Perovich et al., 2002). Moreover,
the salt rejected into the underlying water during sea ice formation plays a crucial role in the

∗Corresponding author. E-mail: olivier.lietaer@uclouvain.be, Tel: +32 10 47 23 57, Fax: +32 10 47 21 80

1



formation of convection and thus in the global thermohaline circulation (e.g., Aagaard and
Carmack , 1989). Sea ice further constitutes a natural barrier between the atmosphere and
ocean, insulating the relatively warm ocean waters from the cold atmosphere by drastically
limiting mutual heat, momentum and water mass exchanges. All these interactions illustrate
the complex role played by sea ice in the climate system. In particular, the ice-albedo feedback
(Ebert and Curry, 1993) is considered to be largely responsible for the high sea ice sensitivity to
climate change, as highlighted by simulations with climate general circulation models (CGCMs)
on the one hand (e.g., Manabe and Stouffer , 1980), and by the recent Arctic sea ice minima
of extent on the other hand (Stroeve et al., 2005). Nevertheless, recent comparisons (e.g.,
Holland and Bitz , 2003; Arzel et al., 2006; Zhang and Walsh, 2006; Lefebvre and Goosse, 2008)
between CGCM simulations plead for the need to improve our understanding of sea ice and its
representation in climate models.

Sea ice is drifting on the ocean, mainly driven by the wind and the ocean currents. The
large-scale Arctic ice circulation is characterized by two main features. In the western part of
the Arctic, the ice describes a large anticyclonic gyre named the Beaufort Gyre where the ice
can be trapped for up to 10 years (Hibler , 1980), with typical ice velocities of 2 cm s−1. In
the east, the ice is transported by the Transpolar Drift from the north of Siberia to the North
Atlantic through Fram Strait. This strait is approximately 435 km wide and constitutes the
main exit for the Arctic sea ice, the ice volume export reaching about 2200 km3 yr−1 (Kwok
et al., 2004). Narrow straits, on their part, may have a strong impact on the geophysical flows in
general (e.g. water mass exchanges between different oceanic basins, complex flow in localized
areas, etc.) and in the polar regions they can be responsible for a somewhat chaotic dynamical
behavior of sea ice. Due to the high ice concentration and low ice temperature, the formation
of ice bridges in channels like Nares Strait (Samelson et al., 2006) may prevent any ice flow
for several months. Later, the ice is suddenly released when the plugs collapse. Moreover, the
ice characteristics in these channels have a strong interannual variability (Melling, 2002; Kwok ,
2006).

Of particular concern is the complex area formed by the numerous islands and coastlines in
the Canadian Arctic Archipelago (CAA). The straits constitute an important pathway for the
cold waters from the Arctic Ocean to the Atlantic. Even if many recent studies have explored the
freshwater cycle of the Arctic (e.g., Stigebrandt , 2000; Serreze et al., 2006), large uncertainties
remain, especially concerning the sea ice contribution. Assembling different sources, we get
the following picture: estimates of the ice freshwater outflow through the southern part of the
CAA roughly amount to 160 km3 yr−1 (Prinsenberg and Hamilton, 2005), while, in the north,
the Nares Strait sea ice flux (Kwok et al., 2004) accounts for ∼ 100 km3 yr−1 of freshwater
(assuming a sea ice salinity of 4 psu for a reference seawater salinity of 34.8 psu, and a density
of 900 kg m−3, see Serreze et al. (2006)). In comparison, the oceanic freshwater flux through
the CAA is evaluated by Prinsenberg and Hamilton (2005) at 3200 km3 yr−1. The rest of the
northern gates of the CAA contributes to a net inflow into the Arctic (Kwok , 2006), suggesting
as stated in the latter study that most of the ice exported into Baffin Bay (except from Nares
Strait) is produced in the CAA rather than exported from the Arctic. Because sea ice is landfast
during a large part of the year in the northern CAA (Melling, 2002), the different straits act as
a “buffer” on sea ice between the Arctic Ocean and Labrador Sea, preventing Arctic ice outflow
in the north and providing ice generation (Sou, 2007) in the south.

The role of the freshwater flux through the CAA is thought to be important regarding the
freshwater budget of the region (Stigebrandt , 2000; Dickson et al., 2007), and may play an
important role on the convective overturning in the Labrador Sea (Goosse et al., 1997a). Less
known is the influence of the ice contribution to this freshwater export on the one hand, and
the potential link with the troubles shown by most of the models to simulate the decay of the
summer sea ice cover in Baffin Bay on the other hand (Timmermann et al., 2005; Johnson et al.,
2007; Vancoppenolle et al., subm.). Finally, data in this harsh region of the world are scarce (e.g.,
Melling, 2002), especially concerning the ice thickness, ranging between 2 and 6 m in the CAA
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(Bourke and Garrett , 1987; Melling, 2002; Kwok , 2005), underlining the need for numerical
experiments. Furthermore, this area is currently being of strong economical importance and
political interest in the context of the opening of the Northwest Passage.

Finite element methods have been proposed at the onset of sea ice modeling. In the framework
of the AIDJEX project (Arctic Ice Dynamics Joint Experiment), Mukherji (1973) was the first to
make use of a finite element method code for its aptitude to simulate the crack propagation in sea
ice. A few years later, Becker (1976) introduced the guiding lines of the method and asserted:
”Because of their generality and widespread use, finite element techniques seem a worthwhile
alternative to the difference scheme. [...] The ease with which finite element techniques can
be used to model complicated shapes with arbitrary variation in the mesh spacing is likely to be
the motivating factor leading to any such use.”. In the early eighties, Sodhi and Hibler (1980)
used in a pioneer study an unstructured grid along with a finite element method in order to
resolve the ice drift in the complex region of Strait of Belle Isle. Another work investigating the
finite element method in sea ice modeling was held by Thomson et al. (1988). They performed
a comprehensive comparison between different constitutive laws for Eulerian and Lagrangian
decriptions in order to model the short-term ice motion in Beaufort Sea.

Unstructured grids have among others the advantage to avoid the pole singularity and related
stability problems (Williamson, 1979) and to represent in a more accurate fashion coastlines
(e.g., Adcroft and Marshall , 1998; Legrand et al., 2006). Recently, many efforts have been
brought to investigate the contribution of unstructured meshes in ocean modeling (e.g., Walters ,
1992; Lynch et al., 1996; Le Roux et al., 2000; Danilov et al., 2004; Pietrzak et al., 2005; White
et al., 2008a) and in sea ice modeling (Schulkes et al., 1998; Yakovlev , 2003; Wang and Ikeda,
2004; Sulsky et al., 2007). Very few modeling research has been performed on the CAA. Two
studies are based on unstructured grid regional models: Kliem and Greenberg (2003) constructed
gridded fields of potential temperature and salinity, used in a second step to simulate the mean
circulation in the area, while Sou (2007) studied the impact of future climate scenarios on the
CAA. The present paper in turn presents a large-scale sea ice model operational for climate
studies which, to the authors’ knowledge, is the first to investigate the effects of resolving the
CAA on the ice cover features.

The model presented is aimed to be coupled to the finite element ocean model SLIM1 (White
et al. (2008b)). As both models are still under development, and because a large part of the
variability of the ice circulation can be explained by the winds (Thorndike and Colony, 1982;
Serreze et al., 1989), the studies presented here are run with an uncoupled sea ice model with
no ocean dynamics. Furthermore, the ocean stress in not significant in most of the northern
CAA due to the weak ocean currents (Stronach et al., 1987). The sea ice model includes a
viscous-plastic rheology and the Semtner (1976) zero-layer thermodynamic scheme. It is evident
that some distance must be taken while analyzing the model results because of the simple
thermodynamics used and the absence of ocean currents. The model complexity is nevertheless
found sufficient for the purpose of this paper is to focus (i) on the feasibility and advantages of
unstructured grids in large-scale sea ice modeling, and (ii) on the main trends of the influence
of the CAA on the Arctic ice cover and freshwater budget.

This paper is organized as follows. Section 2 describes the sea ice model, while Section 3 deals
with its numerical resolution and focuses on its finite element implementation. In Section 4,
the model results are first confronted to the observations in order to validate the model. The
influence of the CAA resolution on the results is then investigated via sensitivity experiments.
Concluding remarks are finally given in Section 5.

1Second-generation Louvain-la-Neuve Ice-ocean Model, http://www.climate.be/SLIM.
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Figure 1: Two-level model: neglecting h0 leads to a simplified relation between mean (h) and actual
(hr) ice thicknesses: h = Ahr.

2 Model description

Following Hibler (1979), sea ice is assumed to behave dynamically as a viscous-plastic fluid
with nonlinear viscosities. The model includes two thickness categories (see Fig. 1): thick ice
with an actual mean thickness hr and thin ice corresponding to a thickness lower than a cutoff
constant h0. In this so-called two-level model, we introduce two variables to describe sea ice on a
parcel: the mean ice thickness h and the ice concentration A, which is defined as the proportion
of thick ice recovering the parcel. The relation between those variables is illustrated in Fig. 1.

According to the aforementioned definitions, the equation of momentum conservation reads:

ρh
Du

Dt
= −ρhfk × u +A (τa + τw) − ρhg∇ξ + ∇ · σ (1)

where ρh is the ice mass per unit area, u the ice velocity, D
Dt = ∂

∂t + u · ∇ is the material
derivative, f the Coriolis parameter (taken to be constant for the high latitudes), k is a unit
vector normal to the surface, τ a et τw are respectively the air and ocean surface stresses on the
ice weighed by the ice concentration (Connolley et al., 2004), g the acceleration due to gravity,
ξ the sea surface dynamic height and σ the ice internal stress tensor. Both the air and water
stresses are parameterized by quadratic drag laws, the water stress depending on the ice velocity:

τw = ρwCw |Uw − u| [(Uw − u) cos θw + k × (Uw − u) sin θw] (2)

where Cw is the water drag coefficient, ρw the water density and θw the water turning angle.
The force due to the ocean tilt is commonly computed by establishing the geostrophic balance
with the ocean current:

−ρhg∇ξ = ρhfk × Uw (3)

In our model, the ocean velocity Uw is uniformly equal to zero, hence reducing the water surface
stress to a simple drag of the ocean on the ice. Additionally, the contribution of the ocean tilt
is neglected. We shall nevertheless take these terms into account in the rest of this paper for
the sake of generality.

The viscous-plastic rheology assumes that sea ice is behaving as a nonlinear compressible
viscous fluid with the general form:

σ = 2η (ε̇, P ) ε̇ +
(
ζ (ε̇, P ) − η (ε̇, P )

)
tr (ε̇) I − P

2
I (4)

where ε̇ = 1
2

(∇u + ∇uT
)

is the strain rate tensor, I the identity tensor, η and ζ are the shear
and bulk viscosities, respectively, and P the pressure. For normal strain rates, ice is assumed
to behave plastically, while for small strain rates ice is supposed to flow very slowly in a viscous
way. In the one-dimensional case, the yield delimiting the plasticity state from the creep flow
corresponds to a fixed strain rate ε̇0. In two dimensions, this yield stress concept is generalized
through a yield curve in the principal stress plane. If the stress state lies inside this curve,
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Figure 2: Representation of material points for which 0.965 × 10−9 ≤ γ ≤ 10−9 s−1 (red) plotted in a
principal stress space. The material points yielding a γ ≥ 2 × 10−9 s−1 lie on the ellipse and undergo
hence plastic deformation (solid line).

ice behaves viscously; otherwise, ice is constrained to plasticity and the state lies on the curve.
Hibler (1979)’s original elliptical yield curve has been widely used, and, combined to the normal
flow rule, it yields the following viscosities:

ζ = min
(
P

2γ
, 2.5 × 108P

)
and η = ζ/e2 (5)

where e is the ellipse eccentricity (typically 2), P is the ice strength, determining the ellipse size,
and γ is given by :

γ = [(ε̇2xx + ε̇2yy)(1 + 1/e2) + 4ε̇2xy/e
2 + 2ε̇xxε̇yy(1 − 1/e2)]1/2 (6)

and can be interpreted as a measure of the strain rate determining whether the material under-
goes plastic deformation or not. In the principal stress plane, all the stress states characterized
by the same γ value lie on an ellipse centered on (−1/2,−1/2) whose size normalized by P is
proportional to γ (Fig. 2). Finally, we need an expression of the pressure term to close the
system. Following Hibler (1979), P is set proportional to h and A:

P = p∗ h e−C(1−A) (7)

with two empirical parameters p∗ and C.

Mass conservation is ensured by an advection equation for the mean ice thickness, while
another continuity equation is required for the ice concentration:

∂h

∂t
+ ∇ · (uh) = Sh (8)

∂A

∂t
+ ∇ · (uA) = SA (9)

where Sh and SA are source terms accounting for sea ice ablation or accretion. In addition, the
ice concentration is constrained (A ≤ 1) to roughly account for the mechanical redistribution of
sea ice. Inspired by Thomson et al. (1988), the redistributed values of the actual ice thickness
h′r and concentration A′ are given by:

h′r = hr + hr[A− 1]+,

A′ = A− [A− 1]+,

where [f ]+ is the positive part of f, i.e. max(f, 0). This formulation clearly shows a source term
for hr and a sink term for A: the idea here is to prevent the ice concentration to exceed unity
while the actual ice thickness is allowed to increase.
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The computation of heat diffusion within the thick ice is based on Semtner (1976)’s zero-
layer model. This model neglects the storage of sensible and latent heat, resulting in a linear
temperature profile in the ice. Following Fichefet et al. (1998), two boundary conditions are
needed, expressed as a heat budget at the surface (giving the possible ablation rate Ssu

hr
of the

actual ice thickness) and at the bottom of the ice (Sb
hr

). The term Sh is hence made of two
contributions:

Sh = A (Ssu
hr

+ Sb
hr

).

At the upper surface, an equilibrium surface temperature Ts is computed from the heat balance:

(1 − α)Fr + FL + Fs + Fl︸ ︷︷ ︸
FA

+FC = 0,

where α is the surface albedo, which in our model is prescribed for each month and takes the
presence of snow into account. FA is the net atmospheric flux to the upper ice surface and FC

is the conductive flux through ice. Fluxes directed to the ice surface are taken to be positive.
In order to solve the heat balance equation, the model includes a parameterization of the solar
radiation Fr (Zillmann, 1972), the net longwave radiation FL (Berliand and Berliand , 1952) and
turbulent fluxes of sensible Fs and latent Fe heat (classical bulk formulae, see Goosse (1997b)).
If the predicted temperature Ts is above the melting point, its value is reduced to that point,
yielding an excess of energy counterbalanced by latent heat absorption:

Ssu
hr

= −FA + FC

Li
,

with Li the volumetric latent heat of fusion of ice.

At the base of the ice, the bottom temperature is kept at the freezing point of seawater. The
melting or growth rate of the ice depends only on the conductive heat flux and the oceanic heat
flux Fb:

Sb
hr

=
FC − Fb

Li
.

We assume that the ocean has a constant mixed layer depth hmxl = 30 m. This ocean layer is
characterized by a unique temperature (Tw) that is equal to the freezing point of the seawater
(Tf ) if there is ice on the parcel. The oceanic flux consists of a restoring term towards a climato-
logical temperature of the mixed layer (Tmxl) taken from the Polar science center Hydrographic
Climatology (PHC 3.0, updated from: Steele et al. (2001)):

Fb = ρw Cpw hmxl γt (Tmxl − Tw) , (10)

where Cpw is the specific heat of seawater and γt a relaxation constant.

In the case of thin ice and open water, another heat budget Bl is computed to account for
lateral growth or decay:

Bl = (1 − αw)Fr + FL + Fs + Fl + Fb,

where αw stands for the ocean surface albedo. If Bl is negative, the lead is partially filled with
ice of thickness h0 (Fichefet et al., 1998):

Sacc
A = − (1 −A)Bl

Lih0
.

When the heat balance is positive, the lateral decay on its turn is computed as:

Sab
A = − A

2h
[−Sh]+.
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Finally, the different data sets used to run the model are daily NCEP/NCAR reanalysis
data for the air temperature and the wind velocity, and monthly climatologies for the relative
humidity (Trenberth et al., 1989) and the total cloudiness (Berliand and Strokina, 1980).

3 Numerical method

In this section, the equations and the initial and boundary conditions of the sea ice model are
presented. The finite element spatial discretization of this boundary value problem is derived
and the system of equations obtained is integrated with respect to time.

The sea ice model consists in finding the ice velocity u(t, x, y), the mean ice thickness h(t, x, y)
and the ice concentration A(t, x, y) satisfying the following partial differential equations:

ρh
∂u

∂t
= ∇ · σ(u, h, A) + Su(u, h, A)

∂h

∂t
+ ∇ · (uh) = Sh(h,A)

∂A

∂t
+ ∇ · (uA) = SA(h,A)

on the two-dimensional domain Ω englobing the whole Arctic sea ice north of the parallel 50
degrees North. In the momentum equation, the term Su takes into account the wind and ocean
forcings, the Coriolis force and the force due to the tilt of the ocean, and the advection has
been neglected (Fichefet et al., 1998) in the momentum balance (Eq. (1)). All the calculations
are performed from a given initial situation where all fields are specified. The kind of boundary
conditions is twofold: on the one hand, a no-slip condition is prescribed along the coastline and
islands. On the other hand, along the open sea boundary, a stress-free boundary condition is
applied, while the inward ice thickness and concentration fluxes are prescribed.

The finite element method consists of three major steps.

• We divide the domain Ω into a triangulation of non overlapping elements Ωe as shown in
Fig. 3. Unstructured grids enable a flexible distribution of the degrees of freedom in the
domain according to the areas of interest. Hence, in this study, large elements are used
far from the shelf and in areas of low latitudes where few ice is observed, while the mesh
is refined along coastlines, especially in the CAA.

• We replace the three unknown fields by some piecewise polynomial approximations defined
as follows:

u(t, x, y) ≈ uh(t, x, y) =
∑p

j=1 U j(t)φj(x, y)

h(t, x, y) ≈ hh(t, x, y) =
∑m

j=1Hj(t)ψj(x, y)

A(t, x, y) ≈ Ah(t, x, y) =
∑m

j=1 Aj(t)ψj(x, y)

where the shape functions φ and ψ are defined a priori and U j(t), Hj(t) and Aj(t) are
the nodal unknowns. The local support of those polynomial shape functions is the key
ingredient of the finite element method allowing us to derive a discrete algebraic system
enjoying nice sparsity properties.

• Finally, we define a discrete Galerkin formulation to obtain numerical values for the nodal
unknowns. Such a procedure imposes that the weighted residuals of the partial differen-
tial equations have to vanish. Typically, we integrate over the whole domain the partial
differential equations weighted by the shape functions. However, even if those residuals
vanish, it does not ensure that the differential equations will be satisfied everywhere by
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Figure 3: Finite element mesh of the Arctic. The domain extends north of the parallel 50 degrees
North. The mesh resolution varies from 10 to 400 km.
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Figure 4: Linear nonconforming (left) and constant (right) shape functions.

uh, hh and Ah. Moreover, some integrals by parts are performed in order to reduce the
degree of differenciability required by the shape functions. One clear advantage of the
finite element method for sea ice modeling is its facility to handle boundary conditions
(Thomson et al., 1988). Taking advantage of the homogeneous stress boundary condition,
the spatial discretization reads:

Find uh, hh and Ah such that:

< φjρh
h ∂uh

∂t
> = − < ∇φj · σh > + < φjA

hSu(uh, hh, Ah) > j = 1, . . . , p

< ψj
∂hh

∂t
> = < ∇ψj ·

(
uhhh

)
> − � ψjh

h
(
uh · n) � + < ψjSh(hh, Ah) > j = 1, . . . , m

< ψj
∂Ah

∂t
> = < ∇ψj ·

(
uhAh

)
> − � ψjA

h
(
uh · n) � + < ψjSA(hh, Ah) > j = 1, . . . , m

where n denotes the outward normal, the notation < . > holds for
∫
Ω . dΩ and � . � for∫

∂Ω . dΓ.

This spatial discretization leads to a nonlinear system at each time step whose unknowns
are the nodal values. A nonconforming linear approximation (Hua and Thomasset , 1984) is
chosen for the velocity field, while the mean ice thickness and concentration are approximated
by constant shape functions (Fig. 4). The two-level model proposed by Hibler (1979) suggests
indeed a constant mean ice thickness and concentration in each cell, even if not excluding a
higher order representation of both variables. Advantages of the linear nonconforming elements
include an easier computation of the fluxes through the edges and the orthogonality of the shape
functions. In the set of discrete equations, it is important to emphasize that the integral on the
domain has to be splitted as the sum of the integrals on each element because the derivative no
longer exists on the edge. This is so because nonconforming shape functions are discontinuous
across elements edges. In the same way, the boundary integral is now the sum of the integrals
along all internal and external edges. For more details, we refer to Hanert et al. (2004). Finally,
we perform a hybrid time scheme where Coriolis force and external forcings due to the ocean
are implicitly integrated. To take into account nonlinear terms, a standard linearization based
on a Newton-Raphson scheme is introduced, and the resulting sparse matrix is solved with a
“skyline” linear solver. Typically, for a simple Euler scheme, the discrete equations read:
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10 cm/s 10 cm/s

Figure 5: Mean climatological ice drifts (1979-2005). Left: observations; right: the velocity field is
computed by our model. Both fields have been interpolated on a regular grid for visual convenience.

< φjρh
h
n

(
uh

n+1 − uh
n

)
> = ∆t

(
− < ∇φj · σh

n > + < φjS
h
u(uh

n+1, h
h
n, A

h
n) >

)

< ψj

(
hh

n+1 − hh
n

)
> = ∆t

(− � ψjh
h
n

(
uh

n+1 · n
) � + < ψjSh(hh

n, A
h
n) >

)

< ψj

(
Ah

n+1 −Ah
n

)
> = ∆t

(− � ψjA
h
n

(
uh

n+1 · n
) � + < ψjSA(hh

n, A
h
n) >

)

where the subscript denotes the time evaluation.

Advection is computed via a first-order, finite volume upwind-weighted scheme. Though
numerically diffusive, it is monotonic and conservative, two essential ingredients to ensure the
positive-definiteness of the transported variables h and A.

4 Results and discussion

The model has been run over the period 1979-2005. We first present results from the control
simulation, essentially focusing on the patterns of ice concentration, mean ice thickness and
ice drift. A special attention is paid to the ability of the model to represent the formation
of coastal polynyas thanks to the flexibility of unstructured grids. A numerical experiment is
further presented where we investigate the influence of the ice flow through the narrow straits
of the CAA on the Arctic ice thickness distribution and freshwater budget.

4.1 Control run

The model is spun up for only 6 years with annual mean forcings and then integrated with daily
wind and air temperature forcings between 1979 and 2005. The mesh used for this simulation
has a varying resolution between 10 km in the CAA and 400 km (Fig. 3).

We first compare the annual mean sea ice drifts simulated during the whole 1979-2005 period
to the available data (Fig. 5). The daily observed ice motion vectors for the 1979-2005 pe-
riod are derived from data of Advanced Very High Resolution Radiometer (AVHRR), Scanning
Multichannel Microwave Radiometer (SMMR), Special Sensor Microwave/Imager (SSM/I), and
International Arctic Buoy Programme (IABP) (http://nsidc.org, Fowler (2003)). The simulated
ice drift vectors are only represented on grid points where the annual mean ice concentration is
higher than 15%, a value that will be considered here as delimiting the ice edge.
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Figure 6: Mean ice concentrations in March (top) and September (bottom). For both months, we
compare the data sets (left, 1979-2005) derived from SMMR and SSM/I and interpolated on the finite
element grid with the simulated ice concentrations (right, 1979-2005).

Both the Beaufort Gyre and the Transpolar Drift Stream are recognizable in the observations
and the simulation, attesting that the model captures well the essential of the ice circulation in
the Arctic. However, the simulated Beaufort Gyre appears weakened and the model is clearly
missing the ice flow in the region of Bering Strait: on a climatological time scale, observations
suggest that the ice is almost static there, while the model exhibits a clear ice outflow from
the Arctic. This difference is attributed to the oceanic surface currents flowing from the North
Pacific to the Arctic Basin through Bering Strait that should thus counterbalance the wind
stress. The simulated ice dynamics indicates also a higher ice drift along the east coast of
Greenland, while a parabolic-like velocity profile across Fram Strait (e.g., Kwok et al., 2004) is
expected. It is worth noting that the model does not include any parameterization of landfast
sea ice. We suppose that the fine mesh resolution along the coastline allows the influence of
the no-slip boundary condition to vanish rapidly, resulting in a steep variation of the velocity
profile. We also note in the simulation the too large ice tongue south of Fram Strait.

Fig. 6 compares the mean ice concentrations from our simulation to those derived from SMMR
and SSM/I data sets (http://nsidc.org, Comiso (1999)) and interpolated on the finite element
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Figure 7: Global sea ice thickness pattern (in m) as computed by the model (March 1979-2005, right)
and as observed (Januari-April 1960-1982, left, Bourke and Garrett (1987)).

mesh. As can be seen from the observations, in winter, the ice is very concentrated in the Arctic
Basin (> 90%) and drops near the ice edge. The simulated ice pack represents this feature, but
the ice is too extensive in the southernmost part of the domain. The simple thermodynamics
and parameterization of the oceanic heat flux are clearly responsible for this overestimation. In
the North Atlantic, a huge amount of heat is brought into the Nordic Seas by the North Atlantic
Drift Current that originates from the Gulf Stream. This feature is not present in our simulation
and mostly explains the too large presence of sea ice in the Norwegian and Labrador Seas. In
summer, only the central Arctic Basin remains ice-covered. The simulated ice concentration
better matches the observations, even if the model still overestimates the ice cover, especially in
Baffin Bay and the Kara Sea.

Finally, there is a general agreement between the simulated ice thicknesses and observations
(Fig. 7). In the model central Arctic, ice thickness lies between 3 and 4 m. Thickness pro-
gressively increases from Siberia to the CAA “providing natural barriers to the movement of the
ice” (Bourke and Garrett , 1987), where thickness reaches up to 6 m. The essential of the ice
ridging occurs indeed in front of the CAA. Inside the CAA, some spots attain about 7 m (Fig.
10). The influence of resolving the narrow straits constituting the CAA will be investigated in
a separate subsection.

4.2 Polynya formation

A polynya is “any non-linear shaped opening enclosed in ice” (WMO , 1970). A recent re-
view of polynyas by Morales Maqueda et al. (2004) classifies them into two categories: shelf
water polynyas, which are essentially mechanically driven, and deep water polynyas, thermally
driven. Though spatially sparse, polynyas play a crucial role at the interface between ocean
and atmosphere. On the one hand, they enable important oceanic heat losses and modify the
surface albedo. On the other hand, they are at the origin of new ice formation and thus of asso-
ciated brine rejection, which combined to the cooled ocean surface can lead to vertical mixing,
convection and possibly to dense water production.

Most of the current coupled sea ice-ocean models do not have enough resolution to allow
for polynya formation and, as a consequence, this process is either ignored or parameterized
(Morales Maqueda et al., 2004). Climatological results as computed by our model of the ice
concentration in March (Fig. 6) reveal some areas in the domain where the concentration is
decreasing in the wake of islands such as Svalbard and Novaya Zemlya, or along the eastern
Siberian coast (Sea of Okhotsk). As no polynya parameterization is included in the model, this
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Figure 8: Formation of a wind-driven polynya in the west of the archipelago of Svalbard. Figures show
the mean ice thickness (ranging from 0 to 2 m) for early March 2003 (1st, 6th and 11th, respectively).
Vectors represent the wind velocity field in the area of Svalbard. The mean ice thickness and concen-
tration of the element with red edges rapidly diminish over the 10 days from (h, A) = (0.61 m, 0.84) to
(0.39 m, 0.57) and finally (0.26 m, 0.46).

suggests in some way a naturally induced polynya formation due to the high mesh resolution in
these areas.

In order to highlight the benefits from mesh refinement, Fig. 8 illustrates the formation of
a shelf water polynya west of the Svalbard archipelago during 10 days. All the conditions for
shelf water polynya formation are present in our model: first, the mesh is refined around the
fjord situated in the Spitsbergen island and enables the winds to export ice; second, during the
10 days between 1st and 11th March 2003, the wind direction is oriented offshore and the air
temperature is about 10-15 degrees below zero. Focusing on the element with red edges shows
a rapid decrease in ice concentration and thickness. On 1st March, the “initial” state yields a
0.61 m mean ice thickness with a 84% concentration. In 5 days, the ice features drop to 0.39
m and 54%, thus measuring the ice opening. Another 5 days later, the fjord and all the shelf
water offshore the island are ice-covered for less than 50 % with a very thin ice layer. Finally, a
couple of days later (not shown), as the wind direction is changing, the mechanical effect of the
wind vanishes and sea ice thickens back in the surroundings of the fjord.

The results presented here must be cautiously considered within our general framework and
hypothesis. For instance, the coarse resolution wind forcing might be not sufficient to represent
accurately the wind stress in the surroundings of Svalbard. However, the aim of this subsection
is to show how promising the results are regarding the possible evolution of the representation of
the physical processes in the model (ice thickness distribution, a more realistic ocean feedback,
more sophisticated thermodynamics, etc.) together with higher mesh refinement. Above all,
they suggest polynyas might be resolved in some way without any extra parameterization.

4.3 Sensitivity experiment

In order to explore the sensitivity of the sea ice cover to the resolution of the narrow straits
of the CAA, two numerical experiments are conducted. The first one (OP) corresponds to the
control simulation with the CAA open. In the second experiment (CL), the straits connecting
the Arctic Basin to the CAA are closed. For this purpose, the edges of the mesh crossing those
straits are converted to land boundaries, thereby disconnecting the Arctic Basin from the CAA.
This finally reduces to imposing a zero velocity for the velocity nodes situated on the edges in
red (see Fig. 9). This procedure is meant to mimic the situation encountered in coarse resolution
sea ice models that are not able to represent the exchanges of sea ice through the CAA.

Fig. 10 illustrates the climatological ice thicknesses in March for (OP) and (CL) minus (OP).
As mentioned earlier, the mean ice thickness reaches about 6 m along the CAA. Inside the CAA,
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Figure 9: Zoom on the CAA. The edges in red are considered as land in the (CL) experiment, thereby
closing artificially the Arctic Basin in the Canadian area.

Figure 10: March ice thicknesses in the CAA for the 1979-2005 period. On the left: control simulation
(OP), the scale ranges from 0 to 6 m; on the right: difference between (CL) and (OP), the scale ranges
from -0.5 m to 0.5 m.
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Figure 11: Ice thicknesses (from 0 to 5 m) in the CAA simulated by the model for late October
2005. On the left: control simulation (OP); on the right: (CL). Note the formation of open water in
the Beaufort Sea for simulation (CL) and the difference in thickness between (OP) and (CL) along the
Queen Elizabeth Islands.

thickness progressively decreases southward in direction of Baffin Bay and the Labrador Sea.
What strikes first when analyzing the difference between (CL) and (OP) is the high similitude
between results of both experiments. Outside a restricted area surrounding the CAA entrance,
there is no clear difference between (OP) and (CL). Henceforth, on a climatological time scale,
this experiment tends to attest that closing the CAA does not significantly alter the general
ice thickness pattern. Nevertheless, the local thickness pattern shows a clear sensitivity to the
resolution of the narrow straits north of Canada. In particular, the ice thickness difference
between (OP) and (CL) is up to 2 m (not shown) in the southern gates of the Queen Elizabeth
Islands (QEI-South, see Kwok (2006)), because of the stopped ice flux from the Arctic to the
CAA.

On a daily basis, the comparison between (OP) and (CL) reveals stronger differences. The
mean ice thickness patterns are compared for late October 2005 in Fig. 11. During that period,
the wind is blowing offshore the CAA. Two points are to be outlined here. First, along the
Queen Elizabeth Islands, the ice divergence caused by the wind is much more marked in (CL)
because the closed straits prevent any ice thickness outflow from the CAA. The influence of the
domain boundary and the related boundary condition diffuses inside the domain. Moreover,
even a very thick ice cover, which is supposed to have a high ice strength, is very sensitive to
the wind direction. In a few days, the mean ice thickness along the CAA has decreased by more
than 2 m. It is worth mentioning that, in Hibler (1979)’s model, no tensile strength is applied
to the ice and that no landfast parameterization is included in our model. The ice accumulated
against the CAA is hence more sensitive to the wind direction in the (CL) experiment. Second,
for the same reason, closing Amundsen Bay (southern strait in Fig. 9) in (CL) leads to an ice
accumulation inside the CAA, while in Amundsen Bay it generates a large open water area, with
all the physical processes concerned. The ice fluxes between both regions are thus important to
accurately represent the ice flow in northern Canada.

Exchanges of sea ice between the CAA and the Arctic are extensively described and quantified
by Kwok (2006). The model shows a good agreement with these ice fluxes (not shown here),
with typically the same order of magnitude for the annual exports, except for Nares Strait and
QEI-South. As expected, Nares Strait monthly ice area fluxes are weak on average (< 200 km2),
but with large northward exports for a couple of months, yielding a final Arctic inflow. The ice
flux through QEI-South is too large, especially in winter when the model is clearly missing the
landfast sea ice. In the next subsection, we investigate the influence of those ice fluxes on the
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freshwater budget of the Arctic.

4.4 Importance of the CAA for the mass balance of Arctic sea ice

The resolution of the CAA still constitutes in the large majority of sea ice models a missing
peace of the Jigsaw puzzle. In order to evaluate the importance of the CAA for the mass balance
of Arctic sea ice, we perform two additional analyses in the control run (OP). First, the sea ice
volume in the CAA is computed by summing the contributions of all the elements situated
inside a restricted area defined by a triangle (see Fig. 12) supposed to englobe the whole CAA.
According to our model, the mean CAA ice mass represents a rough 10 % of the total simulated
sea ice volume, which is far from being negligible.

Second, the ice volume fluxes towards Baffin Bay are evaluated at three gates described in
Fig. 12 and situated in Lancaster Sound, Jones Sound and Smith Sound. The fluxes experience
a strong interannual variability and, except for three years in Lancaster Sound, contribute to a
positive ice flux to Baffin Bay. As expected, Smith Sound yields the major contribution with
roughly 70 % of the mean total sea ice export, while Lancaster and Jones Sounds contribute to 20
% and 10 %, respectively. Converted into mean annual freshwater fluxes, we find a contribution
of ∼ 20 km3 yr−1 for Lancaster Sound, ∼ 15 km3 yr−1 for Jones Sound and ∼ 90 km3 yr−1

for Smith Sound. The mean total sea ice export towards Baffin Bay is hence of 125 km3 yr−1,
which is close to the 160 km3 yr−1 estimated by Prinsenberg and Hamilton (2005).

5 Conclusions

In this paper, we have presented a finite element, unstructured grid sea ice model. The model
includes a viscous-plastic rheology along with a complete parametrization of the atmospheric
fluxes and is driven by daily NCEP/NCAR reanalysis data. The climatological sea ice drifts,
thicknesses and concentrations computed by the model compare qualitatively well with the
observations. The finite element method presented in this paper reveals effectiveness for sea ice
modeling and enables the use of unstructured grids with all their potential and flexibility. In
particular, higher mesh resolution in the vicinity of the coastline and islands allows for capturing
small-scale processes, such as the formation of shelf water polynyas. We have shown such an
example in the Svalbard Archipelago, where an offshore-oriented wind along with fine mesh
resolution yields a rapid decrease in the ice thickness and concentration on a 10-days period.
Such features are also noticeable on climatological concentration patterns computed by our
model.

Another advantage of unstructured grids is to enable the resolution of the narrow straits of the
Canadian Arctic Archipelago (CAA). A numerical experiment has been performed to investigate
the influence of the ice flow through the CAA. Focusing on the large-scale sea ice thickness
pattern, within our general framework and hypothesis, we have shown that the inclusion of those
straits is not essential, the impact being merely local. This tends to validate the idea of the role
of the CAA as a ”buffer” on sea ice between the Arctic Basin and Baffin Bay. However, we have
first emphasized that the local and short-term influences of the ice exchanges are nonnegligible.
In particular, depending whether the straits are open or closed in the numerical experiment,
the domain boundary and the associated boundary condition influence directly the numerical
solution in the proximity of those straits. Second, on average, the sea ice volume in the CAA
represents a nonnegligible 10 % of the total sea ice volume in our model. Furthermore, the annual
sea ice volume flux towards Baffin Bay has been evaluated in order to assess its importance in
the freshwater balance of the Arctic and yields a mean outflow of 125 km3 yr−1. Our estimate
is in good agreement with the 160 km3 yr−1 suggested by Prinsenberg and Hamilton (2005).
All these diagnoses show how important the CAA is on the mass balance of the Arctic sea ice
and plead for the need to better understand the complex processes and interactions being held
in this region.
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Figure 12: Top: close-up view of the mesh in the CAA. Bottom left: seasonal cycles of the Arctic sea
ice volume with (solid) and without (dashed) the contribution of the CAA. Bottom right: annual ice
volume fluxes (positive if directed towards Baffin Bay) through the three gates represented in the upper
figure (bottom-up: Lancaster Sound, Jones Sound and Smith Sound). All the elements included in the
triangle in the upper figure are considered being part of the CAA.
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The results presented in this study must be considered with some care though since no ocean
dynamics nor oceanic feedback are included in this uncoupled version of the model. Addition-
ally, the Semtner (1976) zero-layer model is known to overestimate the seasonal variability in
ice thickness (e.g., Zhang and Rothrock , 2001). The deficiencies of the model, including the
overestimation of the simulated sea ice extent and the Bering outflow, are to be attributed to
these factors. An important issue addressed by Sou (2007) is to know whether or not the coarse
resolution atmospheric forcings typically used in the models is sufficiently accurate to enable
realistic simulations in the CAA. As stated by Wang et al. (2003), high resolution atmospheric
forcing fields might help to solve this issue. Another open question concerns the mesh resolution
needed for resolving the CAA versus the continuum assumption inherent of the viscous-plastic
rheology.

Some additional investigation based on a coupled sea ice-ocean model should be carried out to
assess the actual role of sea ice passing through the CAA on the global ocean circulation, by way
of the interactions between the associated freshwater flux and the water mass properties of the
adjacent seas. Recently, this issue has been readdressed by Kwok (2005) concerning the impact
of the ice export through Nares Strait and more generally from the CAA on the convective
overturning downstream in the Labrador Sea.

Future work on the sea ice model will include a better representation of the sea ice physics
(halo-thermodynamic model (Vancoppenolle et al., 2007), ice-thickness distribution (Thorndike
et al., 1975), etc.). A coupled unstructured grid ice-ocean model might enable to assess the role
of the ice fluxes through the CAA, explain the formation of static arches or propose lacking data
(such as thickness order of magnitude for estimations of mass budgets). As outlined by Dickson
et al. (2007), numerical models have indeed a role to play to make up for the inherent difficulties
and financial limitations to collect data, and in particular ocean fluxes. Finally, the Hibler
(1979) sea ice rheology imposes a zero tensile strength. We have shown that, with our model,
we are not able to represent static landfast sea ice in the North Canadian Archipelago. This
issue might be resolved by including some parameterization of the landfast sea ice in the model.
However, detailed bathymetry and well-resolved coastal currents are needed for an appropriate
simulation of landfast sea ice (Wang et al., 2003). Hence, it appears that, instead of adding new
features and parameterizations to the actual model, significant improvements might be gained
by investigating a new rheology integrating recent laboratory research work on the mechanical
properties of the ice and observations based on buoys tracking (e.g., Schreyer et al., 2006; Coon
et al., 2007; Weiss et al., 2007).
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