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Abstract

We present a new three-dimensional, unstructured mesa él@ment shallow-water model. The current configu-
ration is suitable for studying unstratified flows and theletion of passive tracers. The model has a free surface and
is hydrostatic. The mesh is unstructured in the horizontdl extruded towards the seabed in the direction parallel to
the local gravity vector to generate a mesh made up of prigims.mesh moves in the vertical and accommodates the
free-surface motions. We describe the numerical treatmkthite hydrodynamical equations with the finite element
method. A discontinuous representation is used in thecagrtor all velocity components. The horizontal velocity
components are non-conforming in the horizontal, whichagipularly appropriate for advection-dominated flows.
The model is validated against a realistic tidal flow aroursthallow-water island for which field measurements are
available and is shown to operate successfully. The thimertsional character of the flow is emphasized by use of
a passive tracer. We also assess the model’s ability togeprehe vertical structure of the horizontal flow field by
applying it to a wind-driven flow experiment in an elongatedtangular basin.

1 Introduction

Unstructured meshes for marine modeling offer some attad¢atures such as the faithful representation of the
domain geometry (coastlines, bathymetry, narrow straitls, etc.) and the possibility of enhancing the mesh res-
olution in regions where it is desired (Lynch et al., 1996gtand et al., 2000; Piggott et al., 2005; Legrand et al.,
2006, 2007; Greenberg et al., 2007). The finite element ndefR&M) offers a few more advantages in addition to
the use of unstructured meshes. It also provides a rigorathematical framework and affords a great flexibility
in the choice of interpolation. Despite this, the last thdeeades of numerical ocean modeling have been mostly
dominated by finite-difference models using structuredgwith the notable exception of a few applications of the
FEM in coastal, shelf and estuarine areas (Lynch and Wet8&7, 1991; Walters and Werner, 1989; Walters, 1992;
Luettich and Westerink, 1995; Ballantyne et al., 1996; Ltyatal., 1996; Fortunato et al., 1997; Cushman-Roisin and
Naimie, 2002; Pietrzak et al., 2005; Walters, 2005; Pi&tedaal., 2006; White and Deleersnijder, 2007) and for tidal
predictions (Le Provost et al., 1995) with a success thattislisputed. The idea of using the FEM for ocean modeling
together with unstructured meshes dates back to the worlobflB75), who allegedly was the first to recognize the
potential of variable mesh resolution for ocean flows. Nbt the finite volume method (e.g., Casulli and Walters,
2000; Chen et al., 2003; Ham et al., 2005; Fringer et al., 28d6hne and Peltier, 2006) and the spectral element
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method (e.g., Haidvogel et al., 1997; Iskandarani et aD32Qevin et al., 2006) also offer the possibility of using
unstructured meshes.

It is not until the second half of the nineties that more dffeas put into the development of diagnostic global
ocean models on unstructured meshes (e.g., Myers and Wd®8%5; Greenberg et al., 1998). Early issues, often
cited as reasons to avoid the FEM, started to be addressedahgh. Le Roux et al. (1998) examined the properties
of several low-order finite element pairs in the context & allow-water equations and assessed their ability to
maintain a noise-free geostrophic equilibrium. The isstispurious computational velocity and elevation modes
arising with the shallow-water equations when using theesarterpolant for all variables was further addressed to
select the appropriate low-order mixed formulation (Hud @homasset, 1984; Hanert et al., 2003; Le Roux, 2005;
Le Roux et al., 2005). In the past, research focused on firaimgpdified form of the equations that did not support
spurious modes. This led to the wave equation method (LynchGray, 1979), used successfully for coastal and
estuarine modeling with a harmonic decomposition in timg.(&innmark, 1986; Lynch and Werner, 1987; Walters,
1992; Fortunato et al., 1997; Greenberg et al., 1998) or witime-stepping approach (e.g., Walters and Werner,
1989; Lynch et al., 1996). The wave equation model is obthbyeoperating on the two-dimensional shallow-water
equations to form a wave equation in terms of the free surédeeation. This method allows to use simple linear
elements for the velocity and elevation and is very accuiategeneral wave problems but experiences accuracy
and stability issues with the advection terms (Kolar et H94). In addition, the wave equation form sacrifices
the primitive continuity equation, which is no longer sfiéid in a discrete sense. This implies continuity (or mass)
imbalances (Dawson et al., 2006; Massey and Blain, 2006yamders the method less suitable for coupling with
transport equations, let alone for long time integratiomsie than several years) for which conservation is crucial.
For these applications involving the transport of scalaamities, the primitive equations approach is preferabk® a
this is the choice we make in this work.

The finite element models by Myers and Weaver (1995), Gragrateal. (1998) and Nechaev et al. (2003) were
diagnostic and it is somewhat regrettable that almost theeades have been necessary since the work by Fix (1975)
until the development of prognostic, unstructured mestitefielement global ocean models (Danilov et al., 2004;
Ford et al., 2004a,b; Danilov et al., 2005; Pain et al., 200®)addition to the early problems cited above, we may
advance a few reasons for the lack of enthusiasm from thenaoealeling community in using the FEM. First, the
finite difference method is computationally cheaper thanREM. This is probably one of the main drawbacks of the
latter when considering climate simulations over decaddsanturies. Even though computer speed will continue to
increase in the future, the finite difference method will trdeely always outperform the FEM in terms of rapidity.
Second, the finite difference method is easier to implenvelnith is essentially due to the structured character of the
grid. Third, the FEM was first applied to steady-state dlfigroblems, a context in which the method performed
remarkably well. However, most of the ocean dynamics is aefilme-dominated and, therefore, does not naturally lend
itself to the use of the FEM.

Itis the authors’ belief that the first reason — efficiencyhef finite difference method — must be of primary concern
when designing a finite element global ocean model (Lynch\&archer, 1991; Danilov et al., 2005; Walters, 2006).
The use of unstructured meshes should not be too detrintertta efficiency of numerical computations and, surely,
some features of earlier models should be carried over ts¢send-generation models, such as that described in
this paper. The second reason — the implementation — is dimeeeffort and should not remain an obstacle if the
method is deemed valuable. As for the third reason, althéinding an accurate, efficient and stable advection scheme
remains an outstanding issue (Walters, 2006), a few effiteminiques have been recently proposed (Hanert et al.,
2004; Iskandarani et al., 2005) that pave the way towardsioiethods.

This work is motivated by the aim of building the unstructismesh, finite element, hydrostatic, free-surface
ocean model SLIM This model should be able to accommodate a wide variety wiflsuch as estuarine, coastal,
shelf, basin-scale and general circulation flows. A fewdatiion steps have already been achieved in the fields of
unstructured mesh generation (Legrand et al., 2000, 20006)2 inertia-gravity waves propagation (Hanert et al.,
2003; White et al., 2006b), advection schemes (Hanert,2@04), nonlinear shallow-water equations (Hanert et al.,
2005), turbulence closure (Hanert et al., 2006; Blaise.e2807) and barotropic instabilities (White et al., 2006%)
the above studies were carried out in one- or two-dimensfoameworks. A recent paper by the same authors deals
with three-dimensional tracer conservation and consistamd the computation of the vertical velocity on prismatic
meshes (White et al., 2007).

In this paper, we wish to present a three-dimensional filéenent model built upon what has been previously
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done. In particular, it is based on tHgY¢ — P, finite element pair, which, together with theT, pair, is now
considered one of the most effective for simulating shatleater flows (Hanert et al., 2005; Le Roux, 2005; Le Roux
et al., 2005; Walters, 2006). The current three-dimengdiomalel is barotropic and lacks some important components
that make up the multi-purpose model that we aim to build. @&lbeless, before further enhancing the model, it
is indispensable to validate it in its current configuratidine objectives of this paper are therefore to describe the
model and validate it against an appropriate, realistic.fibte tidal flow around Rattray Island (Great Barrier Reef,
Australia) is an ideal test case for the following reasoisn Gitu measurements of velocity and elevation are abégla
(Wolanski et al., 1984), (ii) the island lies in well-mixedater and a barotropic model is justified, (iii) despite the
lack of baroclinicity, the flow is strongly three-dimensar(\Wolanski et al., 1984; Wolanski and Hamner, 1988;
Deleersnijder et al., 1992), (iv) advection and bottomtioic play crucial roles in the formation of stable eddies
downstream of the island (Ingram and Chu, 1987; Falconet.efl886; Tomczak, 1988). Hence, several model
features may be assessed. We also verify the model’s atuilitgpresent the vertical structure of the horizontal flow
field in a wind-driven elongated basin, which is a test caspined by Winant (2004).

In Section 2, we present the model equations. The numeeichhique, including the spatial discretization and the
time-stepping algorithm, is described in Section 3. The eh@xlapplied to the region of Rattray Island and validated
against field data in Section 4 and applied to the wind-drfil@m in an elongated basin in Section 5.

2 Mathematical formulation

Let Q(¢) be the three-dimensional, time-dependent domain of isteteis bounded below by the seabed, defined
by I', and above by the free surface, definedlhy(Figure 1). The seabed is considered time-independentfrébe
surface, on the other hand, is time-dependent. The latetaidary, defined b¥',,, is parallel to thez-direction and
has a constaritr, y)-position. The domain boundary can be writterogés= T",, UT', U T's, wherel’,, comprises both
open and closed lateral boundaries. The unperturbed sudfefined by: = 0 is notedZ . We work within the scope
of the hydrostatic approximation and assume constant fleiidy (oo).

2.1 Governing equations

The three-dimensional velocity components are nated andw, in the z-, y- and z-direction respectively. We
also definen = (u, v) to be the horizontal velocity vector. The free-surface &l®n () is defined with respect to the
constant reference height= 0 taken to be the mean sea level. The horizontal componentedhtee-dimensional
momentum equation read:

du 0 0 ou .
E+V-(uu)—|—g(wu)—i—fez/\u:—gVn—i—D—i—&(1/25) in Q, (1)

where f is the Coriolis parametes, is the upward-pointing unit vectog, is the gravitational acceleration, is the
vertical momentum diffusion coefficient aid is the horizontal gradient operator. Horizontal momentuffusion is
parameterized b¥D. Equation (1) is complemented with the continuity equation

0z

and the free-surface elevation equation
n
@+V~</ udz)—() on7T, 3)
ot _d

whered is the local unperturbed depth so that the total height isddfasH (x, y,t) = d(=x,y) + n(zx,y,t) (Figure
1). Finally, a given passive tracer with concentratf@rmbeys an advection-diffusion equation (with no source jerm

of the form
oC 0 (wC) 0 ( aC)

E-FV-(uC)—i— 92 :V-(thC’)—i-& Rag

wherek;, andk, are the eddy diffusivity coefficients in the horizontal aredtical directions, respectively.

in Q, (4)



2.2 Parameterizations

The horizontal momentum diffusion terfd and the vertical momentum diffusion term both parametehieesffect

of unresolved, small-scale processes on the resolvedss@llamberg and Mellor, 1987; Griffies and Hallberg, 2000).
However, horizontal momentum diffusion is generally enyeld both for physical parameterization and to ensure
numerical stability (Griffies and Hallberg, 2000; Griffietsad., 2000). With unstructured meshes, it is not uncommon
to have the mesh size vary by up to two orders of magnitudedsmiwlifferent parts of the domain (e.g., Foreman et al.,
1995; Legrand et al., 2007, 2006). The range of unresolvalksethus varies widely within the domain of interest,
which motivates the use of a non-constant viscosity coefiidy;,). The Smagorinsky viscosity (Smagorinsky, 1963)
is a function of the local horizontal rate of deformation éisnthe local mesh size. In our model, the following
expression is used:

vy = cs A2 (e: 6)1/2 , %)

wherec, is a nondimensional constar\ is the local mesh size andis the two-dimensional strain-rate tensor
expressed in terms of the horizontal veloaity

ou 1(ou oo
€ — ox 2 \ 0y oz (6)
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For triangular meshesA? is taken to be the surface area of the triangle (Akin et ald330 A Laplacian form is
considered for the momentum friction tedt

0 Ju 0 Jdu
D= B <I/h%> + a—y (Vha—y) . (7

The Smagorinsky scheme enhances momentum diffusion ionegif large horizontal shear while reducing it in
regions of smaller mesh spacing.

Similar to Fischer et al. (1979) and Deleersnijder et al9@)9for unstratified shallow seas, the vertical momentum
diffusion coefficient is defined as

d
V. = K, (d+ 2) (1—0.6 “), ®)
H
wherek is the von Karman constant and is the bottom friction velocity, which obeys the followinguality
b
Po

In the right-hand side of (9)} - || is the Euclidian norm ana® denotes the bottom stress. The latter is parameterized
by the following logarithmic law:

2
0.6/ = | e | e 6 (. 5.5), (10)

in which &, is the distance to the seabed where the appropriate botttouityeu, is defined and, is the rough-
ness length. It should be pointed out that this turbulenesurke remains very simple. It was however designed for
unstratified, shallow seas (Fischer et al., 1979) and it #ippsopriate for modeling the flow around Rattray island.

2.3 Boundary conditions
The lateral boundary,, is deemed closed in the following discussion. The horiZorocity u is subject to a
condition of no-normal flow and full slip on the lateral bowamgr",,:

0
u-n=0 and uhﬁzo on I, (12)
on

whereu, is the velocity component tangential g, and% is the normal derivative operator, defined as

0 0 0
L =+ a_ynyv (12)



with n, andn,, thex andy components, respectively, of the three-dimensional owtyp@inting unit normal t@X2.
Note that we could also assume partial slip on the laterahBiaties, amounting to a loss of momentum through lateral
stress. At the bottom, a slip condition is enforced on thézoattal velocity by relating the bottom momentum flux to
the bottom velocity:

b
uza—u - onT, (13)
0z Po

wheret?/py is given by (10). At the free surface, the wind stress may kertanto account:

220 T onr,, (14)
0z Po

wherert? is the surface wind stress. The usual kinematic boundarglitions are presribed:

u-n+wn, =0 onTly, (15)
u-n+t+wn, = %nz onT, (16)

wheren, is the z component of the outward-pointing unit normald®. The open boundary conditions depend on
the problem at hand and usually involve prescribing the rawelocity and/or a linear combination of the normal
velocity and the elevation such as a radiation conditiom.siaplicity, we do not deal with open boundary conditions
in the numerical treatment of the equations and refer theere the work by Blayo and Debreu (2005). Finally, a
condition of no diffusive flux is prescribed at the boundarythe tracer:

mh@ + nzﬁnz =0 onon. a7
on 0z

3 Numerical procedure

In this section, we describe the numerical technique usezblee the equations presented above. We do not,
however, present the discretization of the tracer equafitis is done in detail by White et al. (2007) with the issues
of consistency and conservation in mind. To the authors\Wedge, the finite element discretization presented in
this paper is novel by its use of the three-dimensional paiszn non-conforming element for marine modeling. In
particular, the method departs markedly from that preskbtelynch and Werner (1991) and Walters (1992) in the
way velocity nodes are spatially positioned. Moreover, madel is not based upon the wave equation derived by
Lynch and Gray (1979) and subsequently employed in apjitaby e.g., Lynch and Werner (1987), Walters (1992)
and Foreman et al. (1995), but relies instead on a time-stg@igorithm, the latter being better-suited for adveatio
dominated flows (Walters, 2005).

3.1 Mesh Topology

The numerical solution is sought in the three-dimensiosahainQ”. The latter consists of an approximation of
the physical domain, obtained by interpolating the bouiedasf topographical features and the bathymetry. Within
this framework, all boundaries are also interpolated sowahaved() ~ 90" = T UT? UT". A piecewise linear
interpolation is chosen for its cost-effectiveness: itheap and second-order accurate.

At this point, we would like to distinguish betweétt and7”. While the former represents the time-dependent
upper boundary of the domain, the latter is simply definechastwo-dimensional surface lying at= 0 and can
be understood as the upper boundary of an otherwise rididitidel. The three-dimensional finite element mesh is
obtained by first partitioning™” into N; open non-overlapping linear triangl@s. That is, we have

Ny
Th=|JT. and T.NT;=0 (c#f),
e=1

where7, denotes the closure @. Extrusion of each triangl&. into linear prismatic columns is then performed so
as to exactly fit the sea botton} and the free surfacE”. In so doing, the domaif¥” is naturally partitioned intav,,



open non-overlapping linear prisris :
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In two dimensions, we also consider the &8t of all inter-element edgeB, = 07, N 07, with e > f (Figure 2).
This set comprises all edges shared between adjacentlasaogionging ta7 . We thus have

eE and E.NEf=0 (e#f),
1

=z

|

e

where NN, is the number of such inter-element edges. To each é&Jgmrresponds a unique normal vectar, n¢)
pointing from7Z, to 7. Similarly to the velocity, the horizontal components o tlmit normal are written in vector
form and denoted by¢. In three dimensions, we consider the 8t of all inter-element vertical rectangular faces
F. = 0Q. N oYy with e > f (Figure 2). This set comprises all faces shared betweeramtjprisms in adjacent
columns but does not comprise those faces shared by two pristhin the same column. It is important to keep in
mind that those faces remain vertical at all time. We have

Ny
Fr=|JF. and F.NFr=0 (e# /),
e=1

where N is the number of such vertical inter-element boundaries.edch faceF, corresponds a unique normal
vector(n®, n¢) pointing from¢. to ;. Finally, the setS" comprises those triangular faces shared by prisms within
the same column, that is shared by prisms stacked upon onkeand&ach of those triangular faces will be noted
Se = 0Q. N 9Oy with e > f (Figure 2). We have

2

Sh — S_e and SenNSp=0 (e#f),

e=1

whereN; is the number of such triangular faces. A unique norfmél n¢), pointing from(. to ¢, is associated to
each triangular fac§..

The two-dimensional mesh, that is the partition7of, may be unstructured and several criteria may be selected
in order to control the mesh resolution. Common refining radthare generally based on the bathymetry (see e.g.,
Bilgili et al., 2006). Bathymetry-based criteria may bethar refined to take into account the proximity of the coast,
islands and reefs (Legrand et al., 2006) or by using anip@ielements along the shelf break (Legrand et al., 2007).

There is no a priori constraint on the location of verticatles but we currently require that two adjacent columns
comprise the same number of prisms. Hence, the three-dior&isnesh contains the same number of layers through-
out. This constraint could be relaxed in the future by allegvddjacent columns to contain different number of prisms,
the transition being assured by collapsing nodes in theécaéto generate pyramids or tetrahedra. All nodes are free
to move in the vertical, which allows for tracking the freefage and preventing the occurrence of overly thin layers
near the surface by vertical redistribution of the nodesofatt and Campin, 2004). By permitting such freedom in the
mesh motion, we implicitly allow for the use of generalizesttical coordinate systems (e.g., Kasahara, 1974; Deleer-
shijder and Ruddick, 1989; Gerdes, 1993; Adcroft and HadJp2006; Song and Hou, 2006). The mesh movement
falls into the so-called Arbitrary Lagrangian-EulerianL(&) framework since the nodes are neither fixed in space nor
do they follow the fluid.

3.2 Finite element spatial discretization

The variational statements will be written in a way thatwakdhe use of a discontinuous representation of the hori-
zontal velocity field in all directions whereas the elevatis taken to be continuous across elements. The variational
statements involve integration over mesh geometricalstenone, two and three dimensions. The following notations



are used:
/f dQ) : 3D integration over prisms,
/f dl’ . 2D integration over vertical faces,
/f dr : 2D integration over triangles,

/fds . 1D integration over edges.

3.2.1 Momentum equation

For the momentum equation, the variational statement igiodd by multiplying Eq. (1) by a test function, sup-
plementing it with appropriate discontinuity-penalizatiand upwinding terms (see e.g., Houston et al., 2002; Haner

et al., 2004) and integrating the result by parts over thelevdomain. The variational statement consists in finding
u(z,y, z,t) € U x U such that

Np d N, 9%
a

— u-ad?+ / [—u-u-Vﬁ _du- 22
;dt /Qe(t) ; Qe (t) ( ) 0z

+(féz/\u)-ﬁ+gVn-ﬁ+uh@-au Ju oOu 8u.8_u

— — — v, dQ
or 8x+yh6y 6y+yaz 0z

0 0
—/ ﬂ-(uh—u—i—uz—unZ) dT+/ (u-n+wn)u-adr
rhury on 0z rhurpy

1 2

N
+/Fz {(u-n)u—uhg—;i]~ﬁdI‘+§;/Fe<u~ne><u>,\'[ﬁ]dF (18)
3 - 4
aE aE ou ou
—i—;/se<u-ne+ﬁm§><u>A-[ﬂ]dT—;/SC<uh%+uzgn§>-[ﬁ]d7
5 6

N
+Z[5 ofu] - [Q]dr =0 Vaeu xU,
e=1 e

7

wherel{ x U is the suitable infinite-dimensional Sobolev space sudtitha 7! (Q"). A definition of this functional
space is given in Appendix A. The test functiarbelongs td/ x U and is sufficiently well behaved that the integrals
in (18) make sense.

The volume integrals occuring in Eq. (18) are computed orthinee-dimensional time-dependent dom&ih
Since the mesh is allowed to move along the vertical axisntitial values of the vertical velocity must be modified
to take into account the motion of the mesh (Formaggia andl&l&D04). This is so because integration of advection
terms is usually performed on a unique mesh at a given tinpe stewever, the time-discretized temporal derivative
of u is computed on two different meshes. The modification of tiserdte vertical velocity accounts for the mesh
motion between those two time levels. The modified vertiedbegity is notedt = w — w,,, wherew,, is the mesh
velocity.

The seven underbraced integrals (labeled 1 to 7) ariseiaftggration by parts of either the advection or diffusion
terms. These terms are explained hereafter.

1. The first integral is an expression of the diffusive momenflux through the sea bottom and sea surface. Use
can be made of boundary conditions (13)-(14) to computerttegyral.



2. The second integral expresses the advective momentunthitaMgh the sea bottom and sea surface. The
modified vertical velocityw takes on the form (White et al., 2007)

o Jw onll,
w = an

w— Sl onlk,
so that, by using boundary conditions (15) and (16), thisgrdl is discarded. This expresses the impermeability

of the seabed and sea surface.

3. The third integral is the momentum flux through the closgdral boundary. This term may be simplified with
the enforcement of boundary condition (11). The advective ¥anishes due to the no-normal flow condition.
The diffusive flux is to be expressed in terms of the normaltangdential components, by noting that

ou_ du  Ourg
on ann on

wheren andt are the unit vectors normal and tangential, respectively”t Similarly, the vector test function
1 can be written in terms of the normal and tangential comptmen

0 = U,0 + uyt.

4. The terms labeled 4 and 5 arise by assembling all coniibsibf inter-element boundary integrals from ad-
vection terms. Each one of th€; integrals is an expression of the momentum flux by advectioough the
vertical face shared by two adjacent prisms. Similarlyheate of thelV, integrals is the advective flux through
triangular faces shared by prisms stacked upon each otkarglthe same notations as Hanert et al. (2004), we
note< f > the mean value of on any face shared by two adjacent prisms andl >, its weighted average.
That is,

< f>= %f\sze + %fmf, < fea= <% + /\) fra. + (% - )‘> fiass (19)

for all three-dimensional elementk. and(2; sharing a common face. The jump across the latter is ngied
and is defined by
[f] = f\sze - f\sz,u

with fiq, being the restriction of on(2.. Note that the quantity being advecteddsi > . In expressiorf19),

the adjustable parametare [—1/2,1/2] allows for giving more weight to the local or neighboringwal In
particular, takingh = %sign(u -n) is equivalent to an upwind-biased flux. This advection sah@ras shown
by Hanert et al. (2004) to be particularly effective in twanginsions. In this paper, we generalize it in three
dimensions.

5. The terms labeled 6 and 7 (involving integrals over trislagfaces shared by stacked prisms) originate from
the integration by parts of the momentum diffusion term. etaet al. (2004) showed that the non-conforming
nature of the interpolation in the horizontal ensures tlodioundary term need be computed across vertical faces
as far as momentum diffusion is concerned. The sixth sumvegdntegrals of centered diffusive fluxes. There
is no preferred orientation associated to it. The seventh te a weak continuity constraint and involves the
discontinuity-penalization parameterwhile solving elliptic problems (Houston et al., 2002). Téagression
for o is proportional to the diffusivity coefficients.

To summarize, by using the boundary conditions (13) and {d4pmpute integral 1, discarding integral 2 and



simplifying integral 3, the variational statement for themmentum equation reduces to

g Al i

— u-ud?+ / [—u~u-Vﬁ —ou - —

; d /szea) ; Q.(t) ( : 0z
ou oOu ou . on Ju ou

—i—(fez/\u)-u—l—gVn-u—i—uh%-%—i—l/ha—y 8—y+uza-% dQ
T Tt ou
- u-—n, dr — ﬁ-—nsz—/ v,— -udr
/rg Po /r{; Po oy On (20)

Ny N,
+Z/ <u~ne><u>A-[ﬁ]dF+Z/ <u-n®+wnf ><u>, A dr
e=1 e e=1 Se

S du ou N
_2/5 <”’L%+”%"?> 1 dH;/&a[u] [a)dr=0 Vaeuxu.

In the statement above, the surface integral'6n(I'}") is positive (negative) because is positive (negative) there.
This respectively corresponds to a positive influx of momentiue to wind stress and a negative influx due to bottom
stress. Itis noteworthy thatin Eqg. (18), boundary integfsatio 7 are the only means by which information is conveyed
in the vertical between elements. In other words, they desause the horizontal velocity is discontinuous in the
vertical and would disappear for a continuous interpotatio

3.2.2 Free-surface equation

For the free-surface equation, the variational statensesibiained by multiplying Eqg. (3) by a test function, supple-
menting it with appropriate discontinuity-penalizati@nhs and integrating the result by parts over the whole domai
The variational statement consists in findifg, v, t) € H such that

0
/ —nﬁdr—/ u-VidQ=0 VijeH. (21)
Th, at Qh,
whereH is the functional spacg?(7"). Refer to Appendix A for a definition. The test functigrbelongs taH.

3.2.3 Continuity equation

The continuity equation (2) is used to diagnostically coteghe vertical velocity. Tracer conservation and consis-
tency critically depend on the way the vertical velocity isputed. This aspect of the model is covered in full detalil
by White et al. (2007). We choose a discontinuous representia the vertical, which implies using a discontinuous
representation for tracers to ensure consistency. This &teactive feature given the stratified nature of the odean
terior. To be consistent with the elevation, the repreg@ntas continuous is the horizontal. The variational statat
is obtained by multiplying Eq. (2) by a test function, suppénting it with appropriate discontinuity-penalizatiorda
upwinding terms in the vertical and integrating the resutirdthe whole domain. The variational statement consists in
findingw € W such that

Np N N
—Z/ {u-vw+wz—ﬂ dQ+Z/ (< u-n® > +wWaownn) [] dr
e=1" e e=1"Se

! (22)
—|—/ (u-n—i—wnz)ﬁ)dT—i—/ (u-n+wn,)wdr=0 VbeW.
rh r

h
b

2 3

where[w@] is the jump in the test function that belongsit, which, again, is a carefully chosen functional space to
ensure that all integrals above remain finite. When computitegrals of sum 1 over interior triangular faces, the
mean horizontal velocity is used whereas the vertical \iglogithin the lower prism is always used. This merely



amounts to integrating the continuity equation from thetdomotupwards will full upwind weighting on the vertical
velocity belonging to the element below the triangular fab#uitively, the continuity equation can be viewed as a
steady-state advection equation (with the advective itglegjual to one) with source term (the horizontal velocity
divergence), which helps justify the approach describedtefore.

The integral ovei™” (labeled 2 in Eq. 22) must be computed (it is not zero) andpvivide the vertical velocity
at the surface. By computing the vertical velocity in the veaglined by Eq. (22), the surface kinematic boundary
condition (16) is weakly — and automatically — satisfied,sistently ensuring global tracer conservation (White gt al
2007). The last integral (labeled 3) vanishes because thdatom is impermeable to the flow. This is a weak
enforcement of boundary condition (15). Discarding thétesn of Eq. (22), we wind up with

Np A NS
—Z/ {u-Vw—i-wa—w} dQ+Z/ (<u-n®> +wdownny) [0] dT
e=1 Qe Bz e=1 Se

—|—/ (un+wn,)wdr=0 Vo eW.
Ih

(23)

Note that Eq. (23) reduces to Eq. (21) wheris substituted fofj, which is required for consistency.

3.2.4 Discretization

A finite element approximation to Eqs (1)-(3) can be obtaibgdeplacingu, n andw by their respective ap-
proximationsu”, n" andw" in the variational statements (20), (21) and (23). Those@pmate fields belong to
finite-dimensional subspace&® x U" c U x U, H" ¢ H andW" c W respectively:

u~u —ZU (t)i(x,y,2) U xU"
ZH Vo (z,y) cH"

w o~ wh ZW Yoj(z,y,2)  €Wh

whereU;, H; andW; are the time-dependent nodal values gnd¢; andy; are the associated polynomial basis
functions. Finally, the nodal values can be computed byrtiegpto the Galerkin method, which comes down to
substitutingy;é, + 1€, ¢; andy; for the test functions, 7 andw in (20) fori = 1... Ny, in(21)fori =1... Ng
and in (23) fori = 1... Ny, respectively.

Up to this point, nothing has been said about the interpmiatiat we wish to consider for the variable$, w"
andn”, besides the fact that we allow discontinuities in the vigydield. The location of velocity and elevation nodes
is shown in Figure (3). The horizontal velocity is linear hRoonforming in the horizontal and linear discontinuous in
the vertical. The representation is thus discontinuousysulgere except along a vertical line joining the nodes. This
interpolation can be viewed as a generalization in threeedsions of the so-calleBV ¢ triangular element (Hua and
Thomasset, 1984). The vertical velocity is chosen to baligentinuous in the horizontal and linear discontinuous in
the vertical. The elevation is linear with the nodes locattthe vertices of each triangle.

3.3 Time-stepping algorithm

In order to lighten the notations, it is preferable to camy the time discretization of Eqgs (1) and (3) rather thanrthei
space-discretized counterparts. Since the vertical itgleccomputed diagnostically, we shall not treat the couitly
equation (2) here. Once time discretization is performied,straightforward to achieve discretization in spacehef t
semi-discrete equations by following the procedure dbscrin the previous section.

The most fundamental choice that we make in this model réggthe time discretization is to resolve all processes
with the same time step. In order to circumvent the stabddwystraint incurred by the propagation of inertia-gravity
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waves, a semi-implicit orimplicit (or any level of implieibess in between) free-surface method is required (Dukowic
and Smith, 1994). Hence, Egs (1) and (3) must be solved simedusly fo(u™*!, n"*1), which leads to

u”tl —u» 0 40 40 ) Sunt!
. n..n I n..n &, n n D" - = 0 =0, 24
SN +V (uu)—i—az(wu)—l-fe A" + gV BZ(VZ P > 0 (24)
for the momentum equation and
nnJrl _ 77” n" nn+1
7+(1—9)V~/ u”dz+9V-/ u"tldz =0, (25)
At —d —d

for the free-surface equation. In (24) and (24}, is the time step and
g™t =0g"" + (1-0)g",

where0.5 < 6 < 1.0. The choiced = 0.5 yields a semi-implicit scheme while = 1 leads to an implicit scheme.
Unless otherwise stated, we consider a Crank-Nicolson (&Kegme § = 0.5). In Eq. (24), the advection and
horizontal diffusion terms are explicit in time while thertieal diffusion term is implicit (with the vertical eddy
viscosity coefficient taken at the previous time step). Tdwosad integral in Eq. (25) can be splitinto an integral over
the depth at time step and an integral over the change in depth. Neglecting ther|ate simply obtain
prtl — pn n" n"
7+(1—9)V-/ u"dz—l—@V-/ u"tdz =0. (26)
At _d —d
The solution(u™*!,n**1) can be found by solving the coupled system (24)-(26) invavihe nodal values
(UntL, H"*+1). For large-scale applications, the computational ovethieeurred by the resolution of this system
becomes quickly unbearable. This is even more so consglénsm mesh is moving and the left-hand matrix of the
system must be recomputed at each time step. A huge gainforp@nce may be obtained by splitting the dynamics
into a two-dimensional depth-averaged system for the ¢iemiwf the inertia-gravity waves and a three-dimensional
system for the vertical structure of the velocity (e.g., 8img, 1974; Blumberg and Mellor, 1987; Killworth et al.,
1991). Those systems are sometimes called external amdahteodes, respectively.
The external mode equations are the traditional shallotemeqguations, obtained by integrating the momentum
equation (1) over depth and coupling the result with the-Bedace equation (3) written in terms of the depth-avedage
velocitya:

%—?—l—féz/\ﬁ—i—gVn = B, (27)
% +V.(Hu) = 0, (28)

whereB regroups the forcing and coupling terms originating frorpttheintegration of advection and diffusion terms
(see Appendix B). It is important to note that some of thesmsemay be expressed in terms of the depth-averaged
velocity — i.e., in terms of prognostic variables — and tlfi@me can be time stepped with the left-hand side of (27).
However, it remains unclear which terms should be time stdpgnd which terms should act as depth-averaged,
forcing terms. It is context-dependent and, in this studiyestion and horizontal diffusion are time stepped. The
finite element resolution of the shallow-water equationgédi documented (Le Roux et al., 1998, 2000; Hanert et al.,
2003, 2005) and will not be reproduced here. We use the scipeoposed by Hanert et al. (2005). In particular,
the nodal values of the depth-averaged velocity are locatdéke middle of the edges joining elevation nodes. So,
the depth-averaged velocity is interpolated with the dtedaP¥“ element (Hua and Thomasset, 1984). Note that
this choice is coherent with the location of nodes for thed¢hdimensional horizontal velocity (see Figure 3). A
theta-scheme applied to Eqs (27)-(28) gives the followimg tdiscretization

n+1 _ ﬁn

At

u
+ fe, nut? 4 gvpt? = B, (29)
nn-ﬁ-l _ nn

. n—=n-+0 _
V() 0. (30)
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It is worth noticing that, unlike Hanert et al. (2005), EqO)3s not time stepped with a leap-frog scheme. The latter is
to be avoided due to the existence of computational modesselbould be time-filtered at the cost of breaking down
global mass conservation (Griffies, 2004), which, in oundgm, is highly undesirable.

A closer look at Eq. (30) indicates that the transfdr{defined as the depth-integrated horizontal velocity) vehos
divergence causes the change in the free-surface elevsiiren by

M= H" (¢a""" + (1-69)u"). (31)

Even by takingd = 0.5, the linearization in time of the terrila in Eq. (30) precludes the transport from being
formally centered in time. For being so, we ought to comphiéedivergence off %@ +% with = 0.5. Although
this computation would yield a time-centered transpohai two drawbacks: (i) it requires the solution of a nonlinea
system and (ii) it requires to hold in memory a mesh that igered in time in addition to the meshes at timeand
n + 1. Therefore, we are instead favorable to solving the liresatiEq. (30) for which the change in elevation is
caused by a transport computed on the geometry at timenstéyat is Eq. (31) with = 0.5. This leads to a much
faster algorithm at the cost of a very small loss of accura@bys design leads to the time staggered algorithm exposed
in Section 3.4.

The three-dimensional horizontal velocity (i.e., the intsd mode) is determined by solving the following equation

k+1 k k+1
% + V- (ukuk) + % (wmuk) + fe, Auf 4+ gVn* —DF — % (uf 5)1(192 ) =0. (32)

wherek = n — 1/2. Note that Eq. (32) is solved alternately feandv at one time step and thenandu at the next
time step to provide a stable time stepping of the CoriolimiteThe transport computed from the three-dimensional
horizontal velocity field is not equal to the transport ggnEq. (31):

n
n

K H
/ u" /2 dz £ - (' +u") (33)
—d

The origin of this discrepancy is partly caused by the inésaparation between the external and internal modes
(Killworth et al., 1991; Higdon and de Szoeke, 1997; Grifé¢sl., 2001). This is due to the nonlinear coupling terms
included inB in Eq. (29). Hence, the three-dimensional horizontal vigldield must be corrected accordingly so that
the above inequality becomes an equality (Shchepetkin asWiNMams, 2005; Haidvogel et al., 2007). Only in doing
so is the vertical velocity compatible with the free-sudatevation and global tracer conservation consistensyesd
(White et al., 2007). As pointed out by Shchepetkin and M&wis (2005), a split-explicit approach generally
precludes both conservation and consistency to be satisfigidh is another reason backing the choice of a single
time step since both properties are fulfilled in this way.

In a finite-element context, the correction introduced by E8) is also a way to circumvent the issue that Eqs
(26) and (30) cannot be satisfied simultaneously, unledsatiem is flat. This is so because when this is not the case,
the functional spaces chosen foanda turn out to be inconsistent in the sense that the depth asefagdoes not
belong to the space in whiainbelongs. The correction corrects this discrepancy. It mhastmphasized that, because
of this reason, a finite-element model that simultanesooilyes for the three-dimensional momentum equations and
the free-surface equation is conceptually cleaner and mlegant, though computationally much more expensive. It
is, however, an option to keep in mind as computer power vidkincreasing.

In the current version of the model, the mesh motion is cdleidby the free-surface oscillations only. Since
the external and internal modes are splitted, the new fuefse elevation is known prior to computing the three-
dimensional fields. A new mesh (at time stepg- 1) can then be built based on the mesh at time stey translating
the nodes vertically, complying with some chosen criteriémbe consistent, the mesh motion at the surface over the
time stepAt must be equal tg"+! — " (White et al., 2007). At the bottom, all nodes remain fixed r@mesh
velocity vanishes. In the interior of the domain, the mestiomoover a given vertical is linearly distributed, from mer
at the bottom to the displacement of the free surface at fheThe mesh velocity at a given node is the ratio of the
node displacement to the time step over which this displacgtakes place. It is assumed that the mesh velocity is
constant over a time step.

3.4 Overall time staggered algorithm

A schematic illustrating the time staggering of the oveaddiorithm is depicted in Figure (4). The elevation and
tracers are known on integer time steps while the velocikniswn on half-integer time steps. The mesh geometry
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needs to be known on integer time steps only. This followsiftbe linearization in time of the free-surface equation
(30) and the fact that the three-dimensional horizontabeig) field is corrected on a mesh geometry known on an
integer time step (see Eq. 33).

To describe the sequence of computations, we will assunmtesth&now the variables at the following steps:
", n",u" /2 w12 andC™, whereC is any passive or active tracer. The mesh geometry is knowtepsn — 1
andn. We will note these geometrigst”—! and M™, respectively. The overall algorithm is given hereafter.

Computga™ ™!, 1) given (", n") by solving Egs (29)-(30).

Computgu™*1/2) on M” given (u™~1/2, w"~1/2) on M"~! by solving Eq. (32).
Correctu™1/2 so that the horizontal transport is equal to (31).

Computew™'/2 on geometryM™ givenu™*+1/2 on the same geometry by solving Eq. (23).

Update both geometries. At this point, we hawvg& and M"™+1,

o o M 0w NP

Compute any tracerC"*! on geometry M"*! given the tracer C* and the velocity
(ut1/2 " +1/2) on geometryM™.

7. Returnto step 1.

The first action undertaken to improve efficiency — namelyasafing the dynamics into the slow and fast modes
while using a single time step — has already been describgoin thspection of the time-stepping algorithm outlined in
the previous section, we may identify five main computatitersks: the fast mode, the horizontal velocity, the vettica
velocity, the tracers and updating the mesh geometry. We Negt the number of two-dimensional triangle vertices
andL the number of layers (a mesh containibdayers means that the total number of verticeQiE — 1) x Nag).

In a Delaunay two-dimensional mesh, the number of horiz@uges tends t8 No,. The overall computational cost
of the algorithm may be established in terms of these twaalbées:

1. The computation dfa, n) requires to solve a system BiN,,; unknowns. In a number of large-scale applications,
it is legitimate to neglect the free-surface elevation i divergence term of Eq. (28). Hence, the left-hand side
matrix of the system is constant in time and need only be feretd once at the onset of the time integration.
The direct solveuMFPACK is used (Davis, 2004).

2. The computation of either componentwfrequires to solve a system @f. x 3Ny; = 6LNyy unknowns.
The factor2L is a consequence of the discontinuous representation ivetttieal. Due to the orthogonality of
the non-conforming basis functions in the horizontal (Hod ahomasset, 1984), the left-hand side matrix is
banded diagonal, with a bandwidth of two. In the horizordahree-point Hammer quadrature rule is used for
which integration points are located on the same vertictil@svhere velocity nodes lie. This ensures horizontal
orthogonality. Note that without vertical momentum diffus (which is implicit in time), the left-hand side of
the linear system reduces to a tridiagonal matrix.

3. When solving Eqg. (23) fow, we lump the left-hand side matrix of the system in the hariabto obtain a
tridiagonal matrix. The vertical velocity used in the traegquation must then be modified accordingly in order
to remain consistent. The number of unknown2is x Noy; = 2L N>, and the computational cost scales
like O(LNoy). Note that, although the scaling is the same as thatifdhe cost of solving the system for
w is roughly 10 times smaller than for either componentiofThe reason is that there are three times fewer
unknowns forw than foru andv and that a tridiagonal matrix need be factorized domstead of a banded
diagonal matrix for, andw.

4. In case we have a tracer, the number of unknowR&is Noy = 2L Noy and the computational cost scales like
O(LN,y) if the left-hand side matrix of the system is lumped horizdigtfor the vertical diffusion term. Mass
lumping, if any, must be performed in all directions for thasa to be conserved.

5. The cost of updating the mesh geometry (i.e., computiagntirmals, the element Jacobians and the new coor-
dinates) is proportional to the number of elements, whictesclikeO(LNa,).
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Therefore, the overall computational cost of the algoritteales likeO(LNy;). Doubling the number of triangles
(i.e., doublingNo4) and doubling the number of layers will quadruple the corapiahal cost. The total number of
unknowns (with two tracers) iB8 L Nyy + 7Nay.

4 Application to a shallow-water island

Seeking to validate the three-dimensional barotropic comept of our model, we opt for a realistic test case. The
latter should be three-dimensional (without baroclinfeets) to be able to observe clear vertical motions. The nieme
tum horizontal advection scheme must be severely evalusoea problem featuring flow separation and recirculation
with formation of eddies is deemed appropriate. Rattragndl(Great Barrier Reef, northeast Australia — Figure 5a)
lies perpendicular to tidal currents and stable eddiesldpve the wake at rising and falling tides. Rattray Island ha
been the focus of many studies in the past two decades (Wbleinal., 1984; Falconer et al., 1986; Black and Gay,
1987; Wolanski and Hamner, 1988; Deleersnijder et al., 198#anski et al., 1996, 2003; White and Deleersnijder,
2007). Aerial photographs show turbid water in the wake affag Island both at rising and falling tides. This sug-
gests that sediment-laden water is carried upwards to tifecguby vertical transport during the life span of the eddie
This is confirmed by backscatterance measurements (Whdtg\atanski, 2007). In December 1982 (Wolanski et al.,
1984), 26 current meters were deployed in the wake of Rafffmure 5b), which are used here for validation.

4.1 Model setup

Currents are dominated by the tides, whose ellipses amegirpolarized and oriented from northwest to southeast.
The domain is rotated so as to minimize theomponent of the far-field velocity used as boundary comditFigure
6b). The side boundaries (parallel to th@xis) are then essentially parallel to the major axis oftitial ellipses and
may be considered impermeable. The southeast and nortbeestiaries — hereafter referred to as lower and upper
boundaries, respectively — remain open. Using available fieeasurements, the depth-averaged normal velocity and
the elevation are imposed at both the lower and upper boiesday prescribing the incoming characteristic variable
un — m+/g/h, wherew,, is the depth-averaged normal velocity (Flather, 1976; Blapd Debreu, 2005). Either
current meter 4 or 25 is used as velocity forcing. The phagbdaween both boundaries is less than 20 minutes and is
neglected in the model. Forcing used in the model corresptind 3.5 m spring tide recorded between 23 November
1982 and 4 December 1982. Rising tide flows southeastward.

Because of the domain’s limited extent, tligolane approximation is made with the latitude bein§<20The

roughness length is taken to Bg= 5 x 1073 min Eq. (10) (Black and Gay, 1987). Because the last velomite
lies on the seabed, the bottom stress (10) is computed by tlsinmean value of the last two velocity nodes. The
distance to the seabgglis calculated accordingly. We neglect surface stress ae thas no significant wind during
the field survey (Wolanski et al., 1984). The constantised in the parameterization of the horizontal momentum
diffusion coefficient, Eqg. (5), is equal 05. This yields maximum values for the momentum diffusion fioefnt of
about 0.5 M s~!. The two meshes/; andM, used are shown in Figure 6.

4.2 Model results

All results below are presented on 4 December 1982. Thisistily day (with 2 December) for which all current
meters were deployed. The flow pattern for a full tidal cysl@iesented in Figure 7. The simulation is run on mesh
Mo, starting at 1h30 on 4 December and snapshots are shown tex@tyours. The flow pattern agrees well with
previous calculations and observations.

A gquantitative model assessment is presented in Table lentheze model runs are compared. They differ by
the mesh used and the current meter chosen as provider aftyeflar the boundary condition. Three different RMS
(root mean square) errofsbetween the measured and numerically predicted depttagedhorizontal velocities are
computed. Each of them corresponds to a given set of curretdgrmconsidered in the calculation of the RMS error.
That is,

1/2
£= {% S [t — upreas)? 4 opem — oeesy?] } , (34)

€S
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whereu andv are both velocity components, superscripisnandmeasrefer to numerically predicted and measured
guantities, respectively ards the current meter index. The setdfcurrent meters used in the RMS error calculation
is notedS, which can be either one of the following

{1,2,3,7,8,9,14,15,16,17} for the wake RMS error
S=¢{18,...,25} for the far-field RMS errar
{1,...,25} for the global RMS errar

As illustrated in Figure 5b, the wake RMS error considergydhbse current meters that are under the influence of
the island and reached by the eddies. The far-field RMS eomsiders those current meters that are far enough from
the island and are unperturbed by the eddies. The global Rk$ @ses all current meters. The RMS errors were
computed every eight minutes at flood during four hours anthddhe formation of eddies on the east side of Rattray.
Time-mean values are provided in Table 1. Snapshots andlrfietltecomparisons for simulation$1-53 are shown

in Figures 8-10. Without too much surprise, the finer méghprovides better predictions in the island’s wake, close
to Rattray. Comparisons at 12h30 and 13h30 in Figures 8-® #at the model prediction is much better on the finer
mesh for the three current meters closest to the islanddotimeters 1-3). Now, regardless of the mesh, simulations
S1 and.S2 overestimate the flow speed in the far field at 13h30. By usurgeat meter 25 for boundary conditions
(see Figure 10), the flow at 13h30 is much better reproducethkbudetailed structure of the flow in the vicinity of
Rattray has some defects. Depending on which current nse¢enployed for the boundary condition, RMS errors can
thus widely vary. Overall, the far-field current meter 25Igiiethe lowest global error. The wake RMS error, however,
increases when this far-field current meter is used. For@ibetpresentation of the wake recirculation patterns it i
best to use current meter 4. At time of tide reversal (closE3tn30 — see bottom panels in Figures 8-10), the far-field
velocity is very weak while the eddies are still intense aardé. Current meter 4 is under the influence of the persisting
eddy and using its data as boundary condition largely otiemates the strength of the far-field velocity. This exp&ain
why using current meter 4 as boundary condition yields a ntaicfer far-field RMS error than with current meter 25
(Table 1).

Vertical motions around Rattray Island can be quite intgnsaching a few cms! off the island’s tips and in the
wake), as evidenced by higher water turbidity in the wakel@nski et al., 1984, 1996; White and Wolanski, 2007).
These vertical motions are of particular concern for mabi@ogists (e.g., Wolanski and Hamner, 1988; Suthers
et al., 2004) and have spurred studies to quantify theinsitg (Deleersnijder et al., 1992; White and Deleersnijder
2007). Here, a passive tracer is used to diagnose thesealenotions over a tidal cycle. The simulation starts with
a cylinder-shaped tracer patch, whose horizontal axisdatéd 20 m below the surface (Figure 11a). In the tracer
equation (4), vertical diffusion is turned off so that veali advection is the only cause for the presence of tracéeat t
surface. As the tide falls (Figure 11b-c), the cylinder isflad on the east side of the island but no tracer is found
yet at the surface. When the tide rises, the cylinder shifts and some tracer is found at the surface very close to
the island (Figure 11d-e). When tide falls again (Figure) lJdfatch of tracer is clearly visible at the surface, off the
southern tip of Rattray. This situation bears many sintilesiwith an aerial photograph (Figure 12 in the paper by
Wolanski et al. (1984)) where a patch of turbid water is dieaisible at this location shortly after tide reversal.

This analysis does not take into account the settling angidnzy of sediments. In that respect, it is incomplete.
But, it provides yet another argument in favor of the thrémehsional character of the tidal flow around Rattray
Island. This last experiment also provided a test case ®nthmerical treatment of the tracer equation presented by
White et al. (2007).

5 Application to a wind-driven channel

To assess the ability of the model to properly reproduce éntoal structure of the three-dimensional velocity field,
we now consider a wind-driven flow experiment similar to thegdsented by Winant (2004). The domain of interest
consists of an elongated rectangular basin. The longitidind cross coordinates are note@ndy, respectively
(Figure 12). The depth does not depend on the longitudir@aidinatex and is taken to be a smooth functiomofa
Gaussian), with maximum depth at the center of the basintendttallowest part near the longitudinal boundaries. To
avoid having to deal with vanishing layers near the longitatiboundaries, the depth at these boundaries is taken to
be a positive constant. Uniform wind is blowing over the watgrface in the longitudinal direction.

Equations (1)-(3) are solved with some modifications. Thenmotum equation is linearized by discarding ad-
vection. Horizontal momentum diffusion is discarded buttical momentum diffusion is kept. Bottom friction is
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preserved to dissipate the energy input from the wind. Thpgae of this experiment is to verify whether the model
is able to represent the vertical structure of the horizondtocity field, shaped by the combined effects of bottom
friction, wind friction and vertical diffusion.

The basin is taken to be 30 km long, 10 km wide and 30 m deep atethter. The wind stress jgr,|| = 0.1 N
m~2, the coefficient of vertical momentum diffusionis = 5 x 10~% m? s~! and the Coriolis factor i = 10~
s~!. The quadratic law (10) is used with the bottom drag coefficiaken to be 103, That is, the drag coefficient
is constant and not parameterized. A three-dimensionahm@staining approximately 6500 surface triangles (mean
resolution of about 300 m) and 20 layers is used to run the hthdang 2.9 days with a time step of 500 s.

The predicted flow field is in good agreement with publishexilts by Mathieu et al. (2002) and Winant (2004),
as shown in Figure 13. The barotropic transport is upwirel,(hegative) in the deep part of the basin and downwind
(i.e., positive) in the shallow region (see threomponent). However, the surface zonal velocity is evégng positive,
which is a direct effect of wind drag. The vertical structofehe v-component exhibits two co-rotating eddies with
negative values near the surface and the bottom and a slatwpasturning flow in the interior. These results are in
qualitative and quantitative agreement with those pubtidby Winant (2004).

6 Conclusions

We presented a new three-dimensional, unstructured mashdiement shallow-water model. The current config-
uration is suitable for studying unstratified flows and theletion of passive tracers. The model has a free surface and
is hydrostatic. The mesh is unstructured in the horizomdlextruded towards the seabed in the direction parallel to
the local gravity vector to generate a mesh made up of prigims.mesh moves in the vertical and accommodates the
free-surface motions.

We described the numerical treatment of the hydrodynaneigahtions with the finite element method. A dis-
continuous representation is used in the vertical for albeity components. The horizontal components are non-
conforming in the horizontal, which is particularly wellited for advection-dominated flows. The choice of elements
(i.e., the nodes stagering) follows the guidelines by Weital. (2007) and is consistent and ensures volume and tracer
conservation.

The model was validated against a realistic tidal flow arcaustallow-water island for which field measurements
are available and was shown to operate successfully. The-tfimensional character of the flow was emphasized by
use of a passive tracer for which vertical diffusion was agroff. The presence of tracer at the surface is a signature of
vertical motions of relatively high intensity. Finally, vessessed the model’s ability to represent the verticattsire
of the horizontal flow field by applying it to a wind-driven floexperiment in an elongated rectangular basin.

This three-dimensional shallow-water model is built onesal’breakthroughs that have been — or are about to be
— published and, in this respect, is an important step towdtdl-fledged ocean model. Yet, many challenges still
lie ahead of us. One of the biggest is the activation of thedmic pressure term, which hinges on the adequate
transport of active tracers such as temperature and salirtits, in turn, implies that great care will have to be taken
devising the advection scheme for scalars. The elementeatio the model for all variables ensure consistency but
positive-definiteness of tracer distributions will evealty depend on the advection operator and, to a lesser gxtent
diffusion operator (Delhez and Deleersnijder, 2007). Asiynacean models are now linked to biogeochemical cycles,
the issue of devising a monotonic, positive-definite adeacicheme is even more pressing. The model must be able
to operate in spherical geometry without resorting to glamerdinate systems that present one or more numerical
singularities (such as the longitude-latitude coordirsgttem). Mesh flexibility will be fully exploited in the véctl
by using different numbers of prisms within each column. \lg® anust demonstrate that, from a computational point
of view, finite element models are a viable alternative torttuee efficient structured grid models. One step further in
sophistication entails embedding a continuous spectruparEmeterizations within finite element models to comply
with variable mesh resolution and the formidable multisa@mplexity of ocean flows.
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A Definition of Sobolev Space${' and £>

The spaceC?(2) contains those functions that are square integrable, i.e.,

e ={r: [IPan<sl.

The spacé+! () contains those functions belonging£3(2) and whose first weak derivatives belongd#(Q2) as
well. That is
HY Q) ={feL*Q): Vi=1...d, 8,,f € L2},

whered is the dimension of the spaceé £ 3 for the usual physical space).

B Coupling terms between the external and internal modes

Eq. (27) is spelled out in terms of its— andy—components. For the—component, we have

@+_@+_@_f_+ @— _ig/n~~d _ig/HN”d
ot " ar "oy U %8 T T Hox ) T T Hay ) M

—d
! nV Vu) d o
+ = vpVu) dz+ — (1) — 7
7)Y V) de ot (7 = )
while they—component reads
ov ov ov on 10 [ __ 10 (7 _.
— 4+ U—+T—+ fut+g— = ——— dz — —— d
6t+u6x+v8y+fu+gay Hax/_duv z T oy _dvv z -
I 1,
+E[dv.(uth) dz—i—pO—H(Ty —7y).
In Egs (35) and (36), we have defined
u=u-—T,

which is the deviation of the velocity relative to the deptireraged velocity. The terms involving products of those
deviations arise from depth-integration of advection trithe bottom and surface stresses are denotedadndr?,
respectively. In Egs (35)-(36), all terms involving the gnostic variable$u, ©) can be time stepped. The momentum
diffusion term is purposedly written in terms of the full eeity field. Only when writing the variational statement
of Egs (35)-(36) are we able to elegantly derive expressionslving the depth-averaged and deviatory velocity
components. Itis carried out below. Upon inspection of B§9{36), we see that the right-hand slef Eq. (27) is

Ju _ou 10 /” 10 (7

= U -7 — —— tadz — =— ou dz
Ox oy Hox J_, Y J_gq (37)

1 [ 1,
+E/,dV.(Uhvu) dz—i—pO—H(T —-T).

Let us now focus on the momentum diffusion term in the vaoizdl statement associated with Eq. (35). After
multiplying the equation by a two-dimensional test funatipand integrating over the unperturbed, two-dimensional
domain7Z™, we obtain

A~ ’r] -~

—/iva«%vmdg (38)
Qh

+ VH - (1, Vi) d.

u
Oh H2
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In Eq. (38), the first term in the left-hand side can be tim@séel because it is expressed in terms of the prognostic
variablew. In that case, the term dissipates depth-averaged hoalzmatmentum.
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flow field is examined across a vertical sectiomat 0 (see Figure 13). . . . . . ... ... ... .. 34
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13 Components of the horizontal velocity field [m'$ across a vertical section at= 0 (at mid-distance
between both ends of the basin). The wind is blowing alongthsis, in the positive direction. The
barotropic transport is upwind (i.e., negative) in the deeft of the basin and downwind (i.e., positive)
in the shallow region (see thecomponent). However, the surface velocity is everywhergrovind.

The vertical structure of the-component exhibits two co-rotating eddies with negataeigs near the
surface and the bottom and a slow positive returning flow énitieerior. . . . . . ... ... ... .. 34
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| Simulation | Mesh | BC | Global RMS error] Wake RMS error| Far-field RMS error|

S1 (Fig. 8) | My x6 | meterd 0.5239 0.5917 0.7720
So (Fig. 9) | My x 10 | meter4 0.4974 0.5259 0.7533
Ss (Fig. 10) | M3 x 10 | meter 25 0.4318 0.6125 0.3235

Table 1: Global, wake and far-field rms errors [mY] for three different simulations. The simulations areslitated in Figures

8, 9 and 10. The errors are computed every eight minutes glfour hours at flood (see snaphots in Figures 8, 9 and 10) when
eddies develop in the wake. In tMeshcolumn, the horizontal mesh and the number of layers ardf@gacThe global rms error

is computed by using all current meters while the wake andiééat rms errors are computed by using subsets of all cumaters,

as shown in Figure 5.

Iy

Figure 1: Notations used to describe the three-dimensional timeuignt domaif2. The seabed and the free surface are denoted
by I', andT's, respectively. The unperturbed plane defined:by 0 is noted7 and is represented by the dotted lines. The lateral
boundary is noted',,. At any location(z,y), the depthd(z,y) and the elevatiom(z, y, t) are both defined with reference o.

The displacement of the free surface is exaggerated.
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Figure 2: Main notations used to describe the mesh topology. (a) Irdimensions, any interior edde. is shared by two triangles
7. and7;. In three dimensions, (b) any interior vertical faEgis common to adjacent prisnig and2s (lying within a common
layer). (c) Two stacked prism3. and2; share an interior triangular facg.. A unit normal vecto(n®, n%) is associated to each
of these interior geometric items, with the supersceiptdicating that it is oriented from to f (with e > f).
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o’w,C

Figure 3: Location of nodes for all hydrodynamic variables within duton split into prisms. The top triangle is the surface
triangle. The free-surface elevation) (s linear. The horizontal velocityu v) is linear non-conforming in the horizontal and linear
discontinuous in the vertical. The vertical velocity)(and all tracers@) are linear everywhere but discontinuous in the vertical.

n—1 n n+1 u,n,C

n—1/2 n+1/2 u,w

Figure 4: Schematic of the staggering used between elevation aret$réan integer time steps) and velocity (on half-integeeti
steps). The mesh geometry needs to be known on integer tapg shly, which is a consequence of the transport computéaby
(30) not being formally centered in time. The effect is th velocity(u, w)”“/2 is computed on mesh geometty The symbol
C denotes any active or passive tracer.
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Figure 6: Meshes and bathymetry used in numerical experiments. (@h®fhizontal mesh contains 3000 triangles and the reso-
lution varies from 140 m to 900 m. (b) Computational domairkii® by 11.8 km) and bathymetry, obtained by rotating the real
domain by an angle minimizing the.component of the velocity (in the new coordinate systeneduss boundary conditions. (c)
The horizontal mesh contains 9600 triangles and the résolugries from 60 m to 800 m.
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Figure 7: Depth-averaged, horizontal flow pattern at six snapshatsgla full tidal cycle. The velocity field was interpolated o
a 200 m structured grid for clarity. Velocity from current tae25 used as open boundary condition. The mestwas used.
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Figure 8: SimulationS; (see Table 1). Comparison between the measured depthgaddnarizontal velocity field (left panels) and
that predicted by the model (right panels) on 4 December 198 reversal occurs around 13h45. The rms efris computed
for each snapshot separately.
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Figure 9: SimulationS- (see Table 1). Comparison between the measured depthgaddnarizontal velocity field (left panels) and
that predicted by the model (right panels) on 4 December 198 reversal occurs around 13h45. The rms efris computed
for each snapshot separately.
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Figure 10: SimulationSs (see Table 1). Comparison between the measured depthgadeharizontal velocity field (left panels)
and that predicted by the model (right panels) on 4 DecemB8g.1 Tide reversal occurs around 13h45. The rms efris
computed for each snapshot separately.
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Figure 11: Evolution of a cylindrical tracer patch over a full tidal dgc (a) Initial condition. (b-c) Falling tide (currents thet
right). (d-e) Rising tide (currents to the left). Tide resals occur around 7h30 and 13h45. The corresponding depthged
horizontal velocity field is shown in Figure 7. Vertical texadiffusion is switched off to focus on vertical advectiddotice the
tracer patch at the surface on panels d-f. Velocity fromentrmeter 25 used as open boundary condition.
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Wind

Figure 12: Domain of interest for the wind-driven flow in an elongatediba Uniform wind is blowing parallel to the-axis, in
the positive direction. All boundaries are closed. Theieattstructure of the horizontal flow field is examined acraseertical

section atz = 0 (see Figure 13).

Figure 13: Components of the horizontal velocity field [MT'§ across a vertical section at = 0 (at mid-distance between
both ends of the basin). The wind is blowing along #hexis, in the positive direction. The barotropic transgeripwind (i.e.,
negative) in the deep part of the basin and downwind (i.esitipe) in the shallow region (see thecomponent). However, the
surface velocity is everywhere downwind. The vertical stiwe of thev-component exhibits two co-rotating eddies with negative
values near the surface and the bottom and a slow positivenieg flow in the interior.
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