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Abstract

An innovating approach is proposed to solve vectorial conservation laws on curved manifolds using the Discontinuous
Galerkin Method. This new approach combines the advantages of the usual approaches described in the literature.
The vectorial fields are expressed in a unit non-orthogonal local tangent basis derived from the polynomial mapping
of curvilinear triangle elements, while the convective flux functions are written is the usual 3D Cartesian coordinate
system. The number of vectorial components is therefore minimum and the tangency constraint is naturally ensured,
while the method remains robust and general since not relying on a particular parametrization of the manifold. The
Discontinuous Galerkin Method is particularly well suited for this approach since there is no continuity requirement
between elements for the tangent basis definition. The possible discontinuities of this basis are then taken into account
in the Riemann solver on inter-element interfaces.
The approach is validated on the sphere, using the shallow water equations for computing standard atmospheric

benchmarks. In particular, the Williamson test cases are used to analyze the impact of the geometry on the conver-
gence rates for discretization error. The propagation of gravity waves is eventually computed on non-conventional
irregular curved manifolds to illustrate the robustness and generality of the method.
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1. Introduction

Many fields of engineering requires to solve partial differential equations (PDE’s) on curved manifolds,
as for instance the computation of deformation of shells or vibration of membranes, or geophysical fluids
conservation laws for oceanic or atmospheric predictions. Those computations on curved manifolds are es-
sentially two-dimensional since occurring on the surface of a curved body. However, a third dimension has
to be taken into account since the body curvature introduces important acceleration terms.
Past studies have seen the emergence of basically two families of methods. The first one consists in writing
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directly the PDE’s on the curved manifold. The conservation laws and vector fields are thus written in
a two-dimensional (considering a manifold ∈ R3) parametric space (Rossmanith et al., 2004; Rossmanith,
2006). This approach has been successfully used to compute the shallow water equations on the surface
of the sphere for simple atmospheric models (Cho and Polvani, 1996; Iacono et al., 1999; Rancic et al.,
1996), to compute relativistic gas dynamics on space-time manifolds curved under the influence of gravi-
tational forces from neutron stars or black holes (Font, 2000; Pons et al., 1998), or for the propagation of
magneto-gravity waves in the solar tachocline (Gilman, 2000). This approach requires to rewrite the PDE’s
in order to account for the curvature terms. The vectors are described using the covariant coordinates and
the expression of spatial operators depends on the metric of the manifold’s surface. The main advantage
of this approach is that vectors contain the minimum number of components and the tangency constraint
to the manifold is ensured. Yet, it requires an expression of the metric tensor at any point of the space.
This restriction somehow reduces the generality of the method. An example of such a transformation may
be found in atmospheric computations using the so-called cubed-sphere (Ronchi et al., 1996; Taylor et al.,
1997; Nair et al., 2005), mapping the six faces of a cube onto a sphere.
A second approach considers the expression of the vector field and the conservation laws in three dimensions
with a single global Cartesian coordinate system (Swarztrauber et al., 1997; Stuhne and Peltier, 1999; Gi-
raldo, 2000; Giraldo and Warburton, 2005). This method allows one to keep a general expression of the PDE,
without adding explicit acceleration terms as the Christoffel symbols since the geometry remains hidden in
some source terms. The conservation laws remain the same as in the case of a 3D domain computation.
The drawback of this approach is the use of a larger number of unknowns, since three components are used
instead of two. Moreover, a constraint has to be added for the vector fields to remain tangent to the manifold.
When considering explicit time steppers, one basic possible technique consists in projecting the residual and
the solution on the local tangent plane for instance at each inner Runge-Kutta time step. This technique is
indeed not well suited for implicit time schemes. One could also consider the constraint imposition through
Lagrange multipliers (Côté, 1988; Giraldo, 2006).

In this paper, we propose an alternative approach using the discontinuous Galerkin (DG) finite element
method and combining those two classical methods to benefit from the advantages of both approaches.
The DG method consists in a discontinuous finite element method combining the advantageous features of
both the classical continuous Galerkin formulations and the finite volumes methods. Indeed, the classical
interpolation theory is still valid and the resolution can be locally increased by increasing the polynomial or-
der of the function space, while the discontinuities allow one to build accurate high-order advection schemes.
This use of high-order polynomial shape function leads to high convergence rates of the discretization, dis-
persion or dissipation errors (Cockburn et al., 2000; Ainsworth, 2004; Bernard et al., 2008b). Moreover, as
the classical FEM, the method is well suited for addressing multi-scale processes since it provides a great
flexibility for handling complex geometries and an easy way of imposing natural boundary conditions. It
presents efficient computation properties such as an efficient way to perform h-p-adaptivity using the jumps
as error-estimator (Adjerid et al., 2002; Biswas et al., 1994; Devine et al., 1993; Remacle et al., 2001, 2003a),
or an easy way to perform parallel computations or to use quadrature-free techniques.
First introduced by Reed and Hill in (Reed and Hill, 1973) for solving the neutron transport equation, the
DG method has become a very popular new trend for solving engineering problems where advection plays
an important role (Cockburn et al., 2000). The method is now widely used for solving a large variety of
problems in many fields of practical engineering such as computational fluid dynamics (Remacle et al., 2005;
Hillewaert et al., 2006; Krivodonova et al., 2004; Bassi and Rebay, 1997; Bey and Oden, 1991; Lomtev et al.,
1998; Lomtev and Karniadakis, 1999; Warburton et al., 1997), aeroacoustics problems (Chevaugeon et al.,
2005b,a), levelset methods (Marchandise et al., 2007; Marchandise and Remacle, 2006), magnetohydrody-
namics (Warburton and Karniadakis, 1999) or hydrodynamics and ocean modeling (Remacle et al., 2003b;
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Bernard et al., 2007; Dawson and Proft, 2004; Kubatko et al., 2006; Aizinger and Dawson, 2002, 2007;
Giraldo et al., 2002; F. and C.A., 2004; Eskilsson and Sherwin, 2004; Giraldo, 2006; F.X. and M., 2008; F.X.
and T., 2008).
We show here that the DG method is particularly well suited to compute conservation laws on curved man-
ifolds. Indeed, the definition of a local tangent basis on each element is highly simplified since there are no
inter-element continuity requirement, while continuous discretizations lead to slightly more complex basis
definitions (Comblen et al., 2008). The alternative approach developed here is applied in particular to the
shallow water equations for the computation of oceanic or atmospheric flows. The approach is validated
on the sphere with standard test cases proposed by (Williamson et al., 1992; Smith and Dritschel, 2006),
and the robustness and generality of the method are eventually tested on some non-conventional irregular
manifolds.

2. Several approaches for solving PDE’s on curved manifolds

The purpose of this work is to solve conservation laws in a curved two-dimensional domain. The par-
tial differential equations are thus essentially two-dimensional in the sense that the vectorial unknowns are
defined as tangent to the manifold and present thus two independent components. However, the manifold
is defined in three dimensions and its curvature generates acceleration terms which have to be taken into
account.

Let us consider the following set of hyperbolic conservation laws in the general divergence form of hyper-
bolic systems:

∂U

∂t
+∇ · F (U) = 0 (1)

with U(x, t) the vector of unknown fields and F the flux matrix containing for instance the advection terms
or the pressure gradient terms. Note that the addition of a source term is straightforward and is therefore
not considered in this section. We restrict ourselves to the mass and momentum conservation laws. In order
to identify the scalar and vectorial components of the system, let us define the following quantities:

U =

 s

u

 , F (U) =

 G(U)

H(U)

 , (2)

with s the scalar unknown and u the vectorial unknown field, i.e. typically the pressure and velocity for mass
and momentum conservation laws in fluid dynamics, while G and H denote the sub-vector and sub-matrix
of the flux matrix corresponding to the mass and momentum equations, respectively.
This set of equations has to be solved on a general curved manifold x ∈ R3 as depicted in the right part of
Figure (1).

The mass equation is a scalar equation describing the time evolution of a scalar unknown field. The main
difference between the classical methods for solving PDE’s on the manifold lies in the manner to write the
gradient operator ∇ and the corresponding fluxes G:
– 2D approach: a first classical method consists in writing the equations directly on the manifold, in two
dimensions, by considering a parametric two-dimensional space α = (α, β) ∈ R2 and a transformation
g(α) = x mapping the parametric coordinates on the curved manifold. The gradient operator and fluxes
are thus written in contravariant coordinates as
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Figure 1. Transformation g from the parametric space r ∈ R2 to the curved manifold in x ∈ R3

∇= (∂/∂α, ∂/∂β) ,
G=Gαα̂+Gββ̂ ,

with (α̂, β̂) an orthogonal constant unit basis of R2. Therefore, this approach requires the use of the
metric tensor G based on the transformation g. The divergence operator for instance becomes:

∇ · u = 1√
det(G)

[
∂

∂α
(
√

det(G)uα) + ∂

∂β
(
√

det(G)uβ)
]

with (uα, uβ) the components of the vectorial field in the parametric space.

– 3D approach: another classical approach consists in writing the equations directly in three dimensions, by
defining

∇= (∂/∂x, ∂/∂y, ∂/∂z) ,
G=Gxêx +Gyêy +Gzêz ,

with (êx, êy, êz) an orthogonal constant unit basis of R3.
Considering the momentum equation, the difference between those methods still lies in the definition of

the operators ∇ and the fluxes H, but also in the definition of the vectorial unknown field itself.
With the classical 3D approach, the vectorial field u is written with three components in R3:

u = uêx + vêy + wêz .

The vectorial equation thus reads:
∂

∂t
(uêx + vêy + wêz) + ∂

∂x
Hx + ∂

∂y
Hy + ∂

∂z
Hz = 0 . (3)

Each flux vector is then also defined in the same basis as

Ha = Haxêx +Hayêy +Hazêz , for a = x, y, z. (4)

Taking advantage of the orthogonality of the basis, the scalar product of this vectorial equation (3) with the
three basis vectors êx,y,z yields the classical system of “decoupled” equations in u, v and w, each equation
describing the time evolution of one component:
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∂u

∂t
+ ∂

∂x
Hxx + ∂

∂y
Hyx + ∂

∂z
Hzx = 0

∂v

∂t
+ ∂

∂x
Hxy + ∂

∂y
Hyy + ∂

∂z
Hzy = 0

∂w

∂t
+ ∂

∂x
Hxz + ∂

∂y
Hyz + ∂

∂z
Hzz = 0

(5)

The main advantage of this approach is the simplicity of the fluxes and the gradient operator. Indeed, the
spatial derivatives do not require to be rewritten in the parametric space using the metric tensor. Therefore,
no analytical expression of the manifold is required so far, and the expression of the flux function remains
the same as in the plane computation. The main drawback is the computational cost: this approach re-
quires the use of three unknowns to represent the vectorial field, i.e. u, v and w, instead of two for the first
method. Moreover, there is no guarantee for the vectorial field to remain tangent to the surface. Therefore,
the method also requires to ensure the tangency with, for instance, the use of Lagrange multipliers.

On the other hand, the 2D approach considers a vectorial field u with two components in the parametric
space:

u = uαα̂+ uββ̂ ,

as the gradients and fluxes:

∂

∂t

(
uαα̂+ uββ̂

)
+ ∂

∂α
Hα + ∂

∂β
Hβ = 0 . (6)

Applying the same procedure as on the 3D formulation, one thus obtain a system with decoupled time
derivatives. The advantage is the use of a minimum number of unknowns and the guarantee for the vectorial
field to remain tangent. However, the fluxes have to be rewritten to take into account the curvature of the
manifold. This will lead to the creation of acceleration terms with the usual Christoffel symbols. Although
efficient, the method appears to be less general since it requires an analytical expression of the parametriza-
tion of the surface and some efforts for computing a metric tensor and modifying the flux function.

The purpose of the method developed here is precisely to combine the advantages of both methods
described above while leaving the drawbacks.
Let us define at every point on the curved manifold a two-dimensional unit tangent basis (tξ, tη) without
orthogonality requirement. The idea of this alternative approach is to write the vectorial field into this local
tangent basis, while the fluxes and spatial operators are still expressed in the three-dimensional basis êx,y,z.
The vectorial equation thus reads:

∂

∂t
(uξtξ + uηtη) + ∂

∂x
Hx + ∂

∂y
Hy + ∂

∂z
Hz = 0 , (7)

with the flux vectors H expressed following (4). The scalar product of (7) by tξ and tη yields the following
system:
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∂

∂t
(uξ tξ · tξ︸ ︷︷ ︸

1

+uηtη · tξ) + tξx

(
∂

∂x
Hxx + ∂

∂y
Hyx + ∂

∂z
Hzx

)
+ tξy

(
∂

∂x
Hxy + ∂

∂y
Hyy + ∂

∂z
Hzy

)
+ tξz

(
∂

∂x
Hxz + ∂

∂y
Hyz + ∂

∂z
Hzz

)
= 0

∂

∂t
(uξtξ · tη + uη tη · tη︸ ︷︷ ︸

1

) + tηx

(
∂

∂x
Hxx + ∂

∂y
Hyx + ∂

∂z
Hzx

)
+ tηy

(
∂

∂x
Hxy + ∂

∂y
Hyy + ∂

∂z
Hzy

)
+ tηz

(
∂

∂x
Hxz + ∂

∂y
Hyz + ∂

∂z
Hzz

)
= 0

(8)

Since the local tangent basis is usually not orthogonal, the time derivatives are no more decoupled into a set
of scalar equations as in (5). The PDE remains fully vectorial and the whole system has thus to be solved
at once. Moreover, the scalar product with the tangent basis leads to nine flux terms in each equation,
while only three terms were not vanishing in each equation of (5), because of the orthogonality of êx,y,z.
But this formulation has the advantage of providing very simple expressions of the fluxes and the spatial
derivatives, as in the fully 3D approach, while presenting only two unknowns, u1 and u2, and ensuring the
conservation of the tangency of the vectorial fields as in the 2D approach. If no analytical expression of a
metric tensor is required for writing the fluxes, the complexity is however reported in the expression of the
local tangent basis. Even though this formulation may seem quite complex, it turns out that this issue can
be easily handled with the finite element method. In particular, the discontinuous finite element method is
well suited for this formulation since it leads to a very simple definition of a local high-order tangent basis
with no continuity requirement.

3. Local Tangent Basis definition using the Discontinuous Galerkin method

This section is devoted to the discretization and resolution of vectorial PDE’s in the form (8) using the
Discontinuous Galerkin (DG) method. After the derivation of a weak formulation, we define the discretiza-
tion of the vectorial fields and their local tangent basis. An approximate Riemann solver is then developed
to take into account the normals discontinuities between elements. The discrete spatial operators are finally
derived for solving the vectorial equation.

3.1. Discontinuous Galerkin discretization

We consider the set of conservation laws in divergence form as written in (1):
∂U

∂t
+∇ · F (U) = S(U)

with U(x, t) the vector of unknown fields described in (2), F the flux matrix and S containing the source
terms. The domain of computation Ω is divided into a set of Ne non-overlapping elements Ωe:

Ω =
Ne⋃
e=1

Ωe .

Following a classical Galerkin procedure, we obtain the weak formulation by multiplying the scalar and
vectorial PDE’s (1) by smooth test functions η̂ and û respectively and by integrating it on each element Ωe.
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For sake of simplicity, we only consider the vectorial conservation law for deriving the weak formulation.
The extension to the scalar PDE is trivial. The vectorial PDE thus reads:

∂

∂t

∫
Ωe
u · û dΩ +

∫
Ωe
∇ ·H(U) · û dΩ =

∫
Ωe
S(U) · û dΩ . (9)

We seek an approximation Uh = (sh,uh) of the scalar and vectorial fields U such that Uh ∈ Uhp with Uhp
the finite dimensional space of polynomials of order at most p. The discretized weak formulation thus read:

∂

∂t

∫
Ωe
uh · ûh dΩ +

∫
Ωe
∇ ·H(Uh) · ûh dΩ =

∫
Ωe
S(Uh) · ûh dΩ , ∀Ωe (10)

with the test function ûh ∈ Uhp .
The transfer information between elements in classical continuous finite element methods is ensured by the

fact that two adjacent elements share common nodes, which is not the case in discontinuous formulations.
Therefore, this information transfer requires the divergence term to be integrated by part:

∂

∂t

∫
Ωe
uh · ûh dΩ−

∫
Ωe
H(Uh) · ∇ûh dΩ +

∫
∂Ωe

H(Uh) · n · ûh dΓ =
∫

Ωe
S(Uh) · ûh dΩ (11)

where n denotes the outward unit normals to the element Ωe and ∂Ωe denotes its corresponding edges. This
integration on the element edges ensure the information transfer through the normal flux H(Uh) · n. The
formulation (11) remains however incomplete. Indeed, the unknown fields Uh present different values on
both sides of the discontinuity. An appropriate definition of the normal flux has then to be provided:

H(Uh) · n = H(UL,UR) · n , (12)
with UL and UR the values of the unknown fields on ∂Ωe, the subscript ·L corresponding to the “left”
element Ωe and ·R to the “right” adjacent element.
The accuracy of the method will depend in a large part on this normal flux definition. Those discontinuities
provide an opportunity to introduce accurate advection schemes. Indeed, Riemann-like solvers can be used
to compute the normal flux, introducing the right amount of numerical diffusion in the scheme to damp out
the unresolved high frequency modes. There are many possible choices for this normal flux function (see
for instance (Toro, 1997; LeVeque, 2002)). However, it is well known that the impact of the choice of the
numerical flux decreases as the polynomial order increases (Cockburn and Shu, 2001). Indeed, considering
a hyperbolic linear system, it can be easily shown that the dissipation introduced by the Riemann solver
is proportional to the amplitude of the jumps of the solution (Cockburn et al., 2000; Marchandise et al.,
2006), and the jumps varies as hp+1, explaining the decreasing impact of the flux with the order p. No
significant difference has been observed with the current model on the sphere using the approximate Roe
solver, Lax-Friedrich solver, or exact Riemann solver. We thus apply in this work the simple Lax-Friedrich
solver on the flux matrix:

F (Uh) · n = F (UL) + F (UR)
2

· n+ |λ|max
UL −UR

2
(13)

where |λ|max denotes an estimate of the largest eigenvalue of the jacobian on the edge, corresponding to the
advection speed of the Riemann invariants.

3.2. High-order Mapping and definition of a Local Tangent Basis

Although complete in a mathematical sense, formulation (11) is common to many different methods for
computing PDE’s on manifolds. The efficiency and robustness of the method will depend on the definition
and discretization of the quantities uh and F . Let us now consider the definition of those quantities as
expressed in (8) and proceed to their discretization.

7



3.2.1. Interpolation of a tangent vector field to a parabola

Let us first consider the following one-dimensional simplified problem depicted in Figure (2). We consider
a one-dimensional manifold composed of the unique parabola x(ξ) ∈ R3 that passes through the three points
x1, x2, and x3. We seek to express the vectorial field u(ξ) as the product of an amplitude u(ξ) and a tangent
direction t(ξ):

u(ξ) = u(ξ)t(ξ)

One possible representation of the parabola can be written as

x(ξ) = xh(ξ) =
3∑
i=1

xiL
2
i (ξ)

= (ξ − 1)ξ
2︸ ︷︷ ︸

L2
1(ξ)

x1 + (1− ξ2)︸ ︷︷ ︸
L2

2(ξ)

x2 + (ξ + 1)ξ
2︸ ︷︷ ︸

L2
3(ξ)

x3 ,

where Lpi denotes the Lagrange function space of order p corresponding to the interpolation node xi. It
maps the interval ξ ∈ [−1, 1] onto the parabola using the so called quadratic Lagrange polynomials.
Note that the choice of equidistant nodes used in this paper is not optimal for very high order polynomials.
Alternative nodes positions, using for instance the electrostatic analogy approach (Hesthaven, 1998) or
Fekete points, could be considered for such high orders. However, the use of equidistant nodes works fine for
the polynomials orders (p ≤ 6) used in this work.

Figure 2. Mapping from the reference parametric space ξ ∈ [−1, 1] onto the parabola x ∈ R2 with t1 and t2 the unit tangents
corresponding to ξ = ±1.

The tangent vector

τh(ξ) = ∂x

∂ξ
=

3∑
i=1

xi
∂L2

i (ξ)
∂ξ

= (2ξ − 1)
2

x1 − 2ξ x2 + (2ξ + 1)
2

x3

can be written in a more convenient form
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τh(ξ) =
2∑
i=1

τ iL
1
i (ξ)

= (1− ξ)
2︸ ︷︷ ︸

L1
1(ξ)

(
−3

2
x1 + 2x2 −

1
2
x3

)
︸ ︷︷ ︸

τ 1

+ (1 + ξ)
2︸ ︷︷ ︸

L1
2(ξ)

(
1
2
x1 +−2x2 + 3

2
x3

)
︸ ︷︷ ︸

τ 2

that involves the two tangent vectors τ 1 = τ (−1) and τ 2 = τ (1) at the end points of the parabola that
are interpolated using Lagrange shape functions of one order lower than the parametrization, i.e. of order one.

Now, our aim is to build a vector-valued interpolation uh(ξ) that is always tangent to the parabola. Let
us consider the following polynomial expansion of order p:

uh(ξ) =
p+1∑
i=1

uiL
p
i (ξ).

Multiplying the expressions of τh and uh allows one to build a parametrized tangent vector to the parabola:

uh(ξ) = uh(ξ)τh(ξ)

=
p+1∑
i=1

uiL
p
i (ξ)

(
L1

1(ξ)τ 1 + L1
2(ξ)τ 2

)
.

For sake of simplicity, let us expand this last expression for p = 1:

uh(ξ) = u1
[
L1

1(ξ)2τ 1 + L1
1(ξ)L1

2(ξ)τ 2
]︸ ︷︷ ︸

T 1(ξ)

+u2
[
L1

1(ξ)L1
2(ξ)τ 1 + L1

2(ξ)2τ 2
]︸ ︷︷ ︸

T 2(ξ)

. (14)

Equation (14) is a vector valued finite element approximation that makes use of quadratic vector valued
shape functions T 1(ξ) and T 2(ξ) and of scalar coefficients u1 and u2. Clearly, we have T 1(−1) = τ 1 and
T 2(1) = τ 2 so that our approximation looks very much like a classical finite element approximation: u1 and
u2 can be interpreted as vector amplitudes at element end points. Disappointingly, this way of approximating
fields cannot be used in a finite element framework because it does not fulfill the simplest patch test: it is
easy to see that (14) does not allow one to interpolate a vector of constant amplitude on the parabola.
Even if using unit tangent vector t1 and t2 on the parabola’s edges, the combination does not lead to unit
tangents inside the domain as depicted in Figure (2).
It is possible to circumvent that problem defining unit tangent vectors th:

uh(ξ) = uh(ξ)th(ξ) = uh(ξ) τ
h(ξ)

‖τh(ξ)‖
,

with its derivative with respect to ξ given by

∂th

∂ξ
= ∂τh

∂ξ

1
‖ τh ‖

− τh

‖ τh ‖3

(
τh · ∂τ

h

∂ξ

)
. (15)

This approximation allows one to make the amplitude of uh to vary polynomially while remaining tangent
to the parabola. Of course, since vector shape functions are not polynomials, the finite element assembly
process may appear as more expensive. However, the inverse of the Jacobian matrix used in the usual discrete
convective terms is not polynomial either. Moreover, those non-polynomial expressions may be precomputed,
leading to an equivalent computational cost compared to conventional approaches.
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3.2.2. Interpolation of tangent vector fields on surface meshes

Let us consider a curved manifold S ∈ R3:

x : (ξ, η) ∈ R2 → x(ξ, η) ∈ S .

If S is sufficiently regular, it is possible to define a tangent plane at any point of its surface. Therefore, this
allows one to consider the alternative approach (8), where the vectorial field u is expressed as:

u(ξ, η) = uξ(ξ, η)tξ(ξ, η) + uη(ξ, η)tη(ξ, η) (16)

with (tξ, tη) a unit local tangent basis to S. This basis clearly varies in space and its orthogonality is not
required. The aim of this section is to define a finite element approximation of (16) that is a priori tangent
to any manifold S.

In the classical framework of finite elements, the manifold S is discretized using triangles, possibly curvi-
linear. Let us consider a curvilinear triangle T with its mapping

xh : (ξ, η) ∈ R2 → xh(ξ, η) ∈ T

that maps the unit triangle 0 < ξ < 1, 0 < η < 1 − ξ onto T as depicted in Figure (3). We assume here
the mapping to be polynomial, of order q. The manifold’s geometry is thus approximated by the polynomial
mapping:

xh(ξ, η) =
Nq∑
i=1

xiL
q
i (ξ, η)

where the xi are the Nq nodal coordinates of each triangle of order q (Nq = (q + 1)(q + 2)/2 for Lagrange
shape functions) and Lqi is the Lagrange shape function of order q relative to node i. The local tangent basis
(tξ, tη) will thus clearly be approximated using the triangle’s tangents, which can be computed by using the
derivatives of the polynomial mapping:

τhξ (ξ, η) = ∂xh

∂ξ
=
Nq∑
i=1

xi
∂Lqi
∂ξ

, (17)

=
Nq−1∑
i=1

τ ξiL
q−1
i (ξ, η) . (18)

where τ ξi = τhξ (ξi, ηi) is a tangent vector evaluated at the ith Lagrange point (ξi, ηi) of order q − 1,
and with the second basis vector τhη expressed in the same way. The tangents τhξ and τhη are eventually
normalized to obtain the following approximation of the unit tangent basis (thξ , thη):

tξ ' thξ = τ ξ
‖ τ ξ ‖

(19)

and thη written in the same way. Any tangent vector at point xh(ξ, η) is therefore a linear combination of thξ
and thη .

For the formulation (16) to be complete, the components uξ and uη still have to be discretized. This can
be achieved by discretizing the vector amplitudes as classical scalar fields at any order p:

uξ(ξ, η) ' uhξ (ξ, η) =
Np∑
j=1

Lpj (ξ, η)Uξj , (20)

which yields the following discretized tangent vector field
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Figure 3. Mapping of the reference unit triangle 0 < ξ < 1, 0 < η < 1− ξ onto the curvilinear triangle T .

uh(ξ, η) = uhξ (ξ, η)thξ (ξ, η) + uhη(ξ, η)thη(ξ, η)

=
Np∑
j=1

(
Lpj (ξ, η)Uξj

)
thξ (ξ, η) +

Np∑
j=1

(
Lpj (ξ, η)Uηj

)
thη(ξ, η) . (21)

The fact that Np is not necessary equal to Nq allows one to compute higher-order representation of order p
of the vector field on low order mappings of order q. Notice finally that this approach may thus be considered
as using vectorial shape functions multiplying the amplitude nodal values Uξj and Uηj to represent vector
fields. Those shape and test functions are however non-polynomial functions since the tangent basis has to
be normalized.

3.3. Approximate Riemann solver with discontinuous normals

The computation of the weak formulation (11), and in particular the integration on the edges, still requires
the definition of an approximate Riemann solver taking into account the possible discontinuities of the
normals in the manifold representation. We consider the expression of the vector field (21) in the local
tangent basis and we use the simple Lax-Friedrich solver (13):

F (Uh) · n = F (UL) + F (UR)
2

· n+ |λ|max
UL −UR

2
.

The fluxes are written in the global 3D basis êx,y,z. Therefore, the vectorial field (21) has to be expressed
in three components as well for the flux computation.

Let us consider the configuration depicted in Figure (4): we wish to compute the normal fluxes on the
edge Γ between two triangles ΩL and ΩR. To simplify the illustration, those triangles are considered flat,
belonging to the two planes PL and PR. At each edge point, a local basis is obtained by considering the
tangent component m, common to both triangles, and the left and right normals nL,R. On each triangle, a
vector field is defined in both basis, say uL ∈ (nL,m) and uR ∈ (nR,m).
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Figure 4. Illustration of the discontinuous normals on the edge Γ between two flat triangles ΩL and ΩR, lying in planes PL
and PR with corresponding vectorial fields uL and uR, respectively.

Let FL and FR denote the fluxes computed on the left and right sides of the edge, respectively. For
classical computations on a plane, the flux has to be evaluated on only one element. Indeed, the continuity
of the normals leads to the same flux value on both sides, F ·n = FL ·nL = FR ·nR, since nL = nR. But
the introduction of discontinuities in the normal directions requires to compute different fluxes FL and FR

on both sides of the edges.
We consider in this flux computation that the normal discontinuities have no impact on the physical processes
computed. Therefore, the normal flow to an edge should neither slow down nor be annihilated by a variation
of direction, even in the case of orthogonal normals nL · nR = 0. We thus assume a conservation of the
vectorial fields amplitudes across the edge, only the directions have to be modified.
Considering for instance the computation of the left flux, FL(UL,UR) ·nL, the left value of the vector field
UL already lies in the appropriate plane PL, i.e. in the appropriate basis (m,nL), while the direction of the
right value uR has to be modified as

uLR = (uR ·m)m+ (uR · nR)nL (22)

where the notation uLR denotes the right vector uR expressed in the left basis (m,nL), and with uR ·m
and uR · nR the tangential and normal components of uR respectively.
This operation simply corresponds to a rotation of the vectorial field from the basis (m,nR) to the basis
(m,nL), the amplitude being conserved. The same operation is then applied to uL to obtain uRL for the
right flux computation FR(UL,UR) ·nR. The Lax-Friedrich’s relation eventually yields two expressions for
the fluxes on the left and right sides of the edge, FL and FR:
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FL(UL,UR) · nL = 0.5
(
F (UL

L) + F (UL
R)
)
· nL + 0.5|λ|max

(
UL
L −U

L
R

)
FR(UL,UR) · nR = 0.5

(
F (UR

L) + F (UR
R)
)
· nR + 0.5|λ|max

(
UR
L −U

R
R

)
.

3.4. Mass matrix and convective operators for vectorial test functions

We may now compute the weak formulation on curved manifolds since all the fields and fluxes have been
defined and discretized in the local tangent and 3D basis respectively.
Let us consider an element of order p with Np nodal values to represent a scalar field. According to the
discretization (21), the vectorial weak equation (11) presents then 2Np unknown values. The time derivative
term from the scalar mass conservation equation is computed using the classical local mass matrix of size
Np ×Np, while the time derivative terms from the vectorial momentum equation leads to a local vectorial
mass matrix of 2Np × 2Np:

∂

∂t

∫
Ωe
uh · ûh dΩ = ∂

∂t

∫
Ωe
UαjL

p
j t
h
α · thβL

p
i dΩ

=
∫

Ωe
Lpj t

h
α · thβL

p
i dΩ︸ ︷︷ ︸

Local mass matrix of 2Np×2Np

∂Uαj
∂t

with the summation on the repeated indices j and α, i and j denoting the degrees of freedom numbering
ranging from 1 to Np, and the greek indices α, β = ξ, η denoting the numbering of components in the tangent
dimension. The indices i and β without summation lead thus to the expected 2Np equations on each element.

The convective terms are quite more complicated since they involve the spatial derivatives of the tangent
basis. Considering the expression of the convective fluxes in 3D as in (8) with three components for the
vectorial equation (Hx,Hy,Hz), each component being expressed in 3D as well, Ha = Haxêx +Hayêy +
Hazêz, the discrete convective terms read:∫

Ωe
H · ∇ûh dΩ =

∫
Ωe
H · ∇

(
Lpi t

h
β

)
dΩ

=
∫

Ωe
Hab

∂

∂a

(
Lpi t

h
βb

)
dΩ for i ∈ [1,Np], β ∈ [ξ, η]

=
∫

Ωe
Hab

(
tβb

∂Lpi
∂a

+ Lpi
∂thβb
∂a

)
dΩ . (23)

with implicit summation on indices a, b = x, y, z denoting the components in the three-dimensional basis.
The derivation of the tangent basis ∂thβb

∂a involves the inverse of the Jacobian matrix of the mapping and the
derivatives with respect to the reference triangle basis (ξ, η) ∈ R2 according to (15). This tangent deriva-
tion clearly yields second derivatives of the mapping, which corresponds to the curvature of the manifold.
Therefore, the tangent derivative term in (23) corresponds to the curvature terms usually introduced in
the classical 2D approach, including the Christoffel symbols. The difference lies in the fact that the current
approach is more general since those acceleration terms are contained in the numerical discretization, i.e. in
the derivative of the element mappings. No analytical computation is required for describing the manifold.
We also observe in (23) that the use of a constant orthogonal three-dimensional basis as êx,y,z for defining
the vectorial fields suppresses the curvature terms for a 6= b and introduce a third equation, yielding the
classical form of the 3D approach

∫
Ωe Fab

∂Lp
i

∂a dΩ where the summation on b disappeared, providing the three
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usual equations for the three components ub.

The expressions of the vectorial mass matrix and convective terms may be clarified by developing the
expression for both amplitudes and tangents Uξj , thξ and Uηj , thη . This part of the system thus reads:


∫

Ωe
LpjL

p
i dΩ

∫
Ωe
LpjL

p
i t
h
ξ · thη dΩ∫

Ωe
LpjL

p
i t
h
ξ · thη dΩ

∫
Ωe
LpjL

p
i dΩ


 ∂Uξj/∂t
∂Uηj/∂t

 =


∫

Ωe
Hab

(
tξb
∂Lpi
∂a

+ Lpi
∂thξb
∂a

)
dΩ∫

Ωe
Hab

(
tηb

∂Lpi
∂a

+ Lpi
∂thηb
∂a

)
dΩ


where we used the relation thα ·thα = 1. We clearly observe on this vectorial mass matrix the coupling between
the components and the vectorial nature of the equation. Using an orthogonal basis for th (for instance êx,y,z)
yields thα · thβ = 0 for α 6= β which decouples the system and provides the simple block-diagonal repetition of
the classical scalar mass matrix as in the classical approaches. The integration of the fluxes on edges and the
source terms are not written here since it does not present any particular difficulty compared to the volume
convective term.

Practically, the convective term (23) has been implemented to minimize the CPU cost, instead of minimiz-
ing the memory footprint, i.e. by pre-computing on each element the mass matrix and the nine convective
matrices of size 2Np×Nk with Nk the number of integration points per element. The same implementation
for the classical 3D approach requires to store only three matrices of size Np × Nk. Although requiring to
store a larger number of matrices, the local tangent basis approach remains more efficient for sufficiently
large computations since using only two unknowns for each vectorial field instead of three plus a tangency
constraint.

4. Solving the shallow water equations on curved manifolds

This section deals with the validation of the local tangent basis approach with the shallow water equa-
tions. In particular, some standard benchmarks of atmospheric processes are performed on the sphere. More
irregular complex curved manifolds are eventually considered for testing the robustness and generality of
the method.
The following computations have been performed using an explicit classical Runge-Kutta time scheme.

4.1. Governing equations

The shallow water equations describe the flow of a thin layer of fluid under the influence of the gravitational
acceleration. The conservation laws are derived from the Navier-Stokes equations integrated on the vertical
dimension. The unknown fields are the water elevation H(x, t) = h(x) + η(x, t) depicted in Figure (5) and
the mean horizontal transport Hv(x, t) = (Hu,Hv):

∂H

∂t
+∇ · (Hu) = 0 (24)

∂Hu

∂t
+∇ · (Huu) + fez ×Hu+ gH∇η = 0 (25)
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Figure 5. Definition of the water depth H, bathymetry h and elevation η

where t is time, f is the Coriolis parameter, g is the gravitational acceleration and η(x, t) denotes the relative
surface elevation of the fluid. The vector ez denotes the local normal unit vector to the geopotential surface.

4.2. Atmospheric benchmarks on the sphere

Four of the seven classical Williamson test cases (W92) are considered (Williamson et al., 1992) in the
following, in addition to the perturbed Rossby-Haurwitz waves test case (Smith and Dritschel, 2006). Some
W92 are not considered here since they do not involve vectorial conservation laws, as the advection of the
cosine bell, or because of the complicated source terms involved. The Williamson test cases are considered in
every paper dealing with computation of oceanic or atmospheric processes on the sphere, and have become
de facto standard benchmarks. For the second and third W92 are provided analytical solutions. A refinement
convergence study is thus performed by comparing to the analytical solution, while the validation for other
test cases requires a comparison to results from other numerical techniques.

4.2.1. High-order polynomial mapping

Since using the high-order discontinuous Galerkin method, we may take advantage of the high-order poly-
nomials for both the solution approximation and for the geometry, i.e. the sphere discretization. Some of
the meshes used for the computations are depicted on Figure (6). They are obtained from the recursive
divisions of icosahedrons, each triangle being divided in four new triangles projected on the sphere. The left
column of Figure (6) illustrates the classical meshes made of piecewise linear faces, while the right column
illustrates the meshes build using a fourth-order mapping, i.e. piecewise fourth order polynomial faces.

High-order meshes made of curved three-dimensional triangles with high order polynomial mappings are
used to obtain a better representation of the curved manifolds geometry. Considering a curvilinear triangle
of order q composed of a set of Nq coordinates X ∈ R3, the approximate position vector xh ∈ R3 on each
triangle reads:

xhj =
Nq∑
i=1

ψi(ξ)Xi,j , j = 1, . . . , 3 (26)

where ψ(ξ) denotes the shape functions corresponding to the coordinates X in the two-dimensional para-
metric space ξ = (ξ, η). Those shape function still need to be defined. Two classical representations are
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Figure 6. Icosahedron-deduced meshes of the sphere used for the refinement convergence study. Meshes present 20, 80, 320 and
1280 elements (top to bottom) with P1 and P4 polynomial mappings on the left and right columns respectively.
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considered in the following:
– using Lagrange shape function, as for the polynomial approximation of the solution. A mapping of order
q requires the a number of coordinates Nq = (q+1)(q+2)

2 to define the curved triangle, as depicted in the
right part of Figure (7).

– using incomplete Lagrange functions, also known as Serendipity space functions. This representation does
not involve any nodal value inside the elements as illustrated in the left part of Figure (7). A mapping of
order q provides thus an incomplete set of monomes for order q, but requires a lower number of coordinates
since Nq = 3q.
When considering curved two-dimensional triangles to represent bluff bodies as islands (Bernard et al.,

2008a), the incomplete Serendipity is quite sufficient since the boundaries representation is actually complete.
Moreover, the high order Lagrange shape functions present nodes located inside the triangle. The position
of those nodes may appear arbitrary since it does not add informations on the boundary representation.
However, considering curved manifolds, the whole triangle is describing the surface. The use of an incomplete
order may thus have some impact on the solution itself.

Figure 7. The same triangle corresponding to a fourth-order mapping, using the incomplete polynomial Serendipity mapping
(left triangle) or the complete Lagrange mapping (right triangle) presenting additional nodes inside the element. The inner
lines represent the mapped iso-ξ, iso-η and iso-(1 − η − ξ) values in the reference parametric domain (ξ, η), and are therefore
an illustration of the triangle’s mapping deformation.

The inner lines into the triangle depicted in Figure (7) are resulting from the mapping of the iso-ξ, iso-
η and iso-(1 − ξ − η) lines in the reference two-dimensional parametric space ξ = (ξ, η). Therefore, the
space distortion between those lines represents the distortion introduced by the mapping. The incomplete
Serendipity representation clearly leads to larger distortions, i.e. larger spatial variations of the Jacobian
matrix and its determinant. The Lagrange function spaces seem thus better suited for such mappings.
Indeed, strongly distorted elements will lead to high quadrature errors, and then to less accurate solutions.
Moreover, Figure (8) illustrates the evolution of the L2 norm of the geometric error eg, computed as

e2g =
∫

Ω

(
xh − x

)2
dΩ

on a sphere of unit radius.
The incompleteness of the Serendipity polynomial basis clearly prevents from the expected convergence rate
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Figure 8. The expected convergence rate ofO(hp+1) for the geometric error is not reached with high order incomplete Serendipity
mappings (left) while rates of 2.01, 3.04, 4.06 and 5.08 are obtained with the Lagrange polynomials mappings (right) for orders
q = 1, . . . , 4 respectively.

p u η u η u η u η

1 2.1 2.8 2.4 2.8 2.3 2.8 2.3 2.8

2 1.9 1.9 3 3.9 3 3.9 3 3.9

3 1.9 1.9 4.2 4.1 4.1 4.1 4.1 4.9

4 1.9 1.9 4.2 4.1 4.4 3.9 5.2 5.8

q = 1 q = 2 q = 3 q = 4
Table 1
Convergence rates of the relative L2 error on elevation and velocity of W92 2, for solutions of order p = 1, . . . , 4 and mapping
orders q = 1, . . . , 4 to represent the sphere.

of O(hp+1). The use of a complete Lagrange function space of order q is thus mandatory to keep the geomet-
rical errors lower than the discretization errors of the solution itself, and to obtain the expected theoretical
convergence rate for the DG solution.

4.2.2. W92 test cases 2 and 3: steady zonal geostrophic flows

Both test cases 2 and 3 consists in steady state solutions of the non-linear inviscid shallow water equa-
tions on the rotating sphere. W92 2 considers a solid body rotation along the Earth’s rotation axis while the
W92 3 has a non-zero velocity field only for the latitudes ranging between 30 S and 90 N , i.e. the North pole.

The L2 norm of the solution error is computed after 5 days as suggested in (Williamson et al., 1992), on
the four meshes depicted in Figure (6) for mappings of order 1 to 4. The relative error norm is computed as

e2 =

∫
Ω

(
uh − u

)2
dΩ∫

Ω
u2 dΩ

.
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p u η u η u η u η

1 2.2 2.5 2.2 2.5 2.2 2.5 2.2 2.5

2 2.3 2 2.5 3.8 2.4 3.8 2.4 3.8

3 2.3 2 4.9 5.3 5 5.5 5 5.5

4 2 1.9 4.9 4.5 4.6 4.6 4.6 5.7

q = 1 q = 2 q = 3 q = 4
Table 2
Convergence rates of the relative L2 error on elevation and velocity of W92 3, for solutions of order p = 1, . . . , 4 and mapping
orders q = 1, . . . , 4 to represent the sphere.

In Figure (9) are depicted the initial conditions for both test cases: the elevation is defined to compensate
the Coriolis effect and the advection terms. The figure also illustrates the evolution of the error with the
polynomial solution order, mapping order, and with the relative element size h/RE with RE the Earth ra-
dius. The plots are related to both mapping orders 1 and 4. The corresponding convergence rates are given
in tables Table (1) and Table (2), also including the results for mapping orders 2 and 3.

We observe for the piecewise linear representation of the sphere, i.e. q = 1, the expected convergence rate
of O(hp+1) for the piecewise linear solution p = 1, while this rate is not reached for higher order solutions.
This lack of convergence is clearly due to the fact that the error is dominated by the geometric errors.
Indeed, we observe that the theoretical convergence rate is recovered when increasing the mapping order.
Notice also that a second order mapping seems sufficient to obtain the expected rate with p = 3, while the
use of p = 4 requires a fourth order mapping. We finally observe that the test case 3 seems less sensitive
to the mapping order, the expected rate for p = 4 is almost reached with a second order mapping. This
is probably due to the higher interpolation error for W92 3, more than one order of magnitude, while the
geometrical errors remains the same.
Finally, sample computational times are given in Figure (10), presenting the computational cost versus
accuracy. Note that these computational times were obtained on a single P4 processor at 3 GHz, using
a neglectible memory footprint. The performance of the high-order method is not obvious for very coarse
meshes, but becomes clearer for finer meshes (say with more than 500 elements on the sphere using p1).

4.2.3. W92 test case 5: zonal flow over an isolated mountain

This test case consists of a zonal flow as in test case 2, except that the bathymetry is not constant: an
isolated conical mountain in the longitude-latitude domain leads to an unsteady solution. The mountain,
depicted in Figure (11), presents a radius of 20◦ at its base and its center is located at a latitude of 30◦ North.

On Figure (12) are compared the DG solution and a high-resolution solution from the German Weather
Service (model truncation: T-426, 1280× 640 gridpoints, available online 1 ) using a spectral method based
on the NCAR’s Spectral Transform Shallow Water Model (Jakob-Chien et al., 1995). The quadratic mesh
used for the DG computation is depicted in Figure (11) and contains 242 elements at p = 6, i.e. 6776 de-
grees of freedom. The DG results on such a coarse grid clearly present a good agreement with the reference

1 http://icon.enes.org/swm/stswm/node5.html
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Figure 9. Steady solution for W92 2 and 3 and the L2 norm of the relative error computed after five days. The left column
presents the error based on the elevation field, while the right column is based on the velocity. The expected convergence rate
is not reached for a high-order solution using a low (first) order mappingM1 to represent the sphere, while an iso-parametric
representation (fourth order mappingM4) ensures the theoretical rate.

spectral solution for days 5, 10 and 15.

The mesh was generated using Gmsh (Geuzaine and Remacle, 2009). Note that the generation of high
order curvilinear meshes is a complex topic: ensuring that elements of the mesh have all positive jacobians
is not easy to reach. This is indeed an ongoing work.
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Figure 10. Accuracy (relative error e) versus computational costs (in seconds) for the W92 test case 2. The effeciency of
high-order polynomials is clearly observed for sufficiently fine meshes, say more than 500 elements using p = 1.

Figure 11. Bathymetry (ranging between −5960 m and −3960 m at the center of the mountain) and mesh used for test case
W92 5. A mapping of order q = 2 is used to represent both the spherical geometry and the basis of the conical mountain.

4.2.4. W92 test case 6: Rossby-Haurwitz waves

Although providing no analytical solution, this test case has been widely used for model intercomparison.
It involves the Coriolis force, the elevation gradients and advection terms, and a time evolving solution.
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Figure 12. Comparison of elevation fields between the DG method with the local tangent basis approach (left column) and the
reference solution from the German Weather Service using a spectral method for W92 test case 5. The reference solution was
obtained on a 1280× 640 grid and a 90 s time step, while the DG method considered a 242 elements mesh with (p, q) = (6, 2)
and a time step of about 200 s. The interval between contour lines is 50 m for both plots.

The solutions of the non divergent barotropic vorticity equations experience a slow solid rotation around
the Earth under the influence of slow waves. The initial solution presents the 4-periodic pattern depicted
in Figure (13). This solution has been shown to be unstable, and in particular very sensitive to asymmetry
in truncature errors (Thuburn and Li, 2000). Spectral methods for instance will keep the initial 4-periodic
pattern unchanged because of their high degree of symmetry, only the rounding errors are responsible for
triggering the instability. On the other hand, the use of icosahedral meshes will excite the 2-periodic compo-
nent of the unstable mode since the icosahedral mesh and the corresponding truncation errors are 2-periodic
(Comblen et al., 2008). The apparition of this 2-periodic pattern has been observed after about 65 days
using the current DG model.

Figure (14) provides a comparison between the DG solution with the local tangent basis approach (left
column) and the solution obtained by the German Weather Service using a spectral method. The DG solu-
tion used the 320 elements mesh with fourth order mapping and solution, leading to 4800 degrees of freedom,
while the spectral method was computed on a 1536 × 768 grid. The comparison reveals a good agreement
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Figure 13. 4-periodic initial solution of W92 test case 6.

between the two approaches, especially in the earlier days of the computation when the 2-periodic compo-
nent of the unstable modes has not been much excited.

4.2.5. Perturbed Rossby-Haurwitz test case

Since the W92 test case 6 is very sensitive to the methods and the corresponding truncation errors, it does
not facilitate the comparison of different methods. A variation has been proposed by (Smith and Dritschel,
2006), which consists in introducing an initial perturbation. The solution thus becomes more deterministic,
especially during the early days, and makes comparisons more relevant.

In Figure (15) are compared the results obtained with the DG method and the results from (Smith and
Dritschel, 2006). The latter used a 256× 256 grid with a contour-advective semi-Lagrangian method, while
we considered with our approach the icosahedral mesh of 1280 curved elements with a fourth order mapping
and solution, i.e. 19200 degrees of freedom. A good agreement between the two approaches is observed.

4.3. Gravity waves on irregular manifolds

We finally validate the robustness and the generality of the method by observing the propagation of gravity
waves on the surface of very irregular manifolds. The non-linear shallow water equations are solved without
any source term with the same approximate solver and flux function definitions as for the computations on
the sphere.
The first computation considers the mesh of the cube depicted in Figure (16) with fourth order shape func-
tions to represent the solution. The initial solution is an arbitrary gaussian elevation on the top and bottom
of the cube, with a zero velocity. We observe in Figure (17) that the gravity waves propagate without any
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Figure 14. Comparison between the DG method with the local tangent basis approach (left column) and the reference solution
from the German Weather Service using a spectral method for W92 test case 6. The reference solution was obtained on a
1536 × 768 grid and a 90 s time step, while the DG method considered a 320 elements mesh with (p, q) = (4, 4) and a 200 s
time step. The interval between contour lines is 100 m for both plots.

perturbation, even in the presence of large discontinuities of the normals directions on the sharp edges of the
cube. Indeed, we considered a conservation of the velocities amplitudes through edges in the approximate
Riemann solver.

The second computation deals with the gravity waves propagation on the mesh of a frog depicted in the
right part of Figure (16). We observe that the frog is quite well represented with a coarse second order
curved mesh. The initial gaussian elevation propagates and becomes highly distorted due to the irregularity
of the manifold, while the fourth order solution remains perfectly smooth. This test case also illustrates the
robustness and high level of generality of the method, the more complicated part of the simulation consisting
in the creation of high order meshes while no analytical expression of the manifold is required for computing
PDE’s.
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Figure 15. A good agreement is observed between the DG solution with local tangent basis approach (left column) and the
advective-contour semi-Lagrangian method by Smith and Dritschel (right column) after 5, 10 and 15 days for the perturbed
Rossby-Haurwitz test case.

5. Conclusions

A general and efficient alternative approach has been proposed in this paper for solving vectorial conser-
vation laws on general curved manifolds, combining the advantages of both classical approaches. Indeed, the
local tangent basis approach using DG considers a minimum number of unknowns and ensures the tangency
constraint of vectorial fields. Moreover, the approach is general and robust since it does not require to rewrite
the equations accordingly to some analytical expression of the manifold.
Although the expression of the vectorial fields in a local tangent basis may seem complicated, the com-
putation becomes very efficient, simple and general when considering finite elements, and especially the
discontinuous Galerkin method. Indeed, the tangent basis can be computed locally, based on the high-order
elements mappings, without continuity requirement of the basis since using a discontinuous approach. These
discontinuities have just to be taken into account into the Riemann solver ensuring the information transfer
between elements.

The method has been validated with the shallow water equation on the rotating sphere, using some clas-

25



Figure 16. High-order meshes of irregular curved manifolds

sical Williamson test cases and the Perturbed Rossby-Haurwitz benchmark of Smith and Dritschel. The
expected convergence rate of the discretization error has been reached for several polynomial orders, using a
sufficiently accurate mapping to keep the geometrical errors lower than the discretization ones. The results
on more complicated benchmarks have been compared to accurate spectral solutions, revealing a good agree-
ment. The alternative approach has eventually been tested on very irregular high-order manifolds, presenting
very distorted shapes and/or large normals discontinuities. Those benchmarks enlighten the robustness and
generality of the method, since the only modification between those computations is the manifolds’ meshes.

Therefore, considering the shallow water equations, the discontinuous Galerkin method with this local
tangent basis approach exhibits a great potential for computing oceanic or especially atmospheric processes
on the Earth’s surface. Clearly, this general method could also reveal very efficient for any manifold compu-
tation as for instance solid mechanics on shells or membranes.
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