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Abstract

It is mandatory for an ocean model to represent accurateyditferent kinds of waves
since they play a critical role in ocean dynamics. Quanitfythe dispersion or dissipation
errors of a given numerical scheme and comparing numerieghads is not an easy task
especially when using unstructured grids. In this paper seaugeneral method fully in-
dependent of the numerical scheme and of the grid to analgperdion and dissipation
errors. In particular we apply this method to the study of & — P; finite element pair
applied to the shallow water equations. The influence of thikig observed by comparing
the convergence rates of the dispersion errors on Poinahéin and Rossby waves. We
observe a significative reduction of the convergence rateetructured meshes compared
to structured grids for th&N® — P; pair, while this rate remains unchanged when using
other approaches as tli& — P; pair without stabilization or the discontinuous Galerkin
method.

Key words: Linear non-conforming finite element, Unstructured Meslaspersion and
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1 Introduction

The shallow water equations exhibit three kinds of waves)eig the Poincaré, Kelvin and
Rossby waves. Those waves play a crucial role in ocean dysaifine Rossby waves are
very slow waves generated by the variability of the Coriphsameter and propagating only
westward. Those waves are known to intensify the westermdemy currents and are re-
sponsible for the transfer of huge amounts of heat and en&hggy Kelvin waves are non
dispersive waves generated by the tides and the winds. Topggate along the coasts and
exhibit an exponential decay away from the coastlines. ikelaves carry large amounts of
energy and play then a crucial role in mixing and dissipagimtesses [Cushman-Roisin ,
1994, Pedlosky , 1979, Majda , 2003]. Minor errors in thoseaesalispersion relations may
lead to large lack of accuracy in climate and weather pregtist It is thus mandatory for an
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ocean model to propagate those waves in an accurate way.

Another difficulty lies in the coupling between the momentand continuity equations,
which raises several issues for any kind of numerical methigé finite differences, finite
volumes or finite elements. Solving a mixed formulation a&sghallow water equations may
lead to the generation of spurious modes for certain setsidé gnd bases and to lack of
accuracy in the dispersion relations especially for theefasaves.

Many studies have been carried on since three decades &iigate the dispersion prop-
erties of many numerical schemes. In particular, disparsiations on finite differences
schemes have been studied for gravity waves [Arakawa andL.489177, Batteen and Han ,
1981, Randall, 1994, Beckers and Deleersnijder, 1993]ariti€ Rossby waves [Dukowicz

, 1995, Wajsowicz , 1986]. The most common technique ofted usth finite differences on
regular grids consists in introducing Fourier modes in tiseréte representation of the spa-
tial operators. After some algebraic manipulation, ones thiotain the analytical expression
of a numerical dispersion relation corresponding to thisipaar scheme, grid, and Fourier
mode. More recently, dispersion for finite elements techesqwvere investigated [Atkinson
et al., 2004, Walters and Carey , 1983]. In particular, LeXRetual investigated many finite
element pairs for solving the two-dimensional shallow watguations on structured grids
[Le Roux et al., 2007, Le Roux and Pouliot , 2008]. It has besows that pairs as the
P, — Py, MINI, PN¢ — P, or PyisoP, — P, present no spurious elevation modes [Le Roux ,
2005, Le Roux et al., 2007, 2005]. Some have been disregaetslise of poor dispersion
error properties compared to tf'“ — P, pair [Le Roux , 2005, Hanert et al., 2004, 2005],
which seems to be the best compromise. This pair is now used aifew years to represent
shallow water oceanic flows [e.g. Lambrechts et al., 2005dreet al., 2004, 2005, 2007,
White et al., 2007]. However, the authors considered thadyais asone step of the selection
processsince other important factors as variable element sizesiasifuctured grids should
be considered in further investigations.

The present work is a part of the SLIM project which consistsuilding a new generation
of ocean models based on the finite element method and unsedagrids. In this frame-
work, we built a new method for analyzing the dispersion prtps of numerical schemes
on unstructured grids [Bernard et al., 2008]. The disperaitd dissipation properties of the
discontinuous Galerkin (DG) method have been studied, sfgpsuperconvergence prop-
erties with the polynomial interpolation order and confimgithe DG method as a good
candidate for ocean modelling.

The comparison between numerical methods on unstructuresl ig a quite difficult task
and the conclusions may eventually lean towards one methadather, depending on the
problem under study. This modal analysis provides a wayitty faompare the dispersion
and dissipation errors introduced by different numericllesnes on unstructured grids, and
brings thus other informations for the element selectiatess. In particular, this paper in-
vestigates the dispersion errors of th&“ — P, and its convergence rate on both structured
and unstructured grids.



The first section is a reminder of the shallow water equatantstheir finite element dis-
cretization, in particular for th&¥¢ — P, element pair. The next section briefly describes the
modal analysis presented in [Bernard et al., 2008]. Theyéinal expressions of the shallow
water waves and their approximate and exact dispersiotiaetaare given in the appendix.
In particular, the classical analytical dispersion relaships based on the WKB approxima-
tion [e.g. Wentzel, 1926] are not accurate enough to perfooonvergence study. We then
developed another approach to obtain reference disper@tions by solving numerically

a 1D Sturm-Liouville relation. The last section eventugligsents the results of this modal
analysis applied to the finite element p&i'“ — P, and compares the convergence rates to
the unstabilized? — P; pair convergence on both structured and unstructured.grids

2 Finite Element Method for the shallow water equations

We seek to determine the depth-averaged horizontal vgle¢it, t) and depth of the fluid
layer H (x,t) , both solutions of the following inviscid shallow water foulation:

ag{—tv+V'(HVV)+erXHV:—gHV77 (2)
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wheret is time, f is the Coriolis parametey, is the gravitational acceleration anéx, ¢)
denotes the relative surface elevation of the fluid corredjng to the relatiold = Hy + 7
with H, the reference depth of the fluid. The veatordenotes the local normal unit vector
to the geopotential surface.

This set of equations represents the flow of a thin layer afnmaressible fluid under the
influence of a gravitational force in a rotating frameworko§e equations can be obtained
from the vertical integration of the incompressible 3D Nanbtokes equations with imper-
meability boundary conditions on the surface and bottorhefdcean [Pedlosky , 1979,
Cushman-Roisin , 1994]. The viscous terms of the Navieké&t@quations are neglected.
However, a subgrid scale viscosity could be added to takeaotount the influence of the
subgrid scale processes.

In this work we neglect the non linear transport terms andeference deptl/, is assumed
constant. The linearized shallow water equations (1) apce@:
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Fig. 1. P, linear conforming element (left) representing the watevation and thePN¢ linear
non-conforming element (right) representing the velotaid.

A weak formulation may be obtained by multiplying the momantand continuity equa-
tions by test functions = (u,v) and7 respectively, by integrating on the domadmnand
taking advantage of the divergence theorem for the conyirguation. More informations
on the standard Galerkin procedure may be found in [Ciadle¥8, Hughes , 2000]. A pos-
sible weak formulation is:

Findu = (u,v) andn such that:
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whereu,, denotes the normal velocity across the edfje Setting this integration on bound-
aries to zero allows to weakly impose the impermeabilitydibons on the solid walls
[e.g. Hanert et al., 2006]. Moreover, such a weak formutaibows us to consider non-
continuous velocity fields.

We consider the use of the¥® — P, pair depicted in Figure (1). The pressure, i.e. the
water elevation, is represented as a continuous pieceimisar Ifield and the velocity is a
discontinuous piecewise linear field except at the mid-sedgleeP'“ — P, element pair has
been used for the first time to build a noise-free finite elertveo-layer shallow water model
[Hua and Thomasset , 1984]. This pair became popular bedatisarly exhibits the better
numerical properties in terms of dispersion error and cdatpmnal cost among the set of
element pairs which do not suffer from elevation modes {heP, — P,, MINI, PN¢ — P,

or PyisoP, — Py pairs) [Le Roux et al., 2007, Le Roux and Pouliot , 2008]. kutlethe
orthogonality of the non-conforming shape functions p#srto reduce the computational
costs. The discontinuities in the non-conforming elemespsesent a compromise between
discontinuous and continuous fields and make®€ — P, a better suited element than
continuous ones to represent advection dominated pracdgstice that some element pairs
do not suffer from spurious elevation modes only in somei@adr cases, as the classical



P, — P, with the use of weakly imposed no normal flow boundary cond&ion smooth
domains [Hanert et al., 2006].

We then proceed to the spatial discretization of the unknfog¥ds. The computational do-
main(2 is divided into a set ofV non overlapping elemenfs, with a total of N, edges and

N, vertices, leading t&v, = N, + 2N, degrees of freedom. We discretize the elevation and
velocity fields by assuming a linear combination of nodatealand linear shape functions
on each element:

3 3 3
u = ZUN’(/J”, V= ZVn@bn, n= ZHanna
n=1 n=1 n=1

with (U, V,,) and H,, the nodal values and,, and ¢, the shape functions for the velocity
and elevation fields respectively.

Introducing this discretization into the weak formulati@)y with the weak imposition of the
no normal flow boundary conditions , we obtain the followingté element system:

oU
M=~ + AU =0 )

whereU is the vector of nodal values
U= [UJ VJ Hl]Tv

M is the globalN, x N, mass matrix and\ contains the gradient, divergence and Coriolis
discrete operators:
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with the subscripts, j =1... N.andk,l=1...N,.

The specific pattern of this matrix allows the appearance of both velocity and elevation
modes. Steady spurious modes are solutions of the systech at@ not physically relevant.
They do not propagate in time, but are trapped into the medhaenthus solution of the
steady state formulation:

AU=0. 9
Notice that specific spurious modes may also appear in soneedependant problems, but

those will not be considered in this paper. An analysis ohsuodes may be found in [Platz-
man , 1981].



To each eigenvector of the matrix corresponds an elevation mode and a velocity mode.
A spurious pressure (or elevation) mode can be defined as a nwtesponding to a sta-
tionary eigenmode of the discrete system which has zeraigloomponents and a non
constant pressure belonging to the kernel of the discretéigmt operator. A spurious ve-
locity mode can be defined as a mode corresponding to a zeratiele with the velocity
components belonging to the intersection of the kernel efdivergence operator and the
kernel of the Coriolis operators. Such spurious modes haee found for the' grid and
the RTy, — Py, RTy— P, BDM, — P, andBD M, — P, finite element schemes [Rostand et al,
2007]. Notice thatRT, denotes here the velocity discretization used in the RaViaomas
finite element approximation, whilg, or P, denotes the elevation discretization.

3 Discrete modal analysis of the shallow water waves

This section describes the modal analysis using the frameresented in [Bernard et al.,
2008]. The main advantage of this alternative approachride fact that it is based on the
analysis of the discrete representation of the spatialadpes, and it remains valid for any
kind of numerical scheme or grid. This approach appliednacstired grids will reproduce
exactly the same numerical dispersion relations than #esid dispersion analysis obtained
by other methods as for instance [Le Roux et al., 2007, Le RmaPouliot , 2008], but the
approach remains valid on unstructured grids. Obvioullg,iumerical approach does not
replace analytical approaches in the sense that it doegowtip analytical expressions for
the frequency, which can be used for instance to obtain &calgxpressions of group and
phase velocities. But it provides a way to analyse the impfctore realistic fully unstruc-
tured meshes on the dispersion relations, which contrgltotéhe element selection process
in the field of finite element ocean modelling.

In order to obtain a discrete dispersion relation, we firsisader the semi-discrete formula-
tion of the shallow water equations (7):

U

= =LU (10)

whereLL = M~!A is the square matrix of the discrete space operatordaiglthe finite
element discretization of the vector of unknowns.
We then assume the solution to be the real part of the follgwkpression:

U(z,y,t) = X"(x,y) exp (iwt) . (12)

with a general dependence in spa&(x,y). Incorporating this expression (11) into the
semi-discrete formulation (10) leads to the following eggdue problem:

L — A\[X" =0. (12)



For each eigenvalug; (j = 1...Ny), the corresponding discrete frequengyand the as-
sociated numerical dissipatign are found as the imaginary and real parts of the eigenvalue
respectively:

)\j = ,uj + ’iCUj
We still need to compute the associated wave numbers in #edy directions. This in-
formation is contained in the eigenvectors. To each eigeoves associated an elevation
moden;(z,y) and a velocity modéu;(z,y), v;(z,y)). We consider by instance the ele-
vation mode and perform a 2D Fourier Transform to obtain thidating wave number
k; = (k, ;. ky ;) corresponding to this mode.
We obtain a discrete dispersion relatiof(k;). A discrete dispersion analysis is then per-
formed by comparing this relation to the reference dispersélationw(k;). The absolute
dissipation error of the modgis computed as the absolute valueigfwhile the absolute
dispersion error of modgis given by:

Kj = |w; — w(kj)]

It must be noticed that the Fourier transform only providdésger wave numbers. For the
shallow water equations, those Fourier wave numbers are @x¢he x direction, i.e. the
longitudinal dimension, only if periodic boundary condiis are used, ensuring a sine de-
pendence irx. But there is no guarantee to obtain such integer wave nigmbehey di-
rection since the Coriolis parameter varies with the ldétand generates dispersive waves.
With a non zero Coriolis force and dispersive wavestltemponent of the wave number
k has to be replaced by the reference exact wave number. Tdreme€ dispersion relations
w(k;) for the dispersive shallow water waves have no analyticatession. They are com-
puted numerically by solving a one-dimensional Sturm-Vite relationship as described
in the appendix.

4 Results

In this section we analyse the results from the modal aregplied to the linearized shal-
low water equations with thg-plane assumption on the Coriolis paramefet: f, + Sy,
using thePN¢ — P, and theP, — P finite element pairs on different structured and unstruc-
tured grids.

The reference solutions for comparison are provided by tbenSLiouville approach de-
scribed in the appendix and the domain of computation iseh@-periodic square domain
depicted in Figure (13). For all computations, the georoat@nd physical parameters are
L=10m,g=10ms"2 Hy=103m, 3 = 3107 m~!s~tandf, = 3 10~* s~!. For
those values, the typical non dimensional numbers are d¢iyen

gHy 1 BL
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with Ro denoting the Rossby number. The shallow water equationsadwed in a classi-

2921 degrees of freedom 3152 degrees of freedom

Fig. 2. Structured and unstructured meshes used for theatigns on the semi-periodic domain
with 800 and866 elements respectively with theN¢ — P finite element pair.

2700 degrees of freedom 2703 degrees of freedom

Fig. 3. Structured and unstructured meshes used for theatigns on the semi-periodic domain
with 1922 and1920 elements respectively with thg — P, finite element pair.

cal non dimensional version [Cushman-Roisin , 1994] in ptdebtain a better numerical
accuracy. This set of parameters presents an increaseali€pdarameter with an increased
(-effect to visually differentiate the shape of Rossby maddisey direction from sine func-
tions. Indeed, a zero Coriolis parameter leads to gravitygwaomposed of sine and cosine
modes, while a larger Coriolis parameter increases thedisg nature of the Rossby and
Poincaré waves. The only purpose of this arbitrary set cdipaters is to visually identify



this dispersive behaviour and the difference with sine tions, as shown in Figure (7) or in
table 1.

The structured and unstructured meshes used in our congmgatre depicted in Figure (2)
and Figure (3) for the’N¢ — P, and theP, — P, formulations respectively.

4.1 Dispersion errors for thé?N¢ — P, pair

The computation of the eigenvalue problem yields the setgaiwalues depicted in Figure
(4). As expected with the linear shallow water equationstard®¥“ — P; pair, the scheme
does not introduce any numerical dissipation, leading iy fmaginary eigenvalues. The
reference dispersion curves and the numerical dispersiatians are presented in Figure
(5) where we only considered the positive frequencies. Therfiodes corresponding to the
dispersive Poincaré and Rossby waves are presented ireHiguand Figure (7) respec-
tively, while Figure (8) exhibits the first modes of the Kelwvaves. We obtain as expected
modes composed of sine functions in thdirection. The shapes of the Poincaré and Rossby
modes in theg direction correspond to the modes obtained by the Sturrmdiiie 1D com-
putation. The corresponding wave numbers are not integenssine functions, but are quite
close to the corresponding sine wave numbers as shown élalbhe Kelvin modes exhibit
the expected exponential decay of equation (13) injtd@ection.
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0.0051

—-0.005 |

-0.01f

-0.015
-1

-0.5 0 0.5 1

Fig. 4. Spectrum of eigenvaluescorresponding to th&¥“ — P, pair. The scheme does not intro-
duce any dissipation to filter the unresolved modes, leattirfiglly imaginary eigenvalues with the
dissipation, = I'm(\) and the frequency = Re(\).

Relative dispersion errors for the Poincaré, Rossby andiik@laves are shown in Figure
(9) for the P} — P, pair (left column) and thé” — P; pair (right column). The convergence



i 1 2 3 4 5 6
k,; |3.1331 6.3411 9.4651 12.5966 15.7321 18.8696
jr/L | 3.1416 6.2832 9.4248 12.5664 15.7080 18.8496

Table 1
Wavenumberg:, ; of the Sturm-Liouville problem (20) compared to their appneation jr /L.

Fig. 5. Discrete dispersion relation of the Poincaré (r&d)yin (green) and Rossby (blue) waves. The
black circles correspond to the frequencies from the 2Defigiément modal analysis while the dots
from continuous lines are the reference frequencies fra b Sturm-Liouville approach. Poincaré
and Kelvin modes are shown on the close up vidithe reference solution is made of different
curves, so that two different couplés,, k,) with two different frequencies may correspond to a
same wave number. Rossby dispersion relations for diffevame numberg,. are depicted on close
up view B, where only evert,, wave number are obtained because of periodic boundary temmsli
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ky =2,k =1 ky =2, ky =2 ky =2, k, =3 ky =4, k, = 4

ky =2,k =1 ky =2, ky =2 ky =2,k =4 ky =4, k, = 4

Fig. 7. Some of the Rossby first modes.

Al T

ky =2 k, = k, =8 k, =10
Fig. 8. Some of the Kelvin first modes.

rates are computed as the slope of the continuous lines|oges of the linear approxima-
tions of the first resolved modes in the sense ofdh@orm. Since the error is proportional
to the product of the element sizeand the wave numbdr, O(kh), the convergence study
is performed on only one grid, by considering the error tamewith the wave number. In-

deed, one way of computing the convergence of the dispeesions is to consider several
computations on different mesh with different elementsizend to compare the dispersion
errors for one given mode. For sake of simplicity and in otdareduce the computational
costs, we choose the second way which is to consider only @sé and to compare the dif-
ferent resolved modes, which means considering a variafiérinstead of a variation of.
Of course, this second approach is totally valid and egeintab the first one and the conver-
gence will be observed only if we consider the resolved mdalesom the grid cutoff and
if the shapes of the modes under study are close to sine dumsgtivhich is the case in this
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Fig. 9. Convergence of the relative dispersion error forfitts¢ resolved modes corresponding to the
dispersive Poincaré (upper row), Rossby and Kelvin(lovegr)rwaves on structured (blue circles)
and unstructured (red triangles) meshes withf& — P; pair (left) and theP; — P; pair (right).
The use of structured meshes strongly decreases the cencergates for theN¢ — P; pair while
the rates remain unchanged for the— P, pair.
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study, considering the physical parameters, the domajestéwad boundary conditions used.

It has been shown that the Discontinuous Galerkin methoib#glsuperconvergence prop-
erties for the dissipation and dispersion errors [e.g. HliAtkins, 2002]. For polynomial
shape functions of order, the DG method provides a convergence rategpof 2 for the
relative dispersion errors arixp + 1 for the relative dissipation errors if an even order is
used. Same rates are reached for odd orders only if a Rienudwer $s used in the flux
computation instead of a center scheme. Those results fewvdeen demonstrated [e.g.
Ainsworth, 2004] for a 1D scalar transport equation. Theeaates were obtained for the
DG method with the same modal analysis for both structurelduastructured grids, for the
Poincaré, Kelvin and Rossby waves [e.g. Bernard et al., 2008

A fair comparison between a high order discontinuous me#tmatother finite element pairs
as the non-conforming®¥“ — P, pair is not a simple task since the results depend in a
large part on the problem under study, and in particular enggometry and topology of
the problem. A first comparison based on the dispersion®materion is provided by the
modal analysis exposed in this paper, since both formulatawe compared with the same
method and the same number of degrees of freedom.

We observe in Figure (9) the difference between tH& — P, pair on structured grids
(blue lines) and the same pair on unstructured grids (res)irA first polynomial order DG
method provides a convergence ratelofith a Riemann solver and &f with a centered
scheme for the relative dispersion error. We observe hatetle P)'C — P; pair exhibits a
convergence rate as high as theDG method for structured grids, but the use of unstruc-
tured grids considerably reduces the rate, reaching abduivhich is similar to the rate of
convergence of a finite volume method.

4.2 Comparison with thé&;, — P; pair

The same computation is performed on both kinds of grids thiéhP, — P, pair. We con-
sider here a transient computation and the no normal flow deynconditions are weakly
imposed to avoid any spurious elevation mode with this paareover, solving the linear
shallow water equations with this pair do not require theafsRUPG formulation to stabi-
lize the scheme. Th&, — P; pair is thus well suited for this particular simple compiaaf
even though its is usually not recommended for solving mivechulations.

Under those assumptions, we observe in the right columngfrgi(9) the relative disper-
sion errors. TheP, — P, pair exhibits the same rate of convergencetoFor this modal
analysis, such an element pair appears to be a better @isgate, as the formulation (12)
is no more a constrained problem and the issue of spurioug$niedio more relevant. For
pure wave propagation, the use of the same discretizat@nahpears to be a better choice
in term of accuracy. It is still not quite clear why tf&'“ — P, accuracy is strongly affected
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and why the convegrence rate of tilg — P; pair remains unchanged when considering
unstructured grids.

4.3 Influence of mesh perturbation with tR¢¢ — P, pair

Fig. 10. Structured-distorded meshes used for the conipasabn the semi-periodic domain with
2921 degrees of freedom arsd0 elements with the’Y® — P finite element pair. The perturbation
on the nodes coordinates is a random function presentingxarmm value of10% of the element
sizeh on the less distorded mesh (left) and26f% on the more distorded mesh (right).

Given the strong degradation of the convergence rate aPftfé — P, pair on unstructured
grids, one might be interested in computing the convergeates on slightly distorded struc-
tured grids. We consider the perturbed meshes depictedyurd-(10) and apply the same
analysis. The convergences are depicted in Figure (11ptbrdiructured-distorded meshes.
We observe a fast degradation of the convergence rate witemipeg the structured nature
of the mesh: the first slightly distorded mesh leads to a cgaree rate of about5 instead
of 4 on the original structured mesh. The second larger petiorbeeads to a rate of about
2.7, which is almost as low as the convergence rate on fully ungired meshes.

4.4 Influence of the subgrid scale viscosity on B¢ — P; pair

Finally, we observe that the higher order of convergencebearecovered on unstructured
grids with theP¥¢ — P, pair by introducing a sufficient amount of subgrid scale oty
scaling ag?(h?). The convergence for the Poincaré, Kelvin and Rossby waeedepicted

in Figure (12). For a small viscosity of = 0.02h? (red lines), the convergence rates are not
much improved compared to the inviscid computation, whike tise of a larger viscosity
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Fig. 11. Convergence of the relative dispersion error ferfitst resolved modes corresponding to
the Poincaré (left), Rossby and Kelvin (right) waves on #&sldistorded structured mesh (blue
circles) and the more distorded structured mesh (red teahgvith the PN¢ — P; pair. The first
slight perturbation of the mesh leads to a convergence fatleont3.5 instead o4, while the second
perturbation leads to a rate equivalent to the rate on fulktructured meshes.
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Fig. 12. Convergence of the relative dispersion error withgsidscale viscosities of = 0.02h2 (red
triangles) and’ = 0.2h? (green diamonds) for the first resolved modes corresportditige Poincaré,
Rossby and Kelvin waves on unstructured meshes wittPfhe — P; pair. The convergence rate on
unstructured meshes is highly improved with the use of acseiffily large subgrid scale viscosity.

v = 0.2h? (green lines) leads to recovering approximately the cayamee ofi.

5 Conclusions

We have analyzed in this paper the dispersion propertieseoPf'“ — P, finite element
pair by means of a general method, fully independent of the gnd of the numerical
scheme. We obtained different convergence propertiesoctsted and unstructured grids.
The PN¢ — P, pair leads to a convergence rate of the relative dispersionssof4 on struc-
tured grids, which is equivalent to the superconvergenopgaties of the piecewise linear
DG method with the use of a Riemann solver, 2j¢+ 2. This convergence of theN¢ — P,
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pair ishighly reduced on unstructured gridsid reach abo@ 5 while the convergence rates
of schemes as the DG method or the— P; pair remain unchanged on both kinds of grids.
The convergence rate may however be recovered on unsedatueshes by introducing a
sufficient amount of viscosity scaling asx O(h?) whereh is the element size. However,
the dissipation errors generated to recover the dispecsiovergence rate often exceed the
dispersion errors itself. Though certainly unacceptabiesblving the wave equation, this
option is however valid for an ocean model if the diffusivatysociated to the subgrid scale
processes exceeds the viscosity needed to recover thesiepeonvergence rate.

Solving the mixed problem with thBN® — P, pair avoids the issue of the spurious elevation
modes generation. Moreover, the velocity discontinuitiess quite usefull for introducing
upwinding schemes when computing non-linear advectiongeBut theP¥“ — P, pair ex-
hibits ahigh sensitivity to the mesh structure and leads to a sigtifie loss of convergence
for the dispersion error on unstructured mesbesven slightly distorded structured meshes.

Considering structured grids, it is well known that the cengence rate of the dispersion er-
rors for inertia-gravity waves i®(h*) for the PN — P, and P, — P, pairs, and onlyO(h?)
for pairs asP, — P, PN¢ — P, or PyisoP, — P, [Le Roux et al., 2007]. In this paper, we
restricted ourselves to the element pairs providing®h*) convergence rate. One could
argue that the reduced convergence of i¥&' — P, pair is not surprising and is due to the
loss of symmetry in the discrete operators computationnThevould be more surprising
that the convergence rate of tie — P, pair remains unchanged on any kind of grid.
Anyway, even though numerical scheme comparison is a conmpééter and cannot be re-
duced to a single criterion as the convergence propertiglspersion errors, this lack of
accuracy of the’?N¢ — P; formulation on unstructured meshes is a real issue, edlygicia
the framework of a finite element ocean model based on thefusgstructured grids. The
use of more accurate pairs or methods on unstructured mskbekl then be investigated,
as for instance the discontinuous Galerkin method whicls eo¢ suffer from such conver-
gence rate reduction.

This study eventually points out the fact that the conclusimom analysis of pairs based on
structured grids may be irrelevant in terms of convergene@®for unstructured grids. The
results obtained on structured meshes cannot always belgiextended to unstructured
ones and such dispersion analysis should then be carried onstructured meshes.
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Fig. 13. Square domain of size with solid walls on the northern and southern boundaries and
periodic conditions on the eastern and western boundaries.

ARC 04/09-316. This work is a contribution to the SLIMproject.

Appendix

To analyse the ability of the finite element scheme to repitetbe dispersion and dissipation
properties, we need to obtain a numerical dispersion oglatve solve the linear shallow
water equations (3,4,5) on the semi-periodic domain degiict Figure (13). The solid walls
on the northern and southern boundaries allows the existeh&elvin waves, while the

semi-periodicity allows to assume sines eigenfunctiortbé: direction and simplifies the
analytical calculations:

n(0,y) =n(L,y),

u(0,y)=u(L,y),

v(0,y)=v(L,y),
v(z,—L/2)=0=v(z,L/2)

We then search for analytical or at least reference dispersiations to compare with.

The shallow water equations exhibits three families of wavwbe Poincaré, Kelvin and
Rossby waves. The Kelvin waves propagate only along thetc@asl exhibit and expo-
nential decay away from the coastlines. By assuming a @oeasiftiented along the east-
west direction, we may derive the following expression @& Kelvin waves at midlatitudes

1 SLIM, Second-Generation Louvain-la-Neuve Ice-ocean Mode
www.climate.be/SLIM
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[Majda , 2003]:

u(z,y,t) = exp (—yfo/\/g?(o exp (i(kyx — wt)) . (13)

Kelvin waves are called non dispersive waves since the sporeding dispersion relation is
linear, and thus independent of the Coriolis force:

The Poincaré and Rossby waves are dispersive waves andiealadxpressions of their
dispersion relations requires many assumptions and siogions.

We derive a third order wave equation«drby mixing the shallow water equations as pro-
posed by Longuet-Higgins [Longuet-Higgins, 1965]:

0 0? 1 0? 9 0 0 0 ov
(o oo (7))o () 5 =00 09

The classical WKB approximation [e.g. Wentzel, 1926] le&mishe following analytical
dispersion relations for Poincaré and Rossby waves resphct

w=1/f3 + gHok? (16)
W= m . @an
(18)

Those relations are very close to the exact dispersionoektand are widely used in the
literature. But the lack of accuracy introduced by the WKBm@ximation is sufficient to
prevent from convergence when compared to our numericahsehWe then need to obtain
the exact accurate dispersion relation to compare with.

Since we assume periodic boundary conditions on the eaatelmvestern boundaries, we
may assume sines functions in thiglirection. The solution may be written as:

v(x,y,t) =Y (y)exp (i(k,z — wt)) (19)

with the unknown functiorY (y) and the wave number in thedirectionk,.
As proposed in [Bernard et al., 2008], by substituting eigmaf19) in equation (15), the
following typical Sturm-Liouville relation appears:

Y [2fof B3, 1 2 2\ PRe oy
dy? _lgHoy+gHoy r ﬁ(w I - oRY=0 @

9(y) ky
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This one-dimensional eigenvalue problem can be solved rically with the appropri-
ate solid walls boundary conditions(—L/2) = 0 = Y(L/2). The eigenvectors are the
modesY (y) in they direction while the eigenvalues alc§ We observe that for each couple
(ks k), the corresponding frequencies are obtained by solvinthingorder equation:

W — (gH0k2 + fg) w— gHyBk, =0 (21)

with &% = k2 4 k2. The two Poincaré frequencies propagating eastward artvasescorre-
spond to the larger roots in absolute value, while the srsiait®t corresponds to the Rossby
frequency associated to this, k, couple. This method yields exact disperion relations with
a variable Coriolis parameter for the Poincaré and Rosshgsva
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