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Abstract

It is mandatory for an ocean model to represent accurately the different kinds of waves
since they play a critical role in ocean dynamics. Quantifying the dispersion or dissipation
errors of a given numerical scheme and comparing numerical methods is not an easy task
especially when using unstructured grids. In this paper we use a general method fully in-
dependent of the numerical scheme and of the grid to analyse dispersion and dissipation
errors. In particular we apply this method to the study of thePNC

1 − P1 finite element pair
applied to the shallow water equations. The influence of the grid is observed by comparing
the convergence rates of the dispersion errors on Poincaré,Kelvin and Rossby waves. We
observe a significative reduction of the convergence rate onunstructured meshes compared
to structured grids for thePNC

1 − P1 pair, while this rate remains unchanged when using
other approaches as theP1 − P1 pair without stabilization or the discontinuous Galerkin
method.

Key words: Linear non-conforming finite element, Unstructured Meshes, Dispersion and
dissipation errors, Shallow water equations, GeophysicalFlows

1 Introduction

The shallow water equations exhibit three kinds of waves, namely the Poincaré, Kelvin and
Rossby waves. Those waves play a crucial role in ocean dynamics. The Rossby waves are
very slow waves generated by the variability of the Coriolisparameter and propagating only
westward. Those waves are known to intensify the western boundary currents and are re-
sponsible for the transfer of huge amounts of heat and energy. The Kelvin waves are non
dispersive waves generated by the tides and the winds. They propagate along the coasts and
exhibit an exponential decay away from the coastlines. Kelvin waves carry large amounts of
energy and play then a crucial role in mixing and dissipationprocesses [Cushman-Roisin ,
1994, Pedlosky , 1979, Majda , 2003]. Minor errors in those waves dispersion relations may
lead to large lack of accuracy in climate and weather predictions. It is thus mandatory for an
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ocean model to propagate those waves in an accurate way.
Another difficulty lies in the coupling between the momentumand continuity equations,
which raises several issues for any kind of numerical methods like finite differences, finite
volumes or finite elements. Solving a mixed formulation as the shallow water equations may
lead to the generation of spurious modes for certain sets of grids and bases and to lack of
accuracy in the dispersion relations especially for the faster waves.

Many studies have been carried on since three decades to investigate the dispersion prop-
erties of many numerical schemes. In particular, dispersion relations on finite differences
schemes have been studied for gravity waves [Arakawa and Lamb , 1977, Batteen and Han ,
1981, Randall , 1994, Beckers and Deleersnijder, 1993] and for the Rossby waves [Dukowicz
, 1995, Wajsowicz , 1986]. The most common technique often used with finite differences on
regular grids consists in introducing Fourier modes in the discrete representation of the spa-
tial operators. After some algebraic manipulation, one thus obtain the analytical expression
of a numerical dispersion relation corresponding to this particular scheme, grid, and Fourier
mode. More recently, dispersion for finite elements techniques were investigated [Atkinson
et al., 2004, Walters and Carey , 1983]. In particular, Le Roux et. al investigated many finite
element pairs for solving the two-dimensional shallow water equations on structured grids
[Le Roux et al., 2007, Le Roux and Pouliot , 2008]. It has been shown that pairs as the
P2 −P2, MINI, PNC

1 −P1 orP1isoP2 −P1 present no spurious elevation modes [Le Roux ,
2005, Le Roux et al., 2007, 2005]. Some have been disregardedbecause of poor dispersion
error properties compared to thePNC

1 −P1 pair [Le Roux , 2005, Hanert et al., 2004, 2005],
which seems to be the best compromise. This pair is now used since a few years to represent
shallow water oceanic flows [e.g. Lambrechts et al., 2005, Hanert et al., 2004, 2005, 2007,
White et al., 2007]. However, the authors considered this analysis asone step of the selection
processsince other important factors as variable element sizes andunstructured grids should
be considered in further investigations.

The present work is a part of the SLIM project which consists in building a new generation
of ocean models based on the finite element method and unstructured grids. In this frame-
work, we built a new method for analyzing the dispersion properties of numerical schemes
on unstructured grids [Bernard et al., 2008]. The dispersion and dissipation properties of the
discontinuous Galerkin (DG) method have been studied, showing superconvergence prop-
erties with the polynomial interpolation order and confirming the DG method as a good
candidate for ocean modelling.
The comparison between numerical methods on unstructured grids is a quite difficult task
and the conclusions may eventually lean towards one method or another, depending on the
problem under study. This modal analysis provides a way to fairly compare the dispersion
and dissipation errors introduced by different numerical schemes on unstructured grids, and
brings thus other informations for the element selection process. In particular, this paper in-
vestigates the dispersion errors of thePNC

1 −P1 and its convergence rate on both structured
and unstructured grids.
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The first section is a reminder of the shallow water equationsand their finite element dis-
cretization, in particular for thePNC

1 −P1 element pair. The next section briefly describes the
modal analysis presented in [Bernard et al., 2008]. The analytical expressions of the shallow
water waves and their approximate and exact dispersion relations are given in the appendix.
In particular, the classical analytical dispersion relationships based on the WKB approxima-
tion [e.g. Wentzel, 1926] are not accurate enough to performa convergence study. We then
developed another approach to obtain reference dispersionrelations by solving numerically
a 1D Sturm-Liouville relation. The last section eventuallypresents the results of this modal
analysis applied to the finite element pairPNC

1 − P1 and compares the convergence rates to
the unstabilizedP1 − P1 pair convergence on both structured and unstructured grids.

2 Finite Element Method for the shallow water equations

We seek to determine the depth-averaged horizontal velocity v(x, t) and depth of the fluid
layerH(x, t) , both solutions of the following inviscid shallow water formulation:

∂Hv

∂t
+ ∇ · (Hvv) + fez ×Hv = −gH∇η (1)

∂H

∂t
+ ∇ · (Hv) = 0 (2)

wheret is time,f is the Coriolis parameter,g is the gravitational acceleration andη(x, t)
denotes the relative surface elevation of the fluid corresponding to the relationH = H0 + η
with H0 the reference depth of the fluid. The vectorez denotes the local normal unit vector
to the geopotential surface.
This set of equations represents the flow of a thin layer of incompressible fluid under the
influence of a gravitational force in a rotating framework. Those equations can be obtained
from the vertical integration of the incompressible 3D Navier-Stokes equations with imper-
meability boundary conditions on the surface and bottom of the ocean [Pedlosky , 1979,
Cushman-Roisin , 1994]. The viscous terms of the Navier-Stokes equations are neglected.
However, a subgrid scale viscosity could be added to take into account the influence of the
subgrid scale processes.
In this work we neglect the non linear transport terms and thereference depthH0 is assumed
constant. The linearized shallow water equations (1) and (2) read:

∂u

∂t
+ g

∂η

∂x
− fv= 0, (3)

∂v

∂t
+ g

∂η

∂y
+ fu= 0, (4)

∂η

∂t
+H0

(
∂u

∂x
+
∂v

∂y

)

= 0. (5)
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Fig. 1. P1 linear conforming element (left) representing the water elevation and thePNC
1 linear

non-conforming element (right) representing the velocityfield.

A weak formulation may be obtained by multiplying the momentum and continuity equa-
tions by test functionŝv = (û, v̂) and η̂ respectively, by integrating on the domainΩ and
taking advantage of the divergence theorem for the continuity equation. More informations
on the standard Galerkin procedure may be found in [Ciarlet ,1978, Hughes , 2000]. A pos-
sible weak formulation is:
Findu = (u, v) andη such that:

∫

Ω

(
∂u

∂t
+ g

∂η

∂x
− fv

)

û dΩ =0,

∫

Ω

(
∂v

∂t
+ g

∂η

∂y
+ fu

)

v̂ dΩ =0, (6)

∫

Ω

∂η

∂t
η̂ dΩ −

∫

Ω
H0

(

u
∂η̂

∂x
+ v

∂η̂

∂y

)

dΩ +
∫

∂Ω
H0unη̂ dS =0,

whereun denotes the normal velocity across the edge∂Ω. Setting this integration on bound-
aries to zero allows to weakly impose the impermeability conditions on the solid walls
[e.g. Hanert et al., 2006]. Moreover, such a weak formulation allows us to consider non-
continuous velocity fields.

We consider the use of thePNC
1 − P1 pair depicted in Figure (1). The pressure, i.e. the

water elevation, is represented as a continuous piecewise linear field and the velocity is a
discontinuous piecewise linear field except at the mid-edges. ThePNC

1 −P1 element pair has
been used for the first time to build a noise-free finite element two-layer shallow water model
[Hua and Thomasset , 1984]. This pair became popular becauseit clearly exhibits the better
numerical properties in terms of dispersion error and computational cost among the set of
element pairs which do not suffer from elevation modes (i.e.theP2 − P2, MINI, PNC

1 − P1

or P1isoP2 − P1 pairs) [Le Roux et al., 2007, Le Roux and Pouliot , 2008]. Indeed, the
orthogonality of the non-conforming shape functions permits to reduce the computational
costs. The discontinuities in the non-conforming elementsrepresent a compromise between
discontinuous and continuous fields and make thePNC

1 − P1 a better suited element than
continuous ones to represent advection dominated processes. Notice that some element pairs
do not suffer from spurious elevation modes only in some particular cases, as the classical
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P1 − P1 with the use of weakly imposed no normal flow boundary conditions on smooth
domains [Hanert et al., 2006].

We then proceed to the spatial discretization of the unknownfields. The computational do-
mainΩ is divided into a set ofN non overlapping elementsΩe with a total ofNe edges and
Nv vertices, leading toNd = Nv + 2Ne degrees of freedom. We discretize the elevation and
velocity fields by assuming a linear combination of nodal values and linear shape functions
on each element:

u =
3∑

n=1

Unψn, v =
3∑

n=1

Vnψn, η =
3∑

n=1

Hnφn,

with (Un, Vn) andHn the nodal values andψn andφn the shape functions for the velocity
and elevation fields respectively.

Introducing this discretization into the weak formulation(6) with the weak imposition of the
no normal flow boundary conditions , we obtain the following finite element system:

M
∂U

∂t
+ AU = 0 (7)

whereU is the vector of nodal values

U = [Uj Vj Hl]
T ,

M is the globalNd ×Nd mass matrix andA contains the gradient, divergence and Coriolis
discrete operators:

A =





0 − ∫Ω fψiψj dΩ
∫
Ω gψi

∂φl

∂x
dΩ

∫
Ω fψiψj dΩ 0

∫
Ω gψi

∂φl

∂y
dΩ

− ∫ΩH0
∂φk

∂x
ψj dΩ − ∫ΩH0

∂φk

∂y
ψj dΩ 0




(8)

with the subscriptsi, j = 1 . . . Ne andk, l = 1 . . .Nv.

The specific pattern of this matrixA allows the appearance of both velocity and elevation
modes. Steady spurious modes are solutions of the system which are not physically relevant.
They do not propagate in time, but are trapped into the mesh and are thus solution of the
steady state formulation:

AU = 0 . (9)

Notice that specific spurious modes may also appear in some time-dependant problems, but
those will not be considered in this paper. An analysis of such modes may be found in [Platz-
man , 1981].
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To each eigenvector of the matrixA corresponds an elevation mode and a velocity mode.
A spurious pressure (or elevation) mode can be defined as a mode corresponding to a sta-
tionary eigenmode of the discrete system which has zero velocity components and a non
constant pressure belonging to the kernel of the discrete gradient operator. A spurious ve-
locity mode can be defined as a mode corresponding to a zero elevation with the velocity
components belonging to the intersection of the kernel of the divergence operator and the
kernel of the Coriolis operators. Such spurious modes have been found for theC grid and
theRT0−P0,RT0−P1,BDM1−P0 andBDM1−P1 finite element schemes [Rostand et al,
2007]. Notice thatRT0 denotes here the velocity discretization used in the Raviart-Thomas
finite element approximation, whileP0 or P1 denotes the elevation discretization.

3 Discrete modal analysis of the shallow water waves

This section describes the modal analysis using the framework presented in [Bernard et al.,
2008]. The main advantage of this alternative approach liesin the fact that it is based on the
analysis of the discrete representation of the spatial operators, and it remains valid for any
kind of numerical scheme or grid. This approach applied to structured grids will reproduce
exactly the same numerical dispersion relations than the classic dispersion analysis obtained
by other methods as for instance [Le Roux et al., 2007, Le Rouxand Pouliot , 2008], but the
approach remains valid on unstructured grids. Obviously, this numerical approach does not
replace analytical approaches in the sense that it does not provide analytical expressions for
the frequency, which can be used for instance to obtain analytical expressions of group and
phase velocities. But it provides a way to analyse the impactof more realistic fully unstruc-
tured meshes on the dispersion relations, which contributes to the element selection process
in the field of finite element ocean modelling.

In order to obtain a discrete dispersion relation, we first consider the semi-discrete formula-
tion of the shallow water equations (7):

∂U

∂t
= LU (10)

whereL = M
−1

A is the square matrix of the discrete space operators andU is the finite
element discretization of the vector of unknowns.
We then assume the solution to be the real part of the following expression:

U(x, y, t) = X
h(x, y) exp (iωt) . (11)

with a general dependence in spaceX
h(x, y). Incorporating this expression (11) into the

semi-discrete formulation (10) leads to the following eigenvalue problem:

[L − λI]Xh = 0. (12)
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For each eigenvalueλj (j = 1 . . .Nd), the corresponding discrete frequencyωj and the as-
sociated numerical dissipationµj are found as the imaginary and real parts of the eigenvalue
respectively:

λj = µj + iωj .

We still need to compute the associated wave numbers in thex andy directions. This in-
formation is contained in the eigenvectors. To each eigenvector is associated an elevation
modeηj(x, y) and a velocity mode(uj(x, y), vj(x, y)). We consider by instance the ele-
vation mode and perform a 2D Fourier Transform to obtain the dominating wave number
kj = (kx,j, ky,j) corresponding to this mode.
We obtain a discrete dispersion relationωj(kj). A discrete dispersion analysis is then per-
formed by comparing this relation to the reference dispersion relationω(kj). The absolute
dissipation error of the modej is computed as the absolute value ofµj while the absolute
dispersion error of modej is given by:

κj = |ωj − ω(kj)| .

It must be noticed that the Fourier transform only provides integer wave numbers. For the
shallow water equations, those Fourier wave numbers are exact in thex direction, i.e. the
longitudinal dimension, only if periodic boundary conditions are used, ensuring a sine de-
pendence inx. But there is no guarantee to obtain such integer wave numbers in they di-
rection since the Coriolis parameter varies with the latitude and generates dispersive waves.
With a non zero Coriolis force and dispersive waves, they component of the wave number
k has to be replaced by the reference exact wave number. The reference dispersion relations
ω(kj) for the dispersive shallow water waves have no analytical expression. They are com-
puted numerically by solving a one-dimensional Sturm-Liouville relationship as described
in the appendix.

4 Results

In this section we analyse the results from the modal analysis applied to the linearized shal-
low water equations with theβ-plane assumption on the Coriolis parameter,f = f0 + βy,
using thePNC

1 −P1 and theP1 −P1 finite element pairs on different structured and unstruc-
tured grids.
The reference solutions for comparison are provided by the Sturm-Liouville approach de-
scribed in the appendix and the domain of computation is the semi-periodic square domain
depicted in Figure (13). For all computations, the geometrical and physical parameters are
L = 106 m, g = 10 ms−2, H0 = 103 m, β = 3 10−10 m−1s−1 andf0 = 3 10−4 s−1. For
those values, the typical non dimensional numbers are givenby:

Ro =

√
gH0

Lf0

=
1

3
,

βL

f0

= 1
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with Ro denoting the Rossby number. The shallow water equations aresolved in a classi-

2921 degrees of freedom 3152 degrees of freedom

Fig. 2. Structured and unstructured meshes used for the computations on the semi-periodic domain
with 800 and866 elements respectively with thePNC

1 − P1 finite element pair.

2700 degrees of freedom 2703 degrees of freedom

Fig. 3. Structured and unstructured meshes used for the computations on the semi-periodic domain
with 1922 and1920 elements respectively with theP1 − P1 finite element pair.

cal non dimensional version [Cushman-Roisin , 1994] in order to obtain a better numerical
accuracy. This set of parameters presents an increased Coriolis parameter with an increased
β-effect to visually differentiate the shape of Rossby modesin they direction from sine func-
tions. Indeed, a zero Coriolis parameter leads to gravity waves composed of sine and cosine
modes, while a larger Coriolis parameter increases the dispersive nature of the Rossby and
Poincaré waves. The only purpose of this arbitrary set of parameters is to visually identify
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this dispersive behaviour and the difference with sine functions, as shown in Figure (7) or in
table 1.
The structured and unstructured meshes used in our computations are depicted in Figure (2)
and Figure (3) for thePNC

1 − P1 and theP1 − P1 formulations respectively.

4.1 Dispersion errors for thePNC
1 − P1 pair

The computation of the eigenvalue problem yields the set of eigenvalues depicted in Figure
(4). As expected with the linear shallow water equations andthePNC

1 −P1 pair, the scheme
does not introduce any numerical dissipation, leading to fully imaginary eigenvalues. The
reference dispersion curves and the numerical dispersion relations are presented in Figure
(5) where we only considered the positive frequencies. The first modes corresponding to the
dispersive Poincaré and Rossby waves are presented in Figure (6) and Figure (7) respec-
tively, while Figure (8) exhibits the first modes of the Kelvin waves. We obtain as expected
modes composed of sine functions in thex direction. The shapes of the Poincaré and Rossby
modes in they direction correspond to the modes obtained by the Sturm-Liouville 1D com-
putation. The corresponding wave numbers are not integers as in sine functions, but are quite
close to the corresponding sine wave numbers as shown in table 1. The Kelvin modes exhibit
the expected exponential decay of equation (13) in they-direction.

−1 −0.5 0 0.5 1

x 10
−13

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

µ

ω

Fig. 4. Spectrum of eigenvaluesλ corresponding to thePNC
1 − P1 pair. The scheme does not intro-

duce any dissipation to filter the unresolved modes, leadingto fully imaginary eigenvalues with the
dissipationµ = Im(λ) and the frequencyω = Re(λ).

Relative dispersion errors for the Poincaré, Rossby and Kelvin waves are shown in Figure
(9) for thePNC

1 −P1 pair (left column) and theP1−P1 pair (right column). The convergence
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j 1 2 3 4 5 6

ky,j 3.1331 6.3411 9.4651 12.5966 15.7321 18.8696

jπ/L 3.1416 6.2832 9.4248 12.5664 15.7080 18.8496
Table 1
Wavenumbersky,j of the Sturm-Liouville problem (20) compared to their approximation jπ/L.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

1

2

3

4

5

6

7

8

9

10

ω
f0

kh/π

A

B

A

B
kx = 2π

kx = 4π

kx = 6π

kx = 8π

Fig. 5. Discrete dispersion relation of the Poincaré (red),Kelvin (green) and Rossby (blue) waves. The
black circles correspond to the frequencies from the 2D finite element modal analysis while the dots
from continuous lines are the reference frequencies from the 1D Sturm-Liouville approach. Poincaré
and Kelvin modes are shown on the close up viewA: the reference solution is made of different
curves, so that two different couples(kx, ky) with two different frequencies may correspond to a
same wave number. Rossby dispersion relations for different wave numberskx are depicted on close
up viewB, where only evenkx wave number are obtained because of periodic boundary conditions.
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kx = 2, ky = 1 kx = 2, ky = 2 kx = 2, ky = 3 kx = 4, ky = 4

Fig. 6. Some of the Poincare first modes.

kx = 2, ky = 1 kx = 2, ky = 2 kx = 2, ky = 4 kx = 4, ky = 4

Fig. 7. Some of the Rossby first modes.

kx = 2 kx = 4 kx = 8 kx = 10

Fig. 8. Some of the Kelvin first modes.

rates are computed as the slope of the continuous lines, i.e.slopes of the linear approxima-
tions of the first resolved modes in the sense of theL2 norm. Since the error is proportional
to the product of the element sizeh and the wave numberk, O(kh), the convergence study
is performed on only one grid, by considering the error variation with the wave number. In-
deed, one way of computing the convergence of the dispersionerrors is to consider several
computations on different mesh with different element sizesh, and to compare the dispersion
errors for one given mode. For sake of simplicity and in orderto reduce the computational
costs, we choose the second way which is to consider only one mesh and to compare the dif-
ferent resolved modes, which means considering a variationof k instead of a variation ofh.
Of course, this second approach is totally valid and equivalent to the first one and the conver-
gence will be observed only if we consider the resolved modesfar from the grid cutoff and
if the shapes of the modes under study are close to sine functions, which is the case in this
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Fig. 9. Convergence of the relative dispersion error for thefirst resolved modes corresponding to the
dispersive Poincaré (upper row), Rossby and Kelvin(lower row) waves on structured (blue circles)
and unstructured (red triangles) meshes with thePNC

1 − P1 pair (left) and theP1 − P1 pair (right).
The use of structured meshes strongly decreases the convergence rates for thePNC

1 − P1 pair while
the rates remain unchanged for theP1 − P1 pair.
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study, considering the physical parameters, the domain shape and boundary conditions used.

It has been shown that the Discontinuous Galerkin method exhibits superconvergence prop-
erties for the dissipation and dispersion errors [e.g. Hu and Atkins, 2002]. For polynomial
shape functions of orderp, the DG method provides a convergence rates of2p + 2 for the
relative dispersion errors and2p + 1 for the relative dissipation errors if an even order is
used. Same rates are reached for odd orders only if a Riemann solver is used in the flux
computation instead of a center scheme. Those results have also been demonstrated [e.g.
Ainsworth, 2004] for a 1D scalar transport equation. The same rates were obtained for the
DG method with the same modal analysis for both structured and unstructured grids, for the
Poincaré, Kelvin and Rossby waves [e.g. Bernard et al., 2008].
A fair comparison between a high order discontinuous methodand other finite element pairs
as the non-conformingPNC

1 − P1 pair is not a simple task since the results depend in a
large part on the problem under study, and in particular on the geometry and topology of
the problem. A first comparison based on the dispersion errors criterion is provided by the
modal analysis exposed in this paper, since both formulations are compared with the same
method and the same number of degrees of freedom.

We observe in Figure (9) the difference between thePNC
1 − P1 pair on structured grids

(blue lines) and the same pair on unstructured grids (red lines). A first polynomial order DG
method provides a convergence rate of4 with a Riemann solver and of2 with a centered
scheme for the relative dispersion error. We observe here that thePNC

1 − P1 pair exhibits a
convergence rate as high as theP1 DG method for structured grids, but the use of unstruc-
tured grids considerably reduces the rate, reaching about2.5, which is similar to the rate of
convergence of a finite volume method.

4.2 Comparison with theP1 − P1 pair

The same computation is performed on both kinds of grids withtheP1 − P1 pair. We con-
sider here a transient computation and the no normal flow boundary conditions are weakly
imposed to avoid any spurious elevation mode with this pair.Moreover, solving the linear
shallow water equations with this pair do not require the useof SUPG formulation to stabi-
lize the scheme. TheP1 − P1 pair is thus well suited for this particular simple computation,
even though its is usually not recommended for solving mixedformulations.
Under those assumptions, we observe in the right column of Figure (9) the relative disper-
sion errors. TheP1 − P1 pair exhibits the same rate of convergence of4. For this modal
analysis, such an element pair appears to be a better discrete space, as the formulation (12)
is no more a constrained problem and the issue of spurious modes is no more relevant. For
pure wave propagation, the use of the same discretization then appears to be a better choice
in term of accuracy. It is still not quite clear why thePNC

1 −P1 accuracy is strongly affected
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and why the convegrence rate of theP1 − P1 pair remains unchanged when considering
unstructured grids.

4.3 Influence of mesh perturbation with thePNC
1 − P1 pair

Fig. 10. Structured-distorded meshes used for the computations on the semi-periodic domain with
2921 degrees of freedom and800 elements with thePNC

1 − P1 finite element pair. The perturbation
on the nodes coordinates is a random function presenting a maximum value of10% of the element
sizeh on the less distorded mesh (left) and of20% on the more distorded mesh (right).

Given the strong degradation of the convergence rate of thePNC
1 − P1 pair on unstructured

grids, one might be interested in computing the convergencerates on slightly distorded struc-
tured grids. We consider the perturbed meshes depicted in Figure (10) and apply the same
analysis. The convergences are depicted in Figure (11) for both structured-distorded meshes.
We observe a fast degradation of the convergence rate when perturbing the structured nature
of the mesh: the first slightly distorded mesh leads to a convergence rate of about3.5 instead
of 4 on the original structured mesh. The second larger perturbation leads to a rate of about
2.7, which is almost as low as the convergence rate on fully unstructured meshes.

4.4 Influence of the subgrid scale viscosity on thePNC
1 − P1 pair

Finally, we observe that the higher order of convergence canbe recovered on unstructured
grids with thePNC

1 − P1 pair by introducing a sufficient amount of subgrid scale viscosity
scaling asO(h2). The convergence for the Poincaré, Kelvin and Rossby waves are depicted
in Figure (12). For a small viscosity ofν = 0.02h2 (red lines), the convergence rates are not
much improved compared to the inviscid computation, while the use of a larger viscosity
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Fig. 12. Convergence of the relative dispersion error with subgridscale viscosities ofν = 0.02h2 (red
triangles) andν = 0.2h2 (green diamonds) for the first resolved modes correspondingto the Poincaré,
Rossby and Kelvin waves on unstructured meshes with thePNC

1 − P1 pair. The convergence rate on
unstructured meshes is highly improved with the use of a sufficiently large subgrid scale viscosity.

ν = 0.2h2 (green lines) leads to recovering approximately the convergence of4.

5 Conclusions

We have analyzed in this paper the dispersion properties of thePNC
1 − P1 finite element

pair by means of a general method, fully independent of the grid and of the numerical
scheme. We obtained different convergence properties on structured and unstructured grids.
ThePNC

1 −P1 pair leads to a convergence rate of the relative dispersion errors of4 on struc-
tured grids, which is equivalent to the superconvergence properties of the piecewise linear
DG method with the use of a Riemann solver, i.e.2p+2. This convergence of thePNC

1 −P1
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pair ishighly reduced on unstructured gridsand reach about2.5 while the convergence rates
of schemes as the DG method or theP1 − P1 pair remain unchanged on both kinds of grids.
The convergence rate may however be recovered on unstructured meshes by introducing a
sufficient amount of viscosity scaling asν ∝ O(h2) whereh is the element size. However,
the dissipation errors generated to recover the dispersionconvergence rate often exceed the
dispersion errors itself. Though certainly unacceptable for solving the wave equation, this
option is however valid for an ocean model if the diffusivityassociated to the subgrid scale
processes exceeds the viscosity needed to recover the dispersion convergence rate.
Solving the mixed problem with thePNC

1 −P1 pair avoids the issue of the spurious elevation
modes generation. Moreover, the velocity discontinuitiesare quite usefull for introducing
upwinding schemes when computing non-linear advection terms. But thePNC

1 −P1 pair ex-
hibits ahigh sensitivity to the mesh structure and leads to a significative loss of convergence
for the dispersion error on unstructured meshesor even slightly distorded structured meshes.

Considering structured grids, it is well known that the convergence rate of the dispersion er-
rors for inertia-gravity waves isO(h4) for thePNC

1 −P1 andP1 −P1 pairs, and onlyO(h2)
for pairs asP1 − P1, PNC

1 − P0 or P1isoP2 − P1 [Le Roux et al., 2007]. In this paper, we
restricted ourselves to the element pairs providing anO(h4) convergence rate. One could
argue that the reduced convergence of thePNC

1 − P1 pair is not surprising and is due to the
loss of symmetry in the discrete operators computation. Then, it would be more surprising
that the convergence rate of theP1 − P1 pair remains unchanged on any kind of grid.
Anyway, even though numerical scheme comparison is a complex matter and cannot be re-
duced to a single criterion as the convergence properties ofdispersion errors, this lack of
accuracy of thePNC

1 − P1 formulation on unstructured meshes is a real issue, especially in
the framework of a finite element ocean model based on the use of unstructured grids. The
use of more accurate pairs or methods on unstructured meshesshould then be investigated,
as for instance the discontinuous Galerkin method which does not suffer from such conver-
gence rate reduction.

This study eventually points out the fact that the conclusions from analysis of pairs based on
structured grids may be irrelevant in terms of convergence errors for unstructured grids. The
results obtained on structured meshes cannot always be directly extended to unstructured
ones and such dispersion analysis should then be carried on on unstructured meshes.
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Appendix

To analyse the ability of the finite element scheme to represent the dispersion and dissipation
properties, we need to obtain a numerical dispersion relation: we solve the linear shallow
water equations (3,4,5) on the semi-periodic domain depicted in Figure (13). The solid walls
on the northern and southern boundaries allows the existence of Kelvin waves, while the
semi-periodicity allows to assume sines eigenfunctions inthex direction and simplifies the
analytical calculations:

η(0, y)= η(L, y),

u(0, y)=u(L, y),

v(0, y)= v(L, y),

v(x,−L/2) =0 = v(x, L/2).

We then search for analytical or at least reference dispersion relations to compare with.

The shallow water equations exhibits three families of waves: the Poincaré, Kelvin and
Rossby waves. The Kelvin waves propagate only along the coasts and exhibit and expo-
nential decay away from the coastlines. By assuming a coastline oriented along the east-
west direction, we may derive the following expression of the Kelvin waves at midlatitudes

1 SLIM, Second-Generation Louvain-la-Neuve Ice-ocean Model,
www.climate.be/SLIM
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[Majda , 2003]:

u(x, y, t) = exp
(
−yf0/

√
gH0

)
exp (i(kxx− ωt)) . (13)

Kelvin waves are called non dispersive waves since the corresponding dispersion relation is
linear, and thus independent of the Coriolis force:

ω = ±
√
gH0kx . (14)

The Poincaré and Rossby waves are dispersive waves and analytical expressions of their
dispersion relations requires many assumptions and simplifications.
We derive a third order wave equation inv by mixing the shallow water equations as pro-
posed by Longuet-Higgins [Longuet-Higgins, 1965]:

(
∂

∂t

(

− ∂2

∂y2
+

1

gH0

(
∂2

∂t2
+ f 2

))

− ∂

∂x

(

β +
∂

∂x

∂

∂t

))
∂v

∂t
= 0 . (15)

The classical WKB approximation [e.g. Wentzel, 1926] leadsto the following analytical
dispersion relations for Poincaré and Rossby waves respectively:

ω=
√
f 2

0 + gH0k2 (16)

ω=
gH0βkx

f 2
0 + gH0k2

. (17)

(18)

Those relations are very close to the exact dispersion relations and are widely used in the
literature. But the lack of accuracy introduced by the WKB approximation is sufficient to
prevent from convergence when compared to our numerical scheme. We then need to obtain
the exact accurate dispersion relation to compare with.

Since we assume periodic boundary conditions on the easternand western boundaries, we
may assume sines functions in thisx direction. The solution may be written as:

v(x, y, t) = Y (y) exp (i(kxx− ωt)) (19)

with the unknown functionY (y) and the wave number in thex directionkx.
As proposed in [Bernard et al., 2008], by substituting equation (19) in equation (15), the
following typical Sturm-Liouville relation appears:

d2Y

dy2
−
[
2f0β

gH0

y +
β2

gH0

y2

]

︸ ︷︷ ︸
g(y)

Y +

[
1

gH0

(
ω2 − f 2

0

)
− βkx

ω
− k2

x

]

︸ ︷︷ ︸
k2

y

Y = 0 . (20)
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This one-dimensional eigenvalue problem can be solved numerically with the appropri-
ate solid walls boundary conditionsY (−L/2) = 0 = Y (L/2). The eigenvectors are the
modesY (y) in they direction while the eigenvalues arek2

y. We observe that for each couple
(kx, ky), the corresponding frequencies are obtained by solving thethird order equation:

ω3 −
(
gH0k

2 + f 2
0

)
ω − gH0βkx = 0 (21)

with k2 = k2
x +k2

y. The two Poincaré frequencies propagating eastward and westward corre-
spond to the larger roots in absolute value, while the smallest root corresponds to the Rossby
frequency associated to thiskx, ky couple. This method yields exact disperion relations with
a variable Coriolis parameter for the Poincaré and Rossby waves.
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