
An Elastic-Viscous-Plastic Sea Ice Model

formulated on Arakawa B and C Grids

Sylvain Bouillona, c, 1 ,Miguel Ángel Morales Maquedab
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1 Introduction

The dynamic component of most sea ice models designed for climate studies
is based on the ice momentum balance formulation of Hibler (1979). In this
model, sea ice is assumed to be a non-linear viscous-plastic (VP) material
whose resistance to deformation depends on its instantaneous state of motion
and several large-scale scalar properties, such as ice thickness and lead frac-
tional area. The VP formulation of Hibler (1979) has known many successes,
but it is computationally expensive and not well suited for efficient parallel
integrations. The numerical method first used to solve the VP dynamics was a
relatively slow implicit point relaxation method (Hibler, 1979). More efficient
implicit methods have been proposed subsequently, namely, the line relax-
ation method (Zhang and Hibler, 1997) and the alternating direction implicit
method (Zhang and Rothrock, 2000). However, the most popular alternative
for the calculation of the VP dynamics is the elastic-viscous-plastic (EVP) for-
mulation of Hunke and Dukowicz (1997). Distinctive advantages of the EVP

1 Corresponding author. E-mail: sylvain.bouillon@uclouvain.be, Tel: +32 10 47 30
67, Fax: +32 10 47 47 22

Preprint



dynamics over the VP dynamics is that it is much simpler to program and
can be solved explicitly in time, thus easing parallelization.

Because of the appealing numerical properties of the EVP dynamics, a growing
number of large-scale, coupled ocean-sea ice and atmosphere-ocean-sea ice
models have adopted this formulation (e.g., Randall et al., 2007). Prompted
by this trend, we have incorporated the EVP rheology in the Louvain-la-Neuve
sea-Ice Model, LIM (Fichefet and Morales Maqueda, 1997, 1999). LIM is the
default sea ice module of the Nucleus for European Modelling of the Ocean
(NEMO, http://www.locean-ipsl.upmc.fr/NEMO/). LIM is also widely used
outside the NEMO project. It is the sea ice component of the global coupled
sea ice-ocean model CLIO (Goosse and Fichefet, 1999), and has been coupled
to the ocean general circulation models OPA (Océan PArallélisé), which is the
precursor of NEMO (Madec et al., 1999), and MOM3 (Modular Ocean Model,
version 3, Hofmann and Morales Maqueda (2006)), as well as to Earth system
models of intermediate complexity CLIMBER3α (Montoya et al., 2005) and
LOVECLIM (Driesschaert et al., 2007), and to the climate general circulation
model IPSL-CM4 (Marti et al., 2008). Simulations with the coupled OPA-
LIM model have been analyzed by Timmermann et al. (2005), and a new
version of the model including an arbitrary number of ice thickness categories
and a multi-layer halo-thermodynamic module has been recently completed
by Vancoppenolle et al. (2008).

Official releases of LIM have, until now, employed the VP dynamics formula-
tion, although a cavitating fluid approach was also briefly tested by Fichefet
and Morales Maqueda (1997), and the versions of LIM coupled to MOM3 and
CLIMBER3α do incorporate already implementations of the EVP dynamics.
However, this work is the first attempt to evaluate the impact of the EVP
parameterization on LIM.

We have tested three versions of the EVP dynamics in LIM, namely, the most
recent bilinear discretization of Hunke and Dukowicz (2002) on an Arakawa
B grid, and two simpler discretizations that we will describe here in full, the
first of which is also formulated on a B grid, while the second is for a C
grid. We present results of simulations with the coupled OPA-LIM model,
each employing one of the three EVP formulations that we have just referred
to. For comparison, a fourth integration was also carried out with the original
VP parameterization. Reassuringly, all three EVP discretizations produce very
similar results. However, the C grid version is the one that has been chosen
for use within the NEMO project, as it is faster than any of the other two and
affords a more direct coupling with the ocean component of NEMO, which is
an updated version of OPA and is also discretized on a C grid.

The article is organized as follows. Section 2 succinctly describes LIM. Section
3 discusses issues pertaining to the new discretization of the model dynamics,
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specially as regards the new implementation on a C grid. Section 4 presents
an intercomparison of key results from the numerical simulations. Conclusions
are presented in Section 5.

2 Model description

The version of LIM used in this study (LIM2) is described in full detail in Tim-
mermann et al. (2005) and references therein. Therefore, only a brief summary
of the model, with emphasis on its dynamics, is given here.

The thermodynamic part of LIM (Fichefet and Morales Maqueda, 1997, 1999)
uses a three-layer model for the vertical heat conduction within snow and ice.
The storage of latent heat in brine pockets is taken into account, and sea
ice growth and decay rates are obtained from the ice energy budget. Air-
ice and air-ocean heat fluxes are computed using empirical parameterizations
described by Goosse (1997), and the ice-ocean heat flux is computed as in
McPhee (1992).

The model dynamics are based on the two-category (consolidated ice plus
leads) approach of Hibler (1979). This two-category ice cover is treated as a
two-dimensional compressible fluid driven by winds and oceanic currents. Sea
ice resist deformation with a strength which increases monotonically with ice
thickness and concentration.

The conservation of linear momentum for sea ice is expressed as in Leppäranta
(2005) by

mut = ∇ · σ + A (τ a + τw) − mfk × u − mg∇η, (1)

where m is the ice mass per unit area, u is the ice velocity, σ is the internal
stress tensor, A is the ice area fraction, or concentration, τ a is the wind stress,
τw is the ocean stress (typically quadratic), f is the Coriolis parameter, k is an
upward pointing unit vector, g is the gravity acceleration and η is the ocean
surface elevation with respect to zero sea level. Note that the momentum
advection is being ignored in (1) and that the wind and ocean stresses are
multiplied by the ice concentration as suggested by Connolley et al. (2004).

Calculation of sea ice internal forces in LIM has customarily been done using
the VP approach of Hibler (1979), which, in practice, is a particular case of the
EVP formulation of Hunke and Dukowicz (1997). A description of the general
framework for the VP and EVP formulations of the ice internal stresses is
given in Hunke and Dukowicz (2002) and Hunke and Lipscomb (2006). For
completion, we reproduce here the key elements of such a framework. Let us
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denote σ11, σ22 and σ12 the components of the ice internal stress tensor, and
let

σ1 = σ11 + σ22, (2)

σ2 = σ11 − σ22, (3)

DD =
1

h1h2

(

∂

∂ξ1
(h2u) +

∂

∂ξ2
(h1v)

)

, (4)

DT =
1

h1h2

(

h2
2

∂

∂ξ1
(u/h2) − h2

1

∂

∂ξ2
(v/h1)

)

, (5)

DS =
1

h1h2

(

h2
1

∂

∂ξ2
(u/h1) + h2

2

∂

∂ξ1
(v/h2)

)

, (6)

where DD, DT and DS are the divergence, horizontal tension and shearing
strain rates, respectively, ξ1 and ξ2 are generalized orthogonal coordinates,
and h1 and h2 are the associated scale factors. With these definitions, the
stress tensor is given by

σ1 =
(

DD

∆
− 1

)

P, (7)

σ2 =
DT

e2∆
P, (8)

σ12 =
DS

2e2∆
P, (9)

where P is the ice compressive strength, e is the the ratio of principal axes
of the elliptical yield curve (see below) and ∆, a measure of the deformation
rate, is given by

∆ =

√

D2
D +

1

e2
(D2

T + D2
S). (10)

Note that the tensor given by (7) to (9) is entirely equivalent to the more
classic Reiner-Rivlin formulation used by Hibler (1979).

This rheology links the compressive stress, σ1, to the shearing stress, σs =
√

σ2
2 + 4σ2

12, by the following quadratic relation,

(σ1/P + 1)2 + e2(σs/P )2 = 1 (11)

which defines an elliptical yield curve. The ice compressive strength P is em-
pirically related to the ice thickness per unit area, h, and ice concentration,
A, by P = P ∗h e−C(1−A), where P ∗ and C are empirical constants.

In (7)-(9), a regularization is needed when ∆ goes to zero. A simple regulariza-
tion is to set a lower bound, ∆min, for ∆. For values of ∆ smaller than ∆min, sea
ice behaves like a linear viscous fluid undergoing very slow creep. As we shall
see below, if the plastic behavior of sea ice is to be accurately represented, ∆min
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must be sufficiently small (say 10−9 s−1 or less). Note that ∆min is directly
related to the ζmax parameter used in Hibler (1979) by ζmax = P/ (2∆min).

An alternative regularization was proposed by Hunke and Dukowicz (1997),
and it consists in introducing time dependence and an artificial elastic term
in (7)-(9), leading to the EVP formulation:

2Tσ1,t + σ1 =
(

DD

∆
− 1

)

P, (12)

2T

e2
σ2,t + σ2 =

DT

e2∆
P, (13)

2T

e2
σ12,t + σ12 =

DS

2e2∆
P, (14)

where T is a time scale that controls the rate of damping of elastic waves. Note
that, while (12)-(14) become (7)-(9) in the steady state, static flow in the EVP
rheology is represented by an elastic deformation, and so imposing a minimum
value of ∆ is no longer necessary. Hunke and Dukowicz (1997) showed that the
numerical solution of (1) in combination with (12)-(14) does indeed converge
to the VP stationary solution as long as the elastic time scale T is several
times smaller than the time scale of variation of the external forcing.

The components of the internal stress force are (Hunke and Dukowicz, 2002):

2F1 =
1

h1

∂σ1

∂ξ1
+

1

h1h2
2

∂(h2
2σ2)

∂ξ1
+

2

h2
1h2

∂(h2
1σ12)

∂ξ2
, (15)

2F2 =
1

h2

∂σ1

∂ξ2
−

1

h2
1h2

∂(h2
1σ2)

∂ξ2
+

2

h1h2
2

∂(h2
2σ12)

∂ξ1
. (16)

3 Discretizations of the model dynamics

Numerical stability analyses show that explicit time integration of the VP dy-
namics would be very expensive. Indeed, the critical time step for a stable ex-
plicit VP scheme is about 1 s for a 100-km grid, and scales as d2, where d is the
horizontal resolution (Hunke and Dukowicz, 1997). Given such a prohibitively
small explicit time step, an implicit method of integration is required. In LIM,
the implicit VP solver currently used closely follows the successive relaxation
method of Hibler (1979) with under-relaxation. For typical spatial resolutions
of 50 km to 100 km, daily wind forcing variability and time step, ∆t, of half a
day to a quarter of a day, a few hundred iterations per time step are required
for the relaxation scheme to converge. A type of predictor-corrector scheme
is used for the ice dynamics, whereby, starting from a solution at time t, an
intermediate solution is first evaluated at time t + ∆t/2. The solution at time
t + ∆t is then calculated with the non-linear terms in the internal stress and
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ice-ocean stress terms centred at t+∆t/2. For time steps of between 1 day and
a few hours, the solution thus obtained may be a rather crude approximation
of the real plastic flow, and the resulting stress state is likely to lie away from
the yield curve. Accuracy can be improved by repeating the predictor-corrector
calculation several times, say n, with a subcycling time step ∆t/n.

In contrast to the VP dynamics, the EVP dynamics can be solved explicitly
with time steps that can be few orders of magnitude larger than the maximum
permissible explicit time step for the VP formulation. In addition, this max-
imum time step scales linearly, rather than quadratically, with d, although it
also depends on the time scale T (Hunke and Dukowicz, 1997; Hunke and Lip-
scomb, 2006). The explicit numerical solution of the EVP equations is thus
significantly less expensive than implicit methods for the VP formulation.
Moreover, the convergence of the calculated stress state toward the elliptic
yield curve is relatively fast because all the non linear terms in (1) are reeval-
uated every time step. The EVP scheme is also easy to parallelize, and gives
a higher speedup factor (measured as the ratio between wall clock serial time
and wall clock parallel time) than parallel implementations of the VP method
(Hunke and Zhang, 1999).

3.1 B grid discretization

We have introduced three discretizations of the EVP dynamics in LIM. The
first discretization is the one formulated by Hunke and Dukowicz (2002).
These authors use a sophisticated variational method to calculate the in-
ternal stress force in discrete generalized orthogonal curvilinear coordinates.
Formally working on a B grid, and using bilinear approximations for the ice
velocities over a given grid cell, the components of the strain rate and internal
stress tensors are computed at the corners of each grid cell, thus requiring
four computations per tensor component per grid cell. As Hunke and Dukow-
icz (2002) emphasize, this approach greatly helps to mitigate checkerboard
mode solutions that are frequently generated on the B grid.

The discretization of Hunke and Dukowicz (2002) is computationally expen-
sive because it requires four calculations of each component of the strain rate
and internal stress tensors per grid cell. As an alternative, we have also imple-
mented in LIM a näıve, centred difference discretization on the B grid. This
second discretization is constructed as follows. On the B grid, consider a grid
cell whose central, or scalar, point has indexes i, j. As shown in Fig. 1, the in-
dexes of the four corners, or velocity points, of the cell are then i−1/2, j−1/2
(left, bottom corner), i + 1/2, j − 1/2 (right, bottom corner), i + 1/2, j + 1/2
(right, top corner), and i − 1/2, j + 1/2 (left, top corner). Analogously, the
indexes of the four mid points on the grid cell sides, or transport points, are
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i−1/2, j (left, centre point), i, j−1/2 (centre, bottom point), i+1/2, j (right,
centre point), and i, j + 1/2 (centre, top point). Denoting the grid elements
e1 = h1∆ξ1 and e2 = h2∆ξ2, where ∆ξ1 and ∆ξ2 are the spatial steps in the
two orthogonal directions, the components of the strain rate tensor are given
by

2 e1i,j e2i,j DDi,j =

e2i+1/2,j

(

ui+1/2,j+1/2 + ui+1/2,j−1/2

)

− e2i−1/2,j

(

ui−1/2,j+1/2 + ui−1/2,j−1/2

)

+

e1i,j+1/2

(

vi+1/2,j+1/2 + vi−1/2,j+1/2

)

−e1i,j−1/2

(

vi+1/2,j−1/2 + vi−1/2,j−1/2

)

,

(17)

2 e1i,j e2i,j DT i,j =

e2
2
i,j

(

ui+1/2,j+1/2 + ui+1/2,j−1/2

e2i+1/2,j

−
ui−1/2,j+1/2 + ui−1/2,j−1/2

e2i−1/2,j

)

−

e1
2
i,j

(

vi+1/2,j+1/2 + vi−1/2,j+1/2

e1i,j+1/2

−
vi+1/2,j−1/2 + vi−1/2,j−1/2

e1i,j−1/2

)

, (18)

2 e1i,j e2i,j DSi,j =

e1
2
i,j

(

ui+1/2,j+1/2 + ui−1/2,j+1/2

e1i,j+1/2

−
ui+1/2,j−1/2 + ui−1/2,j−1/2

e1i,j−1/2

)

+

e2
2
i,j

(

vi+1/2,j+1/2 + vi+1/2,j−1/2

e2i+1/2,j

−
vi−1/2,j+1/2 + vi−1/2,j−1/2

e2i−1/2,j

)

. (19)

All three quantities DDi,j, DT i,j and DSi,j are defined on the centre of the grid
cells. The components of the internal stress tensor, also defined on the grid
cell centres, can now be evaluated by solving (12), (13) and (14). The internal
stress force components, F1 and F2, which are defined on the grid cell corners,
can then be calculated as

4 e1i+1/2,j+1/2 e2i+1/2,j+1/2 F1i+1/2,j+1/2 =

e2i+1/2,j+1/2

(

σ1i+1,j+1 + σ1i+1,j − σ1i,j+1 − σ1i,j

)

+

1

e2i+1/2,j+1/2

(

e2
2
i+1,j+1/2

(

σ2i+1,j+1 + σ2i+1,j

)

− e2
2
i,j+1/2

(

σ2i,j+1 + σ2i,j

))

+

2

e1i+1/2,j+1/2

(

e1
2
i+1/2,j+1

(

σ12i+1,j+1 + σ12i,j+1

)

− e1
2
i+1/2,j

(

σ12i+1,j + σ12i,j

))

.

(20)
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4 e1i+1/2,j+1/2 e2i+1/2,j+1/2 F2i+1/2,j+1/2 =

e1i+1/2,j+1/2

(

σ1i+1,j+1 + σ1i,j+1 − σ1i+1,j − σ1i,j

)

−

1

e1i+1/2,j+1/2

(

e1
2
i+1/2,j+1

(

σ2i+1,j+1 + σ2i,j+1

)

− e1
2
i+1/2,j

(

σ2i+1,j + σ2i,j

))

+

2

e2i+1/2,j+1/2

(

e2
2
i+1,j+1/2

(

σ12i+1,j+1 + σ12i+1,j

)

− e2
2
i,j+1/2

(

σ12i,j+1 + σ12i,j

))

.

(21)

The discretization in time of both the bilinear and centred difference formu-
lations on the B grid follows that of Hunke and Lipscomb (2006), and is

2T
σ1

k+1 − σ1
k

∆t
+ σ1

k+1 =

(

Dk
D

∆k
− 1

)

P, (22)

2T

e2

σ2
k+1 − σ2

k

∆t
+ σk+1

2 =
Dk

T

e2∆k
P, (23)

2T

e2

σ12
k+1 − σ12

k

∆t
+ σk+1

12 =
Dk

S

2e2∆k
P, (24)

m
uk+1 − uk

∆t
=

F1
k+1 + A

(

τa1 + cDρo|uo − u
k|
(

uo − uk+1
))

+ mfvk+1 − mg
1

h1

∂η

∂ξ1
, (25)

m
vk+1 − vk

∆t
=

F2
k+1 + A

(

τa2 + cDρo|uo − u
k|
(

vo − vk+1
))

− mfuk+1 − mg
1

h2

∂η

∂ξ2
, (26)

where, for expediency, we have dropped spatial sub-indexes, the super-indexes
k and k + 1 denote variables evaluated at times k∆t and (k + 1)∆t, respec-
tively, where ∆t is the dynamics time step, cD is the ice-ocean drag coefficient,
ρo is the reference density of seawater and uo ≡ (uo, vo) is the surface oceanic
current. The ice compressive strength P is updated only every thermodynam-
ics and ice transport time step, which is normally orders of magnitude larger
than ∆t.

3.2 C grid discretization

For each sea ice-ocean coupling step, the B grid discretization requires inter-
polation of sea ice fields onto the ocean grid, which is of Arakawa C type,
and, likewise, surface oceanic fields need also to be interpolated onto the sea
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ice grid. Within the sea ice model, interpolation of sea ice drift rates onto the
midpoint of grid cell sides is also required before transport of sea ice scalars
is calculated. Such interpolations would be avoided if a C grid were used in
the calculation of the sea ice dynamics, which is why we have also formulated
a centred difference version of the EVP dynamics (see Kantha and Clayson
(2000) for a C grid, centred difference formulation of the VP case). Another
important reason why a C grid is desirable is that, with no slip boundary
conditions, transport of scalar properties through narrow straits and passages
with a width of just one single grid cell is possible on a C grid, while it is
precluded on a B grid.

Using the same indexing conventions as for the B grid, the discretization of
the strain rate tensor is

e1i,j e2i,j DDi,j =

e2i+1/2,j ui+1/2,j − e2i−1/2,j ui−1/2,j + e1i,j+1/2 vi,j+1/2 − e1i,j−1/2 vi,j−1/2, (27)

e1i,j e2i,j DT i,j = e2
2
i,j

(

ui+1/2,j

e2i+1/2,j

−
ui−1/2,j

e2i−1/2,j

)

−e1
2
i,j

(

vi,j+1/2

e1i,j+1/2

−
vi,j−1/2

e1i,j−1/2

)

,

(28)

e1i+1/2,j+1/2 e2i+1/2,j+1/2 DSi+1/2,j+1/2 =

e1
2
i+1/2,j+1/2

(

ui+1/2,j+1

e1i+1/2,j+1

−
ui+1/2,j

e1i+1/2,j

)

+e2
2
i+1/2,j+1/2

(

vi+1,j+1/2

e2i+1,j+1/2

−
vi,j+1/2

e2i,j+1/2

)

.

(29)

Note that the components DD, DT , σ1 and σ2 are all defined on the cell cen-
tres, while DS and σ12 are defined on the corners. The internal stress force
component F1 is located on u points and F2 on v points. In a C grid, the
velocity components are ideally located for the calculation of the components
of the strain rate and the internal stress tensors, requiring fewer interpola-
tions than on the B grid. As the invariant ∆ is used to compute the internal
stress components, it needs, however, to be computed both on cell centres and
corners, and so, for the purpose of the calculation of ∆, DD and DT must be
interpolated onto cell corners, while DS must be interpolated onto cell centres.
The expression for DD on cell corners is

(e1i,j+1/2 + e1i+1,j+1/2)(e2i+1/2,j + e2i+1/2,j+1)DDi+1/2,j+1/2 =

e2i+1/2,j+1

(

e1i+1,j+1/2 DDi,j + e1i,j+1/2 DDi+1,j

)

+

e2i+1/2,j

(

e1i+1,j+1/2 DDi,j+1 + e1i,j+1/2 DDi+1,j+1

)

, (30)

with an analogous formula for DT i+1/2,j+1/2, while the centred value of DS is
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given by

4 DSi,j = DSi−1/2,j−1/2 + DSi+1/2,j−1/2 + DSi+1/2,j+1/2 + DSi−1/2,j+1/2. (31)

The internal stress force components on the C grid are

2 e1i+1/2,j e2i+1/2,j F1i+1/2,j =

e2i+1/2,j

(

σ1i+1,j − σ1i,j

)

+
1

e2i+1/2,j

(

e2
2
i+1,jσ2i+1,j − e2

2
i,jσ2i,j

)

+

2

e1i+1/2,j

(

e1
2
i+1/2,j+1/2σ12i+1/2,j+1/2 − e1

2
i+1/2,j−1/2σ12i+1/2,j−1/2

)

, (32)

2 e1i,j+1/2 e2i,j+1/2 F2i,j+1/2 =

e1i,j+1/2

(

σ1i,j+1 − σ1i,j

)

−
1

e1i,j+1/2

(

e1
2
i,j+1σ2i,j+1 − e1

2
i,jσ2i,j

)

+

2

e2i,j+1/2

(

e2
2
i+1/2,j+1/2σ12i+1/2,j+1/2 − e2

2
i−1/2,j+1/2σ12i−1/2,j+1/2

)

. (33)

Time stepping of the internal stress tensor on the C grid is identical to (22)
to (24), but with σ1 and σ2 calculated on the centre of the grid cells and σ12

calculated on the corners. The momentum equation is now solved using

mu
uk+1 − uk

∆t
=

F1
k+1+Au

(

τa1 + cDρo|uo − u
k|u

(

uo − uk+1
))

+mufuv
k+c
u −mug

1

h1

∂η

∂ξ1
,

(34)

mv
vk+1 − vk

∆t
=

F2
k+1+Av

(

τa2 + cDρo|uo − u
k|v
(

vo − vk+1
))

−mvfvu
k+1−c
v −mvg

1

h2

∂η

∂ξ2

,

(35)

where the subscripts u and v represent a variable defined on, or interpolated
onto, u and v points, respectively, and where c is alternatively equal to 1 or 0.
On odd iterations, c = 0 and (34) is solved first. Then, uk+1 is interpolated onto
v points and is used to solve (35). On even iterations, c = 1 and (35) is solved
first. The updated value of v is then interpolated onto u points to calculate
the Coriolis term of (34). This procedure is equivalent to solving the Coriolis
term semi-implicitly. Note that, unlike on a B grid, an implicit treatment of
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the Coriolis term on a C grid would require the simultaneous solution of (34)
and (35) all across the domain, which would be computationally expensive.

3.3 Boundary conditions

The way in which boundary conditions are dealt with also differs from one
grid to another. A no-slip condition is prescribed on land boundaries. On the
B grid, both components of the velocity vector are defined on the coast, and
their value is therefore simply set to zero on land points. On the C grid, in
contrast, the normal velocity is defined and set to zero at the coast, but the
tangential velocity is not defined. To impose a zero tangential velocity at the
coast, a mirror velocity point is defined inland of the boundary, and its value is
set to the opposite of the tangential velocity component seaward of the coast,
thus delivering a no slip condition on the coast.

On a coarse resolution B grid with a no slip boundary condition, plug flows
along lateral boundaries are poorly reproduced. This can adversely affect the
transport of sea ice properties if, as it is customary, longshore advective ve-
locities are calculated as the average of the longshore velocity component on
the coast, which is zero, and the nearest offshore velocity component. To alle-
viate this problem, the longshore component of the advective velocity on the
B grid is prescribed to be equal to the nearest offshore velocity component.
This boundary condition for advection helps reducing the differences in ice
transport and thickness between B grid and C grid simulations, and makes
integrations carried out on either grid more easily comparable.

3.4 Linear plastic wave propagation in grids B and C

In ocean modeling, the problem of geostrophic adjustment in finite difference
shallow water equations has traditionally provided a useful framework for
the intercomparison of discrete staggered grids (Randall, 1994). Interestingly,
a parallel analysis can be carried out for the linearized sea ice momentum
equations in the case of the cavitating fluid approximation, which consists in
setting the parameter e in (8) and (9), or (13) and (14), to infinite, so that
sea ice shear stresses vanish (Flato and Hibler, 1992). Assume a motionless
sea ice cover of uniform thickness per unit area h0 and concentration A0.
Let us assume that the ice is experiencing compression and that all external
forcing is zero. For time scales much larger than the damping time scale for
sea ice elastic waves, T , the linearized sea ice momentum equations under the
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cavitating fluid approximation are :

m0u
′

t = −∇P ′ − m0fk × u
′, (36)

P ′

t = − (1 + CA0) P0 ∇ · u′, (37)

where the primed quantities indicate small departures from the unperturbed
values and m0 and P0 are the unperturbed sea ice mass per unit area and
compressive sea ice strength, respectively. Equations (36) and (37) are formally
equivalent to the shallow water equations linearized about a resting state
(Randall, 1994). These equations admit free wave solutions with dispersion
relation

(

σ

f

)2

= 1 + λ2
(

k2 + l2
)

, (38)

where σ is the frequency of the wave, k and l are wavenumbers in the x and
y directions, respectively (assuming the use of Cartesian coordinates), and λ
is a deformation radius given by

λ = c f−1 =

(

(1 + CA0)P ∗e−C(1−A0)

ρi

)
1

2

f−1, (39)

where c is the phase speed of linear compressive inertia-plastic waves in sea
ice and ρi is the ice density. For a typical central Arctic sea ice concentration
in winter of A0 = 1 and values used in our experiments of P ∗ = 20 × 103 N
m−2, C = 20 and ρi = 900 kg m−3, we obtain a phase velocity of plastic waves
of 21.6 cm s−1 and a deformation radius of about 148 km. A similar analysis
for the propagation of uniaxial plastic waves in sea ice has been carried out
by Gray (1999).

The numerical equivalent of the dispersion relation (38) for the shallow water
equations in different types of Arakawa grids was derived by Arakawa and
Lamb and published by Randall (1994). Here we include the expressions for
the B and C grids, which, assuming a square grid of cell size d, are :

(

σ

f

)2

= 1 + λ2 1 − cos(kd) cos(ld)

d2/2
(40)

and
(

σ

f

)2

=
1 + cos(kd) + cos(ld) + cos(kd) cos(ld)

4
+ λ2 sin2(kd/2) + sin2(ld/2)

d2/4
,

(41)
respectively. For the LIM applications to be discussed below, the ratio of
plastic deformation radius to grid size, λ/d, lies between 2 and 3. From Fig.
2, which displays contours of normalised frequency σ/f as a function of kd
and ld for the case λ/d = 2, it is easy to see that the latter dispersion relation
is closer to the exact relation, (38), than the former. In particular, on the C
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grid, σ grows monotonically with k and l, and the associated group velocity
is always positive, as it is in the continuous case, while, on a B grid, σ is not
monotonic, and group velocity components are negative whenever kd or ld
become larger than π/2. Based on these considerations, the performance of
the C grid appears to be superior to that of the B grid at resolutions of 75 km
or less, thus providing additional motivation for using a C grid sea ice model.

4 Results and discussion

All the simulations presented here have used the 2◦ global configuration of
the model OPA-LIM described by Timmermann et al. (2005), including the
forcing. The grid is tripolar, with all three poles located on land, and its mini-
mum resolution is about 65 km in the Arctic and 50 km in the Antarctic. Fram
Strait is resolved with 5 grid cells, while Bering Strait had to be artificially
widened to 2 grid cells. Parry Channel, the strait connecting the Beaufort Sea
and Baffin Bay, is represented by a 2 cell-wide passage through the Canadian
Archipelago. Wind stress is computed with a drag coefficient of 1.4 × 10−3,
while ice-ocean drag uses a coefficient of 5.5 × 10−3. No turning angle is ap-
plied for the calculation of air-ice, air-ocean or ice-ocean stresses. The sea ice
strength parameter is P ∗ = 20 × 103 N m−2, and the lead closing parameter
h0 = 0.3 m.

The ocean model has a time step of 5760 s (96 minutes), which requires 15
ocean time steps per day, and is coupled to the sea ice model every five time
steps. The dynamics time step is 120 s and the elastic time scale T is 40 times
larger to ensure stability. The ocean model is initialized with temperature
and salinity fields from the World Ocean Atlas (Levitus, 1982), while the sea
ice model initial conditions are set to uniform sea ice thickness of 3 m in
the Arctic and 1 m in the Antarctic. All experiments started from the same
1948-1959 spin-up integration on a B grid and with VP ice dynamics used by
Timmermann et al. (2005), but with ∆min = 2× 10−9 s−1 instead of 2× 10−8

s−1.

The control run was conducted with the EVP formulation of the sea ice dy-
namics on a C grid presented in Section 3.2. The results from this experiment
do not greatly differ from the validation presented in Timmermann et al.
(2005), and so we restrict our analysis to only a few salient features.

The Arctic sea ice extent, defined as the total oceanic area where the ice
concentration is greater than, or equal to, 15%, oscillates from about 16 ×
106 km2 in March to 10.5 × 106 km2 in September, in good accordance with
observations. In summer, however, ice concentrations remain above 90% in
the central Arctic, and relatively heavy ice covers persist in the Greenland
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and Barents Seas at times when observations show ice-free conditions. Ice
thickness varies from more than 6 m along the Canadian Arctic Archipelago
to 4 m in the central Arctic, and about 2 m over the western Siberian shelf (Fig.
3, top panels). A persistent feature of the model is that, compared with the
observations of Bourke and Garrett (1987), it tends to somewhat overestimate
the ice thickness along the Siberian coast: by about 1 m in the Kara Sea, 1.5
m in the Laptev Sea, and 2 m in the East Siberian Sea.

The two main patterns of the Arctic ice current system, namely the Beaufort
gyre and the transpolar ice drift are present (Fig. 3, bottom left panel) but
they are weaker than in data produced by the CERSAT from QuikSCAT
and SSM/I drift vectors (Ezraty and Piollé, 2004). For the comparison, we
interpolate monthly drift vectors from a 62.5 km polar stereographic grid to
our simulation grid and we average data over all winter seasons (October to
April) from 1992 to 2001 (Fig. 3, bottom right panel). Simulated velocities
along the Alaskan North Coast in winter are about 0 − 2 cm s−1 instead of
1 − 5 cm s−1 in observations, and the maximum is located nearer to Bering
Strait. The simulated transpolar drift is also weaker, 1 − 3 cm s−1 instead of
2−4 cm s−1, and its location is influenced by the absence of the Franz Joseph
Archipelago in our configuration. This weaker drift is partly due to the small
ratio between the atmospheric drag coefficient (1.4× 10−3) and the ice-ocean
drag coefficient (5.5 × 10−3).

Following Martin and Gerdes (2007), we have computed histograms of monthly
mean ice drift speed in the central Arctic basin to characterise the ice motion.
For this calculation, the region of interest is the area located north of 70◦

N between 50◦ E and 270◦ E, and north of 80◦ N between 270◦ E and 50◦

E, as shown on the third panel of Fig. 3. The left panel of Fig. 4 shows
histograms for March and September, both of which compare rather well with
the observational estimates used by Martin and Gerdes (2007). A mode at
very low speed exists for both months. In March, sea ice speeds are mainly
below 0.05 m s−1, and 45% of them are actually smaller than 0.01 m −1s. In
September, ice tends to be faster but, still, it almost nowhere reaches 0.10 m
s−1. While these results are encouraging, a more detailed analysis should be
conducted to ascertain the role that anomalous features of the ice distribution,
such as the excess thickness along the Eurasian coast, play in modifying the
flow of sea ice. The mean ice export through Fram Strait is about 0.11 Sv, in
the upper limit of observational estimates.

In the Southern Ocean, the ice extent oscillates between 5×106 km2 in Febru-
ary and 19 × 106 km2 in August, values which are close to the observational
ones. Sea ice concentrations are also quite realistic, except along coastlines,
where polynya formation cannot be appropriately represented because of the
coarse resolution of the model (Fig. 5, top panels). The winter mean ice veloc-
ity field for the period 1979-1997 (March to November) shows a fairly strong
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westward drift of 2 − 8 cm s−1 all around Antarctica, and an offshore east-
ward drift of about 2− 6 cm s−1 (Fig. 5, bottom left panel). This is similar to
the circulation obtained by averaging SSM/I monthly mean ice drift from the
Atlas of Antarctic Sea Ice Drift (Schmitt et al., 2004) over the same period
(Fig. 5, bottom right panel). Observation vectors have been interpolated on
the simulation grid for comparison. The Weddell, Ross and Kerguelen gyres,
with drift speeds of 2 − 5 cm s−1, are all represented by the model, although
the observed northward ice drifts in the Weddell and Ross regions are wider
and somewhat stronger than in our simulation, presumably at least partly
because of deficiencies in the surface wind stress. The histogram of velocities
for the entire Southern Ocean reveals a sea ice cover that is significantly faster
than its central Arctic counterpart. However, the ice speed mode is still in the
vicinity of 0.01 m s−1 all year round.

The results of the EVP simulation on a C grid are quite encouraging. However,
before adopting this formulation as standard, it is important to compare those
results with output from integrations that use other discretization methods,
as discussed in Section 3. To this end, we have conducted a number of 5-year
experiments starting in 1960. These experiments are as follows. Experiment
EVPB1 uses the EVP discretization of Hunke and Dukowicz (2002) on a B
grid. Experiment EVPB2 is as EVPB1, but with the simpler, centred difference
discretization outlined in Section 3.1. The third experiment, EVPC1, uses
the centred difference, C-grid formulation of Section 3.2, the same as in the
control run. A second C grid experiment, denoted EVPC2, was performed in
which all straits and passages with a width of only one grid point were closed
to ice advection. Finally, three experiments were also carried out using the
VP, B-grid discretization of Fichefet and Morales Maqueda (1997), and these
are all collectively referred to as VPB experiments. The first VP experiment
(VPB1) uses ∆min = 2 × 10−9 s−1 and 1 subcycling time step, as in the spin-
up integration. The second experiment (VPB2) is like the first, but using 3
subcycling time steps. The third experiment (VPB3) uses ∆min = 2×10−8 s−1

and 3 subcycling time steps. The impact of the different methods of solution
of the sea ice dynamics on the Southern Ocean ice cover are minuscule, and
so we will concentrate on results for the Northern Hemisphere.

We start by examining the ability of the VP discretization, as implemented
in Fichefet and Morales Maqueda (1997), to approximate a plastic flow. For nu-
merical convergence reasons, the VP dynamics of Fichefet and Morales Maqueda
(1997) required the use of a relatively large value of ∆min, namely, 2×10−8 s−1.
This figure is probably an order of magnitude too large for a limiting defor-
mation rate, and leads to an excessively viscous ice dynamics. In contrast, the
EVP dynamics work well with arbitrarily small values of ∆min, as states with
small deformation rates can be gently achieved through progressive elastic re-
laxation. To evaluate the impact of a relatively high value of ∆min on sea ice
simulations with the VP rheology, we carried out three experiments. They dif-

15



fer in the minimum value of ∆min used and also in the number of subcycling
time steps for the dynamics (subcycling consists in solving the momentum
equation with a time step smaller than the one used for ice thermodynamics
and transport).

To see how well the elliptic relation between principal stress components is
fulfilled, we compute the quadratic function (σ1/P + 1)2 + e2(σs/P )2 from
(11) and check how close it is to 1. A greater value corresponds to a state
out of the elliptic yield curve, while a smaller value indicates a state inside
the ellipse. With one subcycling time step, the VP formulation does a very
poor job at representing the yield curve. In the example shown in the left
panel of Fig. 6, we can see large regions of the Arctic are in a stress state
located outside the ellipse. Ellipticity is partly recovered when 3 subcycling
time steps are applied (central panel of Fig. 6), but there are still situations
when the quadratic expression on the left hand side of (11) is greater than
1. Using 3 subcycling time steps and a higher value of ∆min further improves
the representation of the elliptical yield curve thanks to a better convergence
of the numerical scheme, but it generates more creep flow, where the value of
quadratic function is lower than 1, as shown in the right panel of Fig. 6. More
elaborated implicit schemes can be used to improve the convergence while
using small values of ∆min (Zhang and Hibler, 1997; Zhang and Rothrock,
2000).

In terms of the representation of the Arctic winter mean (December to March)
ice thickness geographical distribution, the impact of using 3 subcycling times
steps (VPB2) instead of just 1 (VPB1) is a diminution of more than 0.15
m along the Canadian Arctic Archipelago, in the central Beaufort Sea and
in the Laptev Sea (Fig. 7, left panel). In contrast, there is more ice along
the eastern coast of Greenland. Differences are even more marked between
experiments VPB3 and VPB2, which differ by the magnitude of ∆min (Fig.
7, right panel) . There is a sensible decrease in both the horizontal gradients
and spatial mean value of the ice thickness across the entire central Arctic
basin in VPB3 compared to VPB2. Ice is ∼10% thinner in the central Arctic
and ∼10% thicker in the Greenland and northern Barents seas. This is so
because the more viscous dynamics of VPB3 allows for a winter flow in the
central Arctic that is 5-10% stronger than in VPB2, and causes as well an
easier transport of ice across Fram Strait and Parry Channel.

The differences between the results of the three VPB experiments illustrate
the importance of guaranteeing that plastic ice flow is well represented. This
requires the use of relatively small values of ∆min in the VP dynamics, which
results in a fairly slow numerical convergence toward the plastic solution. In
contrast, sensitivity tests with the EVP rheology show that a small value
of ∆min (2 × 10−12 s−1, say) can be used without in any way compromising
convergence. The EVP solution is also not affected by the particular value
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of T chosen, as long as it is several times smaller than the thermodynamics
and transport time steps. Thus, with suitable ∆min and T values, ice internal
stress states calculated with the EVP formulation tend to be much closer to
the elliptical yield curve than those determined using the VP rheology.

The aim of experiments EVPB1, EVPB2, EVPC1 and EVPC2 was to examine
the influence of the spatial discretization on EVP solutions. Overall, there is
a reassuring similarity between the results of all four experiments, although
we note that the B grid tends to develop checkerboard patterns in certain
variables, such as the ice divergence field. In most cases, this computational
mode does not appear to have a direct impact on the ice dynamics, but it
could be a problem if deformation rates are used in the calculation of the
ice thickness redistribution. The use of a bilinear approach à la Hunke and
Dukowicz (2002), rather than the more simple centred difference formulation
we have proposed in Section 3.1, helps attenuating the checkerboard mode
thanks to the spatial averaging involved in the calculation of the internal
stress force. This numerical mode cannot appear on a C grid.

An example of instantaneous shearing strain rates is shown in Fig. 8 for the
EVPB1, EVPB2 and EVPC2 simulations. The shearing strain rate patterns
look similar in all three experiments and show how the EVP dynamics is
capable of creating spatial linear and relatively narrow features along which
high ice deformation occurs. This linear features act as divides between regions
where the ice motion is nearly rigid. Looking into these features more closely,
we note that their detailed structure depends both on the discretization and
on the relative orientation of linear features and the numerical grid. The B
grid with the simple EVP discretization (EVPB2) produces the narrowest
features (just two cells wide) when they are aligned with the grid. However,
as it might have been expected, checkerboard patterns in shear stain rates
are very prominent in this discretization, while they are less so in the cases
EVPB1 and EVPC2. Nevertheless, these differences do not seem to influence
the ice drift very much. Ice drift patterns are fairly similar in all simulations.

Winter mean sea ice thickness differences between EVPB1 and EVPB2 are
fairly small except in the Lincoln Sea and along Parry Channel (Fig. 9, right
panel). These very localized differences do not seem to have a significant large-
scale impact, and so we have not investigated their origin in any great detail.
The ice volume export through Fram Strait is virtually the same in both
experiments: about 0.11 Sv, with a standard deviation of 0.08 Sv.

Of perhaps greater interest are the differences between the B grid and C grid
integrations. The left panel of Fig. 10 shows the difference in winter mean ice
thickness between experiments EVPC1 and EVPB1. Ice in the central Arctic
tends to be thinner in the EVPC1 experiment, with the exception of a few
choke points, such as Parry Channel and the passages between Eurasia and the
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New Siberian Islands, Severnaya Zemlya and Novaya Zemlya. These passages
are represented with just one grid point in our model, and, therefore, no ice
can flow through them when a B grid is used. As a result, ice simulated in
EVPB1 tends to accumulate on the upstream side of these passages and, thus,
be thicker than it would be on a C grid, while, downstream of the passages, the
ice tends to be generally thinner. This is confirmed by the results of a second
C grid experiment, EVPC2, in which all one cell straits were closed to ice
transport. The right panel of Fig. 10 shows that the differences in winter sea
ice thickness between this experiment and EVPB1 have sensibly decreased on
both sides of the narrow central Arctic passages. In both EVPC1 and EVPC2,
ice area and volume exports across Fram Strait are about 5% smaller than in
EVPB1. In contrast, ice circulation in the Beaufort Gyre is slightly stronger
(+5%), and southward velocities along the east Greenland coast are around
10% larger, which is consistent with the existence of the band of thicker ice
one can observe all along the eastern Greenland coast, and that counters the
larger onshore component of the Coriolis force associated with the 10% higher
velocities.

5 Conclusions

The elastic-viscous-plastic (EVP) sea ice rheology formulation of Hunke and
Dukowicz (2002) has been incorporated in the Louvain-la-Neuve sea-Ice Model,
version 2 (LIM2), which has until now used a viscous-plastic (VP) sea ice
dynamics (Hibler, 1979). Two centred difference discretizations of the EVP
rheology have also been introduced, one defined on a B grid and the second
defined on a C grid. These centred difference formulations help reducing com-
putation costs for the sea ice dynamics by about a factor of 2 compared to
the more sophisticated approach of Hunke and Dukowicz (2002).

Because LIM runs normally coupled to a C grid ocean model (the Nucleus
for European Modelling of the Ocean, NEMO), we have retained the centred
difference C grid formulation of the EVP dynamics as the most suitable for
LIM. The performance of the coupled ice-ocean model has been illustrated
with results from a long simulation spanning the years 1960 to 2001. The
model reproduces well the sea ice concentration, thickness and velocity fields
in both hemispheres.

We have conducted a number of short experiments to test the sensitivity of
the model to the use of the different implementations of the ice rheology. We
have first compared the performance of the original VP formulation in LIM
with the new EVP implementation. Attaining appropriate plastic behavior
with the VP dynamics requires the use of subcycling and a fairly small value
of ∆min (on the order of 2 × 10−9 s−1 or less), which hinders convergence of
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the relaxation algorithm used by the VP method. In contrast, computing time
is not affected by the value of ∆min when using the EVP formulation.

We have also intercompared EVP simulations with different spatial discretiza-
tions. The two B grid discretizations we have investigated, namely, the one by
Hunke and Dukowicz (2002) and the simplified discretization described in Sec-
tion 3.1, lead both to very similar results, at least for relatively coarse spatial
model resolutions. Disparities in ice thickness between the centred difference
formulations on B grid and C grid are largely associated with slower ice trans-
port through narrow straits and along coastlines on the B grid. There is also
a tendency for the C grid formulation to produce slightly higher ice velocities
in the central Arctic, but also a reduced ice export through Fram Strait.

In summary, the new EVP formulation on a C grid implemented in LIM is able
to produce realistic ice fields in both hemispheres. In addition, the EVP ice
dynamics approaches plasticity better and numerically more efficiently than
the previous VP implementation. We therefore recommend the use of the C
grid EVP formulation of the ice dynamics in future LIM applications.
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Fig. 1. Centred difference grid showing the indexing convention utilised in the paper.
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Fig. 2. Contours of normalised frequency σ/f as a function of kd and ld from
equations 40 (left) and 41 (right) with λ/d = 2.
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Fig. 3. Simulated Arctic mean sea ice thicknesses in March (top left) and September
(top right) for the period 1965-2001 and winter mean sea ice velocities (October to
April) for the period 1992-2001 simulated by the model (bottom left) and from
observations (bottom right). The black line in the third panel bounds the region
used to calculate velocities distributions.
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Fig. 4. Left: Histogram of monthly mean ice velocities in the central Arctic (as
delimited by the black line shown in the third panel of Fig. 3). Solid line for March
and discontinuous line for September. Right: Histogram of monthly mean velocities
in the Southern Ocean. Solid line for September and discontinuous line for March.
Drift speeds below 0.5 cm s−1 have not been taken into account. The bin width is
1 cm s−1, beginning at 0.5 cm s−1. The period of interest is 1965-2001.

24



10

8

6

4

2

0

[cm/s]
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

12

10 cm/s

Fig. 5. Simulated Southern Ocean mean sea ice concentration in March (top left) and
September (top right) for the period 1965-2001 and winter mean sea ice velocities
(March to November) for the period 1979-1997 simulated by the model (bottom
left) and from observations (bottom right).

Fig. 6. Left hand side of (11) calculated from instantaneous stress states on a simu-
lation day of September 1964 in experiments VPB1 (left), VPB2 (centre) and VPB3
(right). Values larger than 1.2 (black) correspond to states located out of the ellipse,
values between 0.8 and 1.2 (grey) correspond to states near the ellipse and values
smaller than 0.8 (light grey) correspond to states inside the ellipse.
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Fig. 7. Mean ice thickness differences between experiments VPB2 and VPB1 (left)
and between experiments VPB3 and VPB2 (right) in winter (October to December
average for 1963 and 1964).
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Fig. 8. Instantaneous shearing strain rates in a simulation day of October 1964 with
experiments EVPB1 (left), EVPB2 (centre) and EVPC2 (right).
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Fig. 9. Mean ice thicknesses in experiment EVPB1 (left) and mean ice thickness
differences between experiments EVPB2 and EVPB1 (right) in winter (October to
December average for 1963 and 1964).
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Fig. 10. Mean ice thickness differences between experiments EVPC1 and EVPB1
(left) and between experiments EVPC2 and EVPB1 (right) in winter (October to
December average for 1963 and 1964).

27


