
A flux-limiting wetting-drying method for

finite-element shallow-water models, with

application to the Scheldt Estuary

Olivier Gourgue∗, Richard Comblen, Jonathan Lambrechts,
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Abstract

We present a flux-limiting wetting-drying approach for finite element discretizations

of the shallow water equations using discontinuous linear elements for the elevation.

The key ingredient of the method is the use of limiters for generalized nodal fluxes.

This method is implemented into the Second-generation Louvain-la-Neuve Ice-ocean

Model (SLIM), and is verified against standard test cases. The method is further

applied to the wetting and drying of sand banks in the Scheldt Estuary, which is

located in northern Belgium and the sourthern Netherlands. The results obtained for

both the benchmarks and the realistic problem illustrate the accuracy of the method

in describing the hydrodynamics in the vicinity of dry areas. In particular, the method

strictly conserves mass, and there is no transport through dry areas.
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1 Introduction

Most of the world’s coastal seas are linked to embayments, estuaries and lagoons.

A large number of these shallow water bodies experience tidal oscillations of the free

surface. Consequently, the extent of areas subject to alternating wetting and drying

(the so-called tidal flats) can be as large as the permanently-submerged areas. The

influence of the tidal flats is therefore of a crucial importance, so the wetting and

drying processes need to be accurately simulated. Furthermore, tidal flats play a very

important role in the ecosystem of these areas. The ability to represent the wetting

and drying processes is thus a key feature in coastal eco-hydrodynamic modeling.

The wetting-drying methods can be classified into two main categories: the de-

formed mesh or Lagrangian methods and the fixed mesh or Eulerian methods. Early

studies showed the potential of the deformed mesh strategy [52, 44], where the nodes

on the boundary between wet and dry zones move following the front. But since the

nodal coordinates vary at each time step, an important part of the model is devoted

to the mesh adaptation, making this approach rather expensive. Consequently, it was

mostly restricted to idealized test cases [16, 48], while the Eulerian fixed mesh strat-

egy has been much widely used in realistic applications. The Eulerian methods can

also be divided into two main approaches: the flux-limiting methods and the so-called

modified equation methods. With the flux-limiting strategy, only the discrete alge-

braic form of the hydrodynamic equations is modified. With the modified equation

strategy, the original continuous form of the partial differential equations is modified.

The earliest flux-limiting method was suggested by Leendertse [42] for a two-

dimensional finite difference model. This type of approach turns off/on the mesh cells

when the water thickness rises below/above a threshold value, limiting or cancelling

out the water fluxes on dry cells in order for the water depth to remain positive. How-

ever, an artificial slope of the free surface is formed in the dry areas because the water

level is arbitrarily fixed at the bed elevation. This generates an extra pressure gradient

term, which may lead to unstable behavior and has to be treated specifically. Nev-

ertheless, this flux-limiting approach proved very popular in two-dimensional [7] and

three-dimensional [43, 33, 63, 47, 1] finite difference models. The review of Balzano [7]

is particularly extensive, gathering ten different methods. The flux-limiting approach

is also popular in finite volume modeling [8, 14, 59]. However, there are only a few

examples of finite element models using such a method [41].

The first method among the modified equation approach is the porosity method

[31, 26], in which the hydrodynamic equations are modified to allow water flow in a

porous layer below the bed. The water depth can therefore be negative. This method

avoids handling separately dry or wet cells, but allows unphysical water fluxes through

dry zones. Therefore, the total mass of water within wet areas is not constant in time

and conservation is then only ensured in a weak sense. Another objection to the
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porosity method is the lack of physical description of the so-called porous layer. It is

no more the case with the capillary method that uses capillarity effect properties to

describe wetting and drying processes [55, 34]. Finally, the last method among the

modified equation approach is the damping or kinematic method. The processes like

rotation and advection are neglected when the water column becomes very shallow

such that a simple balance between external pressure gradient and friction prevails

[32, 13, 25]. However, ensuring that the water depth remains positive by modifying

the equations leads to spurious mass flux through dry areas.

The selection of the suitable Eulerian method is difficult and in fact should depend

on the flow under study. The problem to be tackled is highly nonlinear. Therefore,

implicit time-stepping schemes are difficult to implement. The modified equation

approach has a straightforward linearization that enables the use of a semi-implicit

time-stepping. However it may lead to strong unphysical water fluxes, especially when

using large time steps. Iterative solutions can be considered for both methods, but the

convergence of such schemes requires the use of rather small time steps. In this paper,

we focus on explicit time-stepping. As explicit methods are involved, the flux-limiting

approach has the great advantage that the physics is not modified in the vicinity of

dry areas.

The objective of this paper consists in developing a new flux-limiting finite-element

method for the shallow water equations that uses discontinuous linear elements for

the elevation. This method is implemented within the Second-generation Louvain-la-

Neuve Ice-ocean Model (SLIM1). The discontinuous finite element method appears

to be very attractive for solving shallow water flows [3, 51, 49, 21, 4]. It combines

advantages of both continuous finite element methods and finite volumes. It is known

to be especially efficient for hyperbolic conservation laws [18], and robust solutions

are known to handle second-order diffusive operators [6, 50]. Due to the discontinuous

character of the solution, degrees of freedom are not shared between elements. Parallel

implementation is then straightforward, and h- and p-adaptation procedures can be

easily designed, as an accurate error estimator is simply given by the inter-element

jumps of the solution [15, 9]. High order version of the scheme can be defined [46,

28], requiring equally accurate description of the geometry [11], and giving excellent

dispersive and dissipative behavior [2, 10]. Efficient slope limiters allow for the design

of shock capturing version of the scheme [17, 36, 15].

This paper is structured as follows. The shallow water equations, the wetting-

drying method and the model in which it is implemented are described in Section 2.

Next, in order to verify the method, the results obtained on the Balzano, Leclerc and

Thacker test cases are shown in Section 3. The modeling of the wetting and drying

processes occuring in the Scheldt Estuary is then presented in Section 4. Finally,

conclusions are drawn in Section 5.
1 http://www.climate.be/SLIM
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2 Basic equations and numerical techniques

The shallow water equations are obtained from the incompressible Navier-Stokes

equations by assuming that the pressure is in hydrostatic balance and that the density

of the fluid is constant, and by averaging the equations along the vertical direction.

Coastal flows are well represented by those equations if the water column is well mixed.

The convective formulation of the shallow water equations reads:

∂η

∂t
+ ∇ ·

(
(h+ η) u

)
= 0 , (1)

∂u

∂t
+
(
u ·∇)u+ fk × u+ g∇η =

1
H

∇ ·
(
Hν
(
∇u

))
+
τ s − τ b

ρH
, (2)

where t is the time and ∇ is the horizontal gradient operator; η is the elevation of the

free surface above a reference level, and u is the horizontal velocity vector averaged

over the water column; η and u are the state variables that depend on time and

position; H = h + η is the actual water depth, where h is the reference height of the

water column; f = 2ω sinφ is the Coriolis parameter, where ω is the angular velocity of

the Earth and φ is the latitude, and k is the unit upward vector; g is the gravitational

acceleration; ν is the horizontal eddy viscosity; τ s and τ b are the surface and bottom

stress vectors, respectively, and ρ is the density of water. This formulation can be

related to any coordinate system, when the horizontal plan is defined as normal to

the gravity. In what follows, we always refer to u as the velocity vector, omitting the

reference to the average over the water column.

In order to obtain a well-posed problem, suitable boundary conditions have to be

imposed along the boundary of the domain. Including viscosity or not will change

the number of required boundary conditions [58]. Finally, an initial state has to be

provided. However, due to frictional and viscous dissipation, and, in some cases, to

open boundary conditions, its influence becomes negligible after some time. So any

arbitrary initial condition can be considered for long term simulations.

A major issue for the shallow water equations in coastal modeling is their inability

to deal with dry areas, where the water height is theoretically zero. The role of a

wetting-drying method is to allow the appearance and disappearance of dry areas.

The aim of this paper is to describe and verify a wetting-drying method that modifies

neither the mesh nor the original form of the continuous equations. Such a wetting-

drying method is classified among the flux-limiting methods.

The present wetting-drying method is designed for finite element models using

PDG
1 elements for the elevation field. In other words, the elevation η is approximated

by discontinuous piecewise-linear surfaces on triangles. The computational domain Ω

is therefore divided into a set of M triangular elements Ωe, forming the mesh. The

first interesting property is the linear character of the PDG
1 elements. It implies a

monotonic shape of the elevation field on each element. The smallest value among the

three nodes is the smallest value throughout the triangle. A triangle with three wet
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nodes is therefore wet everywhere. This is not the case with higher order elements.

The second interesting property is the discontinuous character of the PDG
1 elements.

It requires no inter element continuity, and information can only pass from an element

to its neighbor through fluxes that can easily be turned on/off.

The present wetting-drying method mainly deals with the mass conservation equa-

tion (1), which can be rewritten as:

∂η

∂t
= −∇ ·

(
(h+ η) u

)
︸ ︷︷ ︸

F
(
η,u

) . (3)

According to the nature of the equation, the operator F is conservative: its integral is

zero over the whole domain Ω, if the latter is closed. The method is divided in three

main steps that are illustrated on Figure 1 and detailed below. The elevation at time

step n (ηn) is known before starting the wetting-drying method. Each step of the

method corresponds to an intermediate elevation (η∗, η∗∗ and η∗∗∗). The elevation at

time step n+ 1 (ηn+1) is then found.

• In the first intermediate step, corresponding to η∗, the elevation is clipped to

ensure that the water depth h+ η∗ is not smaller than the threshold value Hdry

at each position:

η∗ = max
(
ηn, Hdry − h

)
. (4)

• In the second intermediate step, corresponding to η∗∗, the equation (3) is used

with η = η∗ to ensure that only positive water depths are involved:

η∗∗ − ηn

∆t
= F

(
η∗,u

)
. (5)

Since the operator F is conservative, the mass is conserved between the second

intermediate state (∗∗) and the initial state (n). The problem with the second

intermediate state is that the free surface may have moved down in already dry

areas.

• In the third intermediate step, corresponding to η∗∗∗, the operator F is modified

to ensure that the free surface does not move down in dry areas while remaining

conservative:

η∗∗∗ − ηn

∆t
= F ∗(η∗,u) . (6)

The third intermediate state represents accurately the water level around dry

areas.

In practice, η∗∗ and η∗∗∗ are not computed. The second intermediate step only consists

in building F , and the third intermediate step only consists in modifying it into F ∗.
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ηn

6Hdry

?

STEP 1

6

h

?

η∗

6Hdry

η∗ is obtained by clipping ηn

STEP 2

6

h

?

η∗∗

6Hdry

η∗∗ − ηn

∆t
= F (u, η∗)

STEP 3

6

h

?

η∗∗∗

6Hdry

η∗∗∗ − ηn

∆t
= F ∗(u, η∗)

F ∗ is obtained by cancelling out the
negative nodal fluxes in dry areas

6

h

?

ηn+1 = η∗∗∗

6Hdry

Figure 1: Illustration of the three steps of the wetting-drying method and the corre-

sponding intermediate states of the elevation.
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The elevation at time step n+ 1 is then computed as follows:

ηn+1 − ηn

∆t
= F ∗(η∗,u) . (7)

In order to describe how F is modified to obtain the operator F ∗ in the third inter-

mediate step, the weak and discrete formulations of equation (5) need to be detailed.

Because the method is designed for discontinuous elements, the weak formulation can

be written for each element. In what follows, the wetting-drying method is described

for only one triangle Ωe. The method needs to be repeated for each triangle of the

whole domain. The weak formulation is found by multiplying equation (5) by a test

function η̂ and integrating it over Ωe. Integrating by parts the operator F and using

the divergence theorem leads to

< η̂
η∗∗ − ηn

∆t
>e = − � η̂ (h+ η∗) u · n�e + <

(
∇η̂
) · ((h+ η∗) u

)
>e , (8)

where < · >e and � · �e refer to the integral over the element Ωe and along the

boundary ∂Ωe of this element, respectively, and n is the outward unit vector normal

to ∂Ωe.

Because the method deals with linear elements, the approximation of the field η is

η =
3∑

j=1

ηjφj , ηjφj , (9)

where ηj is the nodal value of the field η at node j and φj is the corresponding linear

shape function. Following the Einstein convention, the summation symbol is removed

for the repeated indices. The discrete formulation of equation (8) is obtained by

replacing η by its approximation in the left-hand side of the equation, and by taking

any shape function φi as test function:

< φiφj >e︸ ︷︷ ︸
Aij

η∗∗j − ηn
j

∆t
= − � φi (h+ η∗) u · n�e︸ ︷︷ ︸

bci
(
u, η∗

) +<
(
∇φi

) · ((h+ η∗) u
)
>e︸ ︷︷ ︸

bsi
(
u, η∗

) ,

(10)

where i = 1 ... 3. Let
(
A−1

)
ij

be the inverse of Aij . The equation (11) may be

rewritten as

η∗∗j − ηn
j

∆t
=

(
A−1

)
ji
bci
(
u, η∗

)︸ ︷︷ ︸
F c

j

(
u, η∗

) +
(
A−1

)
ji
bsi
(
u, η∗

)︸ ︷︷ ︸
F s

j

(
u, η∗

) , (11)

where F c
j

(
u, η∗

)
and F s

j

(
u, η∗

)
are the generalized nodal fluxes due to contour integrals

and surface integrals, respectively.

In the third step of the wetting-drying method, the generalized nodal fluxes are

modified by cancelling out those that are negative in dry areas:

η∗∗∗j − ηn
j

∆t
= F c

j
∗(u, η∗)+ F s

j
∗(u, η∗) ,

7



F c
j
∗ =

{
0 if F c

j < 0 & ηn
j + hj < Hdry

F c
j otherwise

, (12)

F s
j
∗ =


0 if there is a node i ∈ Ωe

with F s
j < 0 & ηn

i + hi < Hdry

F s
j otherwise

. (13)

The mass conserving property of the second step is not altered in the third step

since we simply cancel out fluxes. Clearly, the algorithm as a whole preserves mass.

Moreover, all DG methods are intrinsically locally mass conservative, as we can make

a flux balance for each element. Since the only effect of the present wetting-drying is

to cancel out some fluxes in dry areas, the method is also locally mass conservative.

There are also a few modifications in equation (2). First of all, the clipped elevation

η∗ is used to ensure that only positive water depths are dealt with, thus avoiding

dividing by zero in some terms. Moreover, for stability reasons, we cancel out the

gravity effect within the dry elements [41] to allow the free surface to remain parallel

to the bottom. Finally, in shallow areas, we increase the bottom stress and the eddy

viscosity, and decrease the surface stress. For this, we use the concept of “buffer” layer

[32, 31, 63, 59], the thickness of which is Hbuf. The terms to increase or decrease are

multiplied by a factor linearly varying from 1 when H ≥ Hbuf to fbuf when H ≤ Hdry.

The factor fbuf has different values for each term. Inside an element with at least one

dry node, the above-mentioned terms are multiplied by fbuf, whatever the value of H.

Herein, for the sake of simplicity, the method is presented using an explicit Euler

time stepping scheme. Nevertheless, it can be easily transposed to any other explicit

scheme, by applying the different steps of the wetting-drying method to each sub-

time step. However, all flux-limiting methods are intrinsically nonlinear. As there are

conditions to turn on/off a flux, these methods are discontinuous with respect to these

variables. It is therefore not possible to deduce a stable linearization of the method as

it is, and so implicit time stepping is not available directly.

If there were no wetting-drying to deal with, ηn+1 would simply be computed using

the following equation:

ηn+1 − ηn

∆t
= F

(
ηn,u

)
, (14)

which is just the equation (7) with η∗ = ηn and F ∗ = F , i.e. with no modification of ηn

and F during the first and third intermediate steps, respectively. The extra computing

cost of the present wetting-drying method is therefore due to these two intermediate

steps, which only consist in modifying some nodal values in dry areas and are therefore

quite cheap. Moreover, this wetting-drying method does not require additional stabilily

constraint, except the conventional CFL stability condition of explicit time marching.

The equations (1) and (2), combined with the above wetting-drying method, are

spatially discretized using PDG
1 elements for both the elevation and the velocity, the

stability being ensured by computing the fluxes at the interface between two triangles
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using the values deduced from a Roe solver. This is explained in details by Comblen

et al. [19]. For the temporal discretization, an explicit second-order Runge-Kutta

scheme is used for most of the terms, while an implicit second-order Runge-Kutta is

used for the bottom stress term.

The proposed wetting-drying method is implemented into SLIM [19, 20], which is

already successfully used for several applications in the Great Barrier Reef [40, 60, 12,

61], the Scheldt Estuary [22, 23] and Lake Tanganyika [29]. The unstructured meshes

used for the test cases and the Scheldt Estuary application are built by means of the

open source software GMSH2 [27, 39].

3 Verification of the method

3.1 Balzano test cases

Balzano [7] presented three simple one-dimensional test cases to compare different

flux-limiting wetting-drying methods for finite difference models. These can be used

to evaluate the accuracy of other wetting-drying methods [62]. The computational

domain of the three test cases is a one-dimensional basin 13800 m in length. However,

as the goal of this paper is to verify a wetting-drying method for two-dimensional

models, this one-dimensional domain is replaced by a two-dimensional one. This new

domain has a relatively large width of 7200 m and frictionless coastlines. The two-

dimensional problems and their corresponding one-dimensional Balzano test cases must

have the same solutions.

The reference water level is 5 m at the open boundary and zero at the other end,

where the basin is closed. The Coriolis force, the surface stress and the horizontal

viscosity are not taken into account. The bottom stress is parameterized with the

Chézy-Manning-Strickler formulation :

τ b

ρ
= n2g

|u|u
H1/3

, (15)

where the Manning coefficient n is equal to 0.02 s/m1/3, which is a typical value for

sand [30, 31]. Finally, the threshold thickness Hdry is fixed to 0.01 m, and because of

the relatively low basin slopes for each test case, no modification of terms has to be

done in the buffer layer (fbuf = 1). These are the features common to the three test

cases, which are therefore quite similar. Actually, they only differ in their bathymetry

and in their external forcing.

For the first Balzano test case (Figure 2), a basin with a uniform bottom slope is

considered. The analytical expression of the bathymetry may be found in Appendix A.

At the open boundary, a sinusoidal water level variation is imposed, with a period of

12 h and an amplitude of 2 m, the water depth at the open boundary oscillating
2 http://www.geuz.org/gmsh
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between 3 and 7 m. Following the observations of Balzano, some methods cause unde-

sired wiggles in the free surface profile during the wetting phase. It is clearly not the

case here. In dry areas (where the water thickness is theoretically zero), some methods

also suffer from pronounced underestimation (negative water thickness) or overestima-

tion (positive water thickness) of the retention volume. With the present method, the

water thickness is always positive. So the retention volume is never underestimated.

Moreover, the water thickness in dry areas is controlled by the threshold value Hdry,

which limits the overestimation to very small values.

In the second Balzano test case (Figure 3), the forcing is similar. The only difference

lies in the bathymetry of the basin. While the first basin has a uniform slope, the second

one contains a small shelf. The analytical expression of the bathymetry may be found

in Appendix A. The mesh is designed to represent it exactly. In addition to the

wiggling and retention problems already mentioned, Balzano noticed a runoff problem

with some methods in this test case. With these methods, the runoff becomes negligible

along the shelf at the end of the drying phase, with an important overestimation of the

retention volume. And during the wetting phase, a period of newly increasing runoff

is observed. This two phase runoff behavior is clearly not plausible. With the method

of this paper, the slowing down of the runoff seems quite linear, which is the correct

physical behavior.

In the third Balzano test case (Figure 4), the basin contains a small reservoir. The

analytical expression of the bathymetry may be found in Appendix A. The external

forcing is also different. The elevation of the water is initially set to 2 m, i.e. the

water depth is 7 m at the open boundary and 2 m at the other end. A sinusoidal

decay is then applied during 6 h (half the sinusoidal period) at the open boundary

to decrease the water depth from 7 to 3 m. Afterwards, the water level at the open

boundary is kept to 3 m, and the simulation ends after 100 h. Clearly, the surface in

the reservoir should asymptotically reach an horizontal plane at the level of the local

peak of the bathymetry. The mesh is designed to represent exactly both the analytical

bathymetry and the expected elevation in the reservoir. Among the three Balzano test

cases, the third is probably the most difficult to tackle. For example, with most of the

modified equation methods, the water surface behavior is badly represented. Indeed,

with these methods, some water can flow from the reservoir to the rest of the basin,

even when the mean surface level inside the reservoir is below the local peak of the

bathymetry. After 100 h of simulation, the expected water level is perfectly simulated

in the reservoir. The physics does not seem to be altered close to dry areas.

The first Balzano test case is also used to verify the convergence of the method, by

evaluating the L2 error on the elevation after one tidal cycle (Figure 5). The meshes

used for this convergence analysis are similar to that of Figure 2a, with various triangle

characteristic lengths, the reference solution being computed on a mesh whose triangle

characteristic length is 150 m. The convergence rate is estimated to 1.525, while it
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Figure 2: [First Balzano test case] Mesh used, made up with 561 triangles having a

characteristic length of 600 m (a); vertical section (gray line of the mesh), through

the domain of interest, showing the sea bed (thick line) and the position of the water

surface every 20 minutes (thin lines), during the drying (b) and the wetting (c) phases.
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Figure 3: [Second Balzano test case] Mesh used, made up with 557 triangles having

a characteristic length of 600 m (a); vertical section (gray line of the mesh), through

the domain of interest, showing the sea bed (thick line) and the position of the water

surface every 20 minutes (thin lines), during the drying (b) and the wetting (c) phases.
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Figure 4: [Third Balzano test case] Mesh used, made up with 543 triangles having a

characteristic length of 600 m (a); vertical section (gray line of the mesh), through

the domain of interest, showing the sea bed (thick line) and the position of the water

surface at initial time and at equilibrium (thin lines) (b).
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Figure 5: [First Balzano test case] Evolution of the L2 error on the elevation after

12 h, versus the characteristic length of the triangle meshes; the reference solution

is computed on a mesh whose triangle characteristic length is 150 m; the rate of the

dashed lines are 1 (below) and 2 (above), while the convergence rate is here estimated

to 1.525.

should be theoretically 2 with the PDG
1 − PDG

1 pair, and without wetting and drying

[19]. Actually, the same analysis has been performed for all the test cases: convergence

is always observed, and each time at a rate comprised between 1 and 2, the extent

of the dry areas decreasing the convergence rate towards 1. This suggests that our

wetting-drying method is first order.

3.2 Leclerc test case

Leclerc et al. [41] defined a test case that has been used to verify other wetting-

drying methods [31, 34]. In Figure 6, we present the mesh of the domain that is a

rectangular basin 100 m wide and 500 m long. Three of the basin edges are coasts, the

only open boundary being one of the small edges. All these boundaries are considered

frictionless. As in the Balzano test cases, the bathymetry only varies along the length

of the basin, but the bottom slope is here much steeper. The analytical expression of

the bathymetry may be found in Appendix A. The wetting and drying phenomenon

is likely to be more difficult to model due to the steeper slope. However, the threshold

thickness Hdry is still fixed to 0.01 m, and no modification of terms has to be done in

the buffer layer (fbuf = 1).

The problem set-up is quite similar to the two first Balzano test cases. The Coriolis
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force and the surface stress are not taken into account, but there is here some turbulent

viscosity (ν = 5 m2/s). The Chézy-Manning-Strickler formulation (15) is used to model

the bottom stress. The bottom is here a little rougher with a Manning coefficient

n = 0.03 s/m1/3, which is however still typical for sand. A sinusoidal water level

variation is imposed at the open boundary, with a period of 1 h and an amplitude of

0.75 m, the water depth at the open boundary oscillating between 0.25 and 1.75 m.

The results are in a good agreement with those obtained by Leclerc. They are also

similar to the results of Heniche et al. [31] and Jiang and Wai [34], but only outside

dry areas, since they used modified equation methods.

3.3 Thacker test case

This last test case, shown in Figure 7, has also been used by Balzano [7] to compare

the best methods of its review, and is here of use to illustrate that the method is strictly

mass conserving. The domain is a circular closed basin, so that no water can enter

or leave the domain; the sea bed is a paraboloid of revolution. At the initial time,

the free surface is also a paraboloid of revolution. Then, the free surface moves with

free oscillations and wetting and drying occurs on the boundary of the domain. If

there is no Coriolis force, no surface stress and no dissipation (neither viscosity nor

bottom stress), the analytical solution of the problem is known [56]. The analytical

expressions of the bathymetry and the solution of the non dissipative problem may be

found in Appendix A.

However, this wetting-drying method requires some dissipation to be stable. The

bottom stress is therefore taken into account using the Chézy-Manning-Strickler for-

mulation (15). The values of the wetting-drying parameters are the same as in the

former test cases (Hdry = 0.01 m and fbuf = 1). Several simulations have been run,

with various values of the Manning coeffcient n. The evolution of the free surface in

the center of the domain is shown on Figure 8. It is clearly seen that, as expected, the

model results tend to the Thacker solution when decreasing the Manning coefficient.

Since the method is mass conserving and the domain is closed (and since the flow

is incompressible), the total water volume must always remain constant. After four

free oscillation cycles, the maximum relative difference between the water volume and

its initial value is of the order of 10−15, for each simulation. The volume is therefore

strictly conserved, up to round-off errors.

4 Application to the Scheldt Estuary

The Scheldt River flows from Northwestern France, through northern Belgium,

ending in the North Sea in the southwestern part of The Netherlands. The area of

tidal influence goes up to 160 km from the mouth and includes all the major trib-

utaries. The tidal regime is mainly semi-diurnal (M2) with mean neap and spring
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Figure 6: [Leclerc test case] Mesh used, made up with 492 triangles having a charac-

teristic length of 15 m (a); vertical section (gray line of the mesh), through the domain

of interest, showing the sea bed (thick line) and the position of the water surface every

90 seconds (thin lines), during the drying (b) and the wetting (c) phases.
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Figure 7: [Thacker test case] Mesh used, made up with 4380 triangles having a charac-

teristic ranging from 10 km (near the border) to 100 km (near the center) (a); vertical

section (gray line of the mesh), through the domain of interest, showing the sea bed

(thick line) and the position of the water surface (if there is no dissipation) at initial

time, after 3 hours and after 6 hours (thin lines) (b).
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Figure 8: [Thacker test case] Evolution of the free surface in the center of the domain

for different values of the Manning coefficient; the thin lines (n > 0) are model results,

and the thick line (n = 0) is the exact solution of Thacker, assuming zero dissipation.

tidal ranges of 2.7 and 4.5 m, respectively. Moreover there is approximately 200 times

more water entering the estuary during flood than the averaged water discharge during

one M2 tidal cycle. The Scheldt Estuary may therefore be considered as a macroti-

dal system. As a consequence, the lower and middle estuary are characterized by a

complex morphology with flood and ebb channels surrounding several large tidal flats

and salt marshes. Modeling the Scheldt Estuary hydrodynamics requires therefore a

wetting-drying method.

As a consequence of the relatively small river discharge and the strong tides, the

water column is generally well mixed [57], implying that it is appropriate to use a two-

dimensional model to study the Scheldt Estuary. It is therefore a relevant application

to test the present two-dimensional wetting-drying method.

The Belgian part of the Scheldt Estuary is situated in a very densely populated

area with a very high economic activity, which is strongly conflicting with the high

biodiversity values of estuaries [45]. The estuary has been heavily polluted until the

mid 1970s, particularly affected by domestic and industrial inputs of large cities such as

Brussels, Antwerp, Ghent and their areas, but there is now a progressive improvement

of the environmental conditions [54]. Although we mainly focus here on the Dutch part

of the estuary, where the main wetting and drying processes take place, it is largely

influenced by the upstream polluted Belgian conditions. Modeling the Scheldt Estuary

is therefore not only an interesting application to test a wetting-drying method, it is

also needed to address important environmental issues.

The computational domain extends to the shelf break and does not cover the Baltic
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Sea, ending in the southern Kattegat, the strait between Denmark and Sweden. In

the Scheldt, it covers the whole estuarine part, going upstream of Antwerp, 100 km

from the mouth. There, the tidal effect is still present and the variables are estimated

by means of a one-dimensional model of the Scheldt River (up to Ghent, 160 km from

the mouth) and the tributaries that are under tidal influence [23]. The model is here

run using a spherical coordinate system [20]. The mesh generated by GMSH on the

computational domain of the two-dimensional model is presented in Figure 9.

The bathymetry is based on ETOPO13 [5] for the European shelf, and data of

the KustZuid model4 for the Scheldt. The tide is forced at the shelf break using the

elevation and velocity harmonics of the global tidal model TPXO7.15 [24]. Because

they may influence the Belgian/Dutch coastal zone [37], the discharges of the Seine

(France), the Thames (United Kingdom), and the Rhine/Meuse (The Netherlands)

are also imposed using daily averages from several public data sources6. Topological

data (cross sections and mean widths, as functions of the water depth) from Projet

Mer [38] are used to describle the rivers of the one-dimensional model of the Scheldt

River. The discharges of the Scheldt and its tributaries are also imposed using daily

averages from a public data source7.

To represent the boundary layers along the coastlines, we add friction on the coast-

lines:

ν
∂ut

∂n
= αut , (16)

where ut is the velocity component tangential to the boundary, and ∂/∂n is the deriva-

tive in the direction normal to the boundary. A suitable value for α/ν for partial slip

along the coasts was found to be 10−3 m−1.

In order to incorporate unresolved flow features, the horizontal eddy viscosity is

parameterized with the Smagorinsky formulation [53]

ν = c ∆2

√
2
(
∂u

∂x

)2

+ 2
(
∂v

∂y

)2

+
(
∂u

∂y
+
∂v

∂x

)2

, (17)

3 ETOPO1 is a global relief model of Earth’s surface from the National Geophical Data Center

(http://www.ngdc.noaa.gov/mgg/global/).
4 Courtesy of M. Zijlema of the National Institute for Coastal and Marine Management (RIKZ),

The Hague, The Netherlands.
5 TPXO7.1 is the current version of a global model of ocean tides, which best-fits,

in a least-squares sense, the Laplace Tidal Equations and along track averaged data from

TOPEX/Poseidon and Jason (on TOPEX/POSEIDON tracks since 2002) obtained with OTIS

(http://www.coas.oregonstate.edu/research/po/research/tide/global.html).
6 For the Seine, the data are provided by the Groupement d’Intérêt Public (GIP) Seine-Aval

(http://seine.aval.crihan.fr/applications donnees/donnees); for the Thames, the data are provided

by the National River Flow Archive (NRFA) (http://www.nwl.ac.uk/ih/nrfa/webdata); and for the

Rhine/Meuse, the data are provided by the National Institute for Coastal and Marine Manage-

ment (RIKZ) and the Institute for Inland Water Management and Waste Water treatment (RIZA)

(http://www.waterbase.nl).
7 For the Scheldt and its main tributaries, the data are provided by the Hydrologic Information

Centre (HIC) (http://hydra.vlaanderen.be).
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Figure 9: Mesh used for the Scheldt Estuary simulation (15077 triangles); the charac-

teristic length of the triangles is determined following the distance to the coasts and

the bathymetry, but also the interest of the area; the mesh size ranges from 200 m

(near the upstream boundary in the Scheldt) to 30 km (close to the shelf break and in

the deepest parts of the North Sea); black bullets indicate the location of measurement

stations where data are available for comparison with model outputs.
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where ∆ is the characteristic length of the element, and u and v are the components

of the velocity in the x and y horizontal directions, respectively. A suitable value of

the dimensionless coefficient c for coastal applications is 0.01.

Once again, the Chézy-Manning-Strickler formulation (15), is used to parameter-

ized the bottom stress, with a Manning coefficient n equal to 0.02 s/m1/3. As men-

tioned earlier, it is a typical value for sand [30, 31].

The surface stress is imposed from NCEP reanalysis data of the wind at 10 m above

the mean sea level and of the surface atmospheric pressure8 [35].

As in the test cases, the threshold thickness Hdry is fixed to 0.01 m. However,

the Scheldt Estuary is much more difficult to model than the test cases, due to the

steep slopes of the bottom. Therefore, in order to stabilize the simulation, we need

here to use a buffer layer with a thickness Hbuf = 0.05 m. Similar value is used by

Zheng et al. [63] and Wang et al. [59]. The value of fbuf is determined to be 50 for the

bottom stress and the viscosity terms, and 10−3 for the surface stress term. It has to

be pointed out that all the above test cases have also been run with these values of

Hbuf and fbuf without altering the quality of the results.

Even if the validation of the model is not the purpose of this paper, a comparison

is made between model results and field measurements on different stations. Four of

these stations (Bath, Hansweert, Terneuzen and Vlissingen) are located on the Scheldt

Estuary (Figure 9) where the wetting and drying processes have a great influence on

the hydrodynamics. The fifth station (Vlakte van de Raan) is located a few kilometers

upstream of the mouth and is not really influenced by the wetting and drying processes

occuring in the estuary. Figure 10 shows a good agreement between the elevation of

the free surface computed by the model and the elevation measured at these stations.

This is quite convincing since, at this stage, no sensibility analysis has been made on

the most important parameters.

Figures 11 and 12 show the water thickness H computed by the model inside the

Scheldt Estuary. At high tide (Figures 11a and 12d), deep channels (dark blue) are

clearly visible. They allow large ships to sail in order to reach the port of Antwerp.

Areas of small depth (light blue) are also distinguished. They are dried during the

ebbing phase, when a significant part of the shallow areas becomes dry. These sank

banks appear during the ebb tide (Figure 11) and disappear during the rising tide

(Figure 12). It would be impossible to model this important hydrodynamic behavior

without a specific treatment of the shallow water equations in the dry areas. Our

method is therefore working in the vicinity of dry areas. Moreover, Figure 13 shows no

transport through dry areas. It is of crucial importance for tracer transport porblems

we want to study in the future.
8 The NCEP Reanalysis data are provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado,

USA (http://www.cdc.noaa.gov/cdc/data.ncep.reanalysis.surface.html).
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Figure 10: Elevation of the free surface computed by SLIM (plain lines) and measured

(dashed lines) at Bath (a), Hansweert (b), Terneuzen (c), Vlissingen (d) and Vlakte

van de Raan (e); t is the time elapsed since the beginning of the simulation (June 1,

2001).
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Figure 11: Water thickness H inside the Scheldt Estuary during ebb tide, respectively
T
16 (a), 3T

16 (b), 5T
16 (c) and 7T

16 after high tide at the mouth (T being the M2 tidal

period); brown areas correspond to dry areas.
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Figure 12: Water thicknessH inside the Scheldt Estuary during rising tide, respectively
9T
16 (a), 11T

16 (b), 13T
16 (c) and 15T

16 after high tide at the mouth (T being the M2 tidal

period); brown areas correspond to dry areas.
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Figure 13: Water thickness inside the Scheldt Estuary 5T
16 (a) after high tide at the

mouth (T being the M2 tidal period); brown areas correspond to dry areas; the arrows

are parallel to the transport Hu and their length is proportional to the transport

intensity H|u|.

5 Conclusion

A flux-limiting wetting-drying method is designed for finite-element shallow-water

models using discontinuous linear elements for the elevation. The key ingredient of

the method is the use of limiters for generalized nodal fluxes. It is implemented into

a model that uses PDG
1 elements for all the variables and an explicit second-order

Runge-Kutta scheme for most of the terms. The verification is performed by solving

successfully several standard problems, namely the Balzano [7] and Leclerc [41] test

cases. The Thacker test case [56] is also dealt with to illustrate the important mass

conservation property. The method is then used to model the wetting and drying

processes occuring in the Scheldt Estuary, shared by Belgium and The Netherlands,

where large sand banks are periodically submerged by the tide. We therefore demon-

strate the accuracy of the method to describe the hydrodynamics around dry areas.

In particular, the method is mass conserving, and there is no transport through dry

areas, which is very important when dealing with chemical or biological tracers.
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Estuary, and to Eric Delhez (ULg, Liège, Belgium) for providing useful data.

A Test case analytical expressions

First Balzano test case

h = x/2760 ∀x . (18)

where x is the coordinate in the main direction of the basin.

Second Balzano test case
h = x/2760 if x ≤ 3600 m , or if x ≥ 6000 m ,

h = 30/23 if 3600 m ≥ x ≥ 4800 m ,

h = x/1380− 50/23 if 4800 m ≥ x ≥ 6000 m .

(19)

Third Balzano test case
h = x/2760 if x ≤ 3600 m , or if x ≥ 6000 m ,

h = −x/2760 + 60/23 if 3600 m ≥ x ≥ 4800 m ,

h = x/920− 100/23 if 4800 m ≥ x ≥ 6000 m .

(20)

Leclerc test case
h = x/1000− 0.4 if x ≤ 100 m ,

h = x/100− 1.3 if 100 m ≥ x ≥ 200 m ,

h = x/1000 + 0.5 if x ≥ 200 m .

(21)

Thacker test case

The Thacker test case bathymetry is

h = h0
R2 − r2
R2

, (22)

where r is the distance to the center of the basin, and R and h0 are the basin radius

at rest and the water depth in the center of the basin at rest, respectively.

The analytical expression of the elevation for the non dissipative problem is

η = h0

( √
1−A2

1−A cosωt
− 1− r2

R2

(
1−A2

(1−A cosωt)2
− 1
))

, (23)
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with

ω2 =
8gh0

R2
, (24)

A =
(h0 + η0)2 − h2

0

(h0 + η0)2 + h2
0

, (25)

where η0 is the initial elevation of the free surface in the center.

The parameters choosen to obtain a period of oscillations equal to 12 hours are

R = 430.62 km,

h0 = 50 m,

η0 = 2 m.
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[26] Ertürk, Ş. N., Bilgili, A., Swift, M. R., Brown, T., Çelikkol, B., Ip, J. T. C., and
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