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Abstract

Resolving the shoreline undulation due to tidal excursion is a crucial part of
modelling water flow in estuaries and coastal areas. Nevertheless, maintain-
ing positive water column depth and numerical stability has proved out to be
a very difficult task that requires special attention. In this paper we propose
a novel wetting-drying method in which the position of the sea bed is allowed
to fluctuate in drying areas. The method is implemented in a Discontinuous
Galerkin Finite Element Model (DG-FEM). Unlike most methods in the lit-
erature our method is compatible with fully implicit time-marching schemes,
thus reducing the overall computational cost significantly. Moreover, global
and local mass conservation is guaranteed which is crucial for long term envi-
ronmental applications. In addition consistency with tracer equation is also
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ensured. The performance of the proposed method is demonstrated with a
set of test cases as well as a real-world application to the Scheldt Estuary.
Due to the implicit time integration, the computational cost in the Scheldt
application is reduced by two orders of magnitude. Although a DG-FEM
implementation is presented here, the wetting-drying method is applicable
to a wide variety of shallow water models.

Keywords: shallow water equations; wetting-drying; discontinuous
Galerkin; finite element method; implicit time integration

1. Introduction

Most coastal areas of continental shelf seas are significantly influenced
by tides. When approaching the coast, the tidal signal tends to amplify,
especially in funnel-shaped embayments where the tidal range may reach
considerable magnitudes. Combined with the fact that many estuaries and
embayments also feature gradually sloping bathymetry, the total area sub-
merged under water may vary significantly during the tidal cycle.

Any hydrodynamical model that is being applied to such a tidally influ-
enced domain needs to correctly take into account the sequential exposure
and submerging of the seabed.

Ever since the 1970s hydrodynamical models have been equipped with
wetting-drying (WD) algorithms. However, the multitude of WD methods
found in the literature reveals that numerical modelling of shoreline undu-
lation is far from being trivial. In what follows, we will mostly concentrate
on methodology applicable to unstructured grid models, i.e. finite element
(FE) and finite volume (FV) formulations.

Perhaps the most natural approach would be to track the WD interface in
time and move the boundary nodes, or deform the entire mesh, accordingly.
These moving mesh methods probably yield the most appropriate descrip-
tion of the wetting-drying process, but are faced with some difficulties: First
of all, one needs to come up with a parametrisation for moving the domain
boundary as a function of the flow in boundary elements [1, 2]. Secondly, so-
phisticated algorithms are needed for maintaining good mesh quality in long
simulations. However, re-meshing becomes increasingly difficult if changes
in the topography, such as emerging ponds or islands, need to be taken into
account. Nevertheless, the greatest drawback is that deforming the mesh is
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computationally expensive. For the latter reason, deforming mesh wetting-
drying has seldom been applied to real-world problems [3, 4, 5].

Most of the available WD methods have been developed for fixed meshes.
The fixed mesh approaches can be further sub-divided into two main cate-
gories. In the first category, either nodes or entire elements are deactivated
when becoming dry. The dry state is detected with special criteria usu-
ally based on total water depth. The first attempts were element reduction
methods, where entire elements are tagged as “dry” or “wet” and dry ele-
ments are excluded from the computational domain. This implies that the
WD interface can only be located at element edges which has an impact on
the boundary layer behaviour [6]. Moreover, the sudden inclusion/exclusion
of elements may break mass and momentum conservation and also trigger
numerical instability [7].

In order to describe a coastline that does not coincide with the element
edges, most authors introduce transition (or partially wet) elements that
require special treatment. By far the most popular method is to leave a thin
layer of water in the dry areas to ensure positive water depth and maintain
a continuum across the WD interface [6, 8, 9, 10]. The transition elements
are then defined as elements for which some nodes, but not all are dry, i.e.
have water level under a prescribed threshold value.

The main difficulty in thin layer methods lies in the way that the tran-
sition elements are being treated. The transition elements typically have
“hanging nodes” that remain on a higher level than the free surface. In such
case the transition elements have spurious water surface slope and thus expe-
rience an artificial pressure gradient [11] that tends to drive the water down.
Without any treatment, the hanging nodes will eventually dry out. Com-
monly the transition elements are being explicitly detected and the pressure
gradient term is being ignored. Sometimes the elements are further divided
into “dam-break” and “flooding” types, where the pressure gradient term
needs to be cancelled only in the latter case [6, 8]. Typically several more
or less complicated rules are needed for detecting the transitory (or dry)
elements and the local physics is changed accordingly. However, such discon-
tinuous switches (such as cancelling the pressure gradient or outward fluxes
under a threshold water depth) render these methods highly non-linear and
may introduce oscillations and numerical instability. Indeed it is not uncom-
mon to increase bottom friction or dissipation to circumvent such problems.
Nevertheless, thin layer methods can produce accurate results even in very
difficult applications.
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The thin layer methods rely on explicit detection of dry elements, so the
WD front can propagate only by one element per time step. Moreover, the
time steps are usually constrained by the Courant–Friedrichs–Lewy (CFL)
criterion, which is needed to ensure positive water depth or numerical stabil-
ity [12]. Consequently the computational cost grows significantly, especially
in large scale simulations that incorporate both deep and shallow areas [13].
Due to the time step constraints, explicit time integration is commonly used,
although semi-implicit schemes also exist. Fully implicit time marching is
generally not applicable as it requires that the Jacobian of the system can
be computed (exactly or approximately), which is not possible for the dis-
continuous switches.

Another class of fixed grid WD methods is the artificial porosity ap-
proach. In these methods, the bed is assumed to be porous and non-zero
water fluxes are allowed for negative depths. These methods include an ad-
ditional porous layer [14, 11, 15, 7, 3], narrow connecting channels [16, 17]
and also bear close resemblance to sub-grid scale bathymetry [18, 6] methods.
The main advantage is that the artificial pressure gradient problem can be
naturally circumvented. With porous media, free surface will fall under the
bed in drying phase and eventually the spurious surface slope will disappear.
Naturally the drawback is that “virtual water” is generated as depth attains
negative value, although mass-conservative formulations are reported to ex-
ist [17, 18]. The key advantage of porosity methods is that the transition
between wet and dry areas is smooth and the modifications can be expressed
in the primitive equations. Due to the latter reason many methods of this
type are compatible with semi-implicit or implicit [14, 11, 7] time integration,
reducing computational cost significantly.

Some WD methods are exploiting the fact that the WD process is essen-
tially dominated by the pressure gradient and bottom friction, which can be
used to simplify the equations; see for example [14, 19]. Requiring a balance
between the two will ultimately lead to the so called diffusive wave approx-
imation of the shallow water equation [20, 21] that can be used to model
the WD interface. Such an approach, however, is not applicable to coastal
waters in general.

In this paper we present an alternative “negative-depth” implicit WD
formulation for FE shallow water models. However, in contrast to the porous
media methods, our method is based on the idea that the bed is allowed
to move in time as water elevation drops, which leads to a very similar
formulation but without the need to introduce the concept of porosity. This
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yields simpler implementation and most importantly the proposed method
has only one unknown parameter whose value can be estimated fairly reliably.

Although the notion of moving the bathymetry may seem unusual, sim-
ilar modifications have been applied locally in certain WD methods. An
example of an FD model where bathymetry is temporally modified for the
computation of elevation gradient is presented in [19]. Similar modifications
in FV models can be found in [22, 10]. In all these references the motiva-
tion to modify the bathymetry is to avoid spurious pressure forces at the
WD interface, precisely as in our case. The major difference is that here the
modification is formulated already in the primitive equations.

As our goal is to perform long term environmental simulations, WD treat-
ment should not jeopardise mass conservation nor introduce spurious tracer
transport. Therefore special care is taken to guarantee strict mass conser-
vation property. In addition, a consistent tracer equation and its FE imple-
mentation is presented.

The proposed WD methods is implemented in the FE Second-generation
Louvain-la-Neuve Ice-ocean Model (SLIM)1 [9, 23] and its validity is demon-
strated with a set of standard numerical tests. However, in many cases, the
test cases have proved out to be too easy to solve compared to simulations
with real-world bathymetry, and thus more challenging test cases are also
introduced.

The paper is organised as follows. The shallow water equations with
the moving bathymetry are introduced in Section 2 and a fully implicit FE
implementation is presented in Section 3. A consistent tracer equation is
then presented in Section 4 followed by numerical tests in Section 5 and a
real-world application in Section 6.

2. Shallow water equations allowing moving bathymetry

Given Cartesian horizontal coordinates x = [x, y]T , the depth averaged
shallow water equations (SWEs) in non-conservative form are:

∂η

∂t
+ ∇ · (H u) = 0 , (1)

∂u

∂t
+ (u ·∇)u+ Fcez× u+ g∇η =

τs − τb
ρH

. (2)

1http://www.climate.be/SLIM
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where the water column depth is H(x, t) = η(x, t) + h(x), η being the free
surface elevation versus a reference level, h the original static bathymetry,
u = [u, v]T the horizontal (depth averaged) velocity, g the gravity acceler-
ation, Fc the Coriolis factor, ρ density of water, and τb and τs the bottom
and surface stress vectors, respectively. Here, the horizontal diffusion term
in equation (2) has been omitted because it plays little role in WD processes.
Proper DG-FEM treatment of the horizontal diffusion term can be found in
[24], for example. In this work the Chézy-Manning formulation for bottom
friction is used (n denotes the Manning coefficient):

τb
ρ

= gn2‖u‖u
H1/3

(3)

To ensure positive water depth, we introduce a smooth (at least once
continuously differentiable) function f and redefine bathymetry as h̃(x, t) =
h+f(H). The function f is chosen so that the redefined total depth remains
positive, i.e. H̃ = η + h̃ > 0 is always satisfied (see Figures 1 and 2). Thus
h̃ is a function of the elevation and static bathymetry:

h̃(η, h) = h+ f(η + h). (4)

0
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x
(a) Variables for fixed bathymetry
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~
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(b) Variables for modified bathymetry

Figure 1: Redefinition of the total water column depth.

Now the SWEs are modified in such a way that the bed fluctuation is
properly taken into account, i.e. the redefined total depth H̃ is being con-

6



−2 −1 0 1 2
0

0.5

1

1.5

2

H [m]

f(
H
)
[m

]

f(H) = 1
2 (
√
H2 + α2–H)

α = 0.05 m

(a) Function f(H)

−2 −1 0 1 2
0

0.5

1

1.5

2

H [m]

H̃
(H

)
[m

]

(b) Modified total depth H̃

Figure 2: Functions for defining moving bathymetry.

served:

∂η

∂t
+
∂h̃

∂t
+ ∇ ·

(
H̃u
)

= 0 , (5)

∂u

∂t
+ (u ·∇)u+ Fcez× u+ g∇η =

τs − τb
ρH̃

, (6)

where the second term in the continuity equation (5) is due to the fact that
h̃ is not static. Note that the momentum equation is modified simply by
replacing H by H̃, which only appears in the forcing and dissipation terms.

The continuity equation can be further developed by noting that ∂η
∂t

+ ∂h̃
∂t

=

(1 + f ′(H))∂η
∂t

:= A(H)∂η
∂t

which leads to

A(H)
∂η

∂t
+ ∇ ·

(
H̃u
)

= 0. (7)

The above formulation is closely related to scaling of continuity equation that
is presented in porous media methods [11, 14, 17] and also in subgrid scale
methods [6]. Indeed, it is easy to see that 0 < A < 1 so that A is a smooth
indicator that ranges from dry (A ≈ 0) to wet (A ≈ 1) conditions. In the
context of porous media and subgrid scale wetting-drying, A is interpreted
as the “active” (or “wet”) fraction, i.e. proportion of total element area that
is penetrable by water. In contrast to methods where elements are either wet
or dry, it is exactly the smoothness of A that prevents spurious oscillations
and allows implicit time marching.
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Despite the illustrative power of the scaled formulation (7), equation (5)
will be implemented in the numerical system thus avoiding the computation
of f ′(H).

When comparing to other WD methods it is useful to plot the total water
column depth on the original static bathymetry. In this case the elevation is
given by

η̃ = H̃ − h = η + f. (8)

3. Numerical FE implementation

In the previous Section the proposed WD method was presented on the
level of the primitive equations. In this section it is shown how the method
can be implemented in DG-FEM shallow water models.

3.1. Weak formulation

In order to derive a weak formulation for the latter equations, we define a
suitable triangulation T of the domain Ω and piecewise discontinuous poly-
nomial function spaces Vp and Wp, such that every function a : R2 → R,
a ∈ Vp, b : R2 → R2, b ∈ Wp is polynomial of order p (at most) inside the
triangles K ∈ T and discontinuous at the interfaces e = K ∩K ′. Since the
functions are discontinuous at the interfaces we can define a set of polyno-
mial basis functions ϕi and ψi that are non-zero only in a single element.
Therefore we have representations for a =

∑
i aiϕi and b =

∑
i b

T
i ψi.

We now require that the numerical solution to (5) belongs to these spaces,
i.e. η̂ ∈ Vp and û ∈ Wp. Multiplying (5) and (6) by test functions ϕ ∈ Vp
and ψ ∈ Wp, respectively, integrating by parts and denoting the element-
wise surface and contour integrals as

∫

K∈T
· dx =

〈
·
〉
K
, (9)

∫

e=K∩K′
· dS =

〈〈
·
〉〉
e
, (10)
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respectively, the weak formulation of the system (5)-(6) becomes

〈∂η
∂t
ϕ
〉
K

+
〈∂h̃
∂t
ϕ
〉
K

+
∑

e=K∩K′

〈〈
(H̃u)∗ · nϕ

〉〉
e
−
〈
H̃u ·∇ϕ

〉
K

= 0, (11)

〈∂u
∂t
·ψ
〉
K

+
∑

e=K∩K′

〈〈
u∗ · n u∗ ·ψ

〉〉
e
−
〈
∇ · (uψ) · u

〉
K

+
∑

e=K∩K′

〈〈
gη∗ψ · n

〉〉
e
−
〈
gη∇ ·ψ

〉
K

+
〈
Fcez× u ·ψ

〉
K

=
〈(τs − τb

ρH̃

)
·ψ
〉
K
.

(12)

The major difference between the above weak formulation and standard
FE SWE formulation is the novel mass correction term due to the moving
bathymetry, i.e. the second term in equation (11).

Due to the discontinuity, the values of η and u are defined twice at ele-
ment interfaces. Thus the corresponding values in the contour integrals are
ambiguous and are marked with an asterisk. These values are solved with
an approximate Riemann solver that is derived in the next section.

3.2. Approximate Riemann solver

In this work we are using an approximate Riemann solver that is based
on the Roe averages [25], which is commonly used in SWE models, e.g.
[9, 10, 26, 27]. Another DG-FEM WD method by Bunya et al. utilises Lax-
Friedrichs flux [8]. In [28] Harten-Lax-van Leer-Contact (HLLC) flux, which
ensures non-negative water depth, is used. Such flux, however, contains
many conditional statements and is thus difficult to implement in an implicit
model.

Consider two neighbouring elements, left Kl and right Kr, e = Kl ∩
Kr 6= ∅, such that the x axis is oriented to the normal direction from Kl

to Kr and the element interface is along the y axis. The corresponding
velocities are denoted u and v, respectively. The Riemann problem is derived
with conservative form of the shallow water equations, but since we are only
interested in transport in the normal direction, the partial derivatives with
respect to y can be omitted. Considering first the non-modified SWEs, one

9



obtains the following set of equations:

∂H

∂t
+
∂(Hu)

∂x
= 0 (13)

∂(Hu)

∂t
+
∂(Hu2)

∂x
+
∂(1

2
gH2)

∂x
= gH

∂h

∂x
(14)

∂(Hv)

∂t
+
∂(Huv)

∂x
= 0. (15)

In what follows, we do not take into account the bathymetry gradient ∂h
∂x

,
because incorporating its influence in approximate Riemann solvers is a still
a quite difficult task. There are indeed numerous publications on the topic,
mainly with respect to FV methods (see e.g. [29, 10] and references therein).
However, such a difficulty is not analysed here for the sake of simplicity.

With this assumption the right hand side of equation (14) disappears and
one ends up with a homogeneous set of equations. By defining a state vector
q = [H,Hu,Hv]T the system can be written as (using shorthand notation
qt := ∂q

∂t
)

qt + Fx = qt + V (q)qx = 0, (16)

where

V (q) =




0 1 0
−u2 + gH 2u 0
−uv v u


 . (17)

Approximate Riemann solvers are based on the idea of linearising (16), i.e.
replacing V (q) with a local constant. Given the state vectors on both sides
of the boundary, ql and qr, the linearisation Vlin can be found by requiring
that it satisfies the Rankine-Hugoniot equation: Vlin(ql−qr) = Fl−Fr. This
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leads to the Roe averages [25]2:

HRoe = (Hl +Hr)/2, (18)

uRoe =

√
Hlul +

√
Hrur√

Hl +
√
Hr

, (19)

vRoe =

√
Hlvl +

√
Hrvr√

Hl +
√
Hr

. (20)

The Vlin is obtained by substituting (18)-(19) to (17). The linear system can
now be solved by diagonalising Vlin = RDR−1. The eigenvalues of V are
{λi}3

i=1 = {u, u+ cRoe, u− cRoe}, cRoe =
√
gHRoe, corresponding to speeds at

which waves propagate across the boundary. Introducing new state vectors,
Q = R−1q, leads to a system of independent equations Qt + DQx = 0.
These are solved simply by taking the upwind value of Ql and Qr:

Q∗i =

{
Qi,l, λi > 0
Qi,r, λi < 0

, i = 1, . . . , 3. (21)

Defining a jump operator [[a]] = (al − ar)/2 and a mean operator {a} =
(al + ar)/2 the solutions can be formulated as

Q∗i = si[[Qi]] + {Qi}, i = 1, . . . , 3, (22)

si = sign(λi).

2The problem is in fact under-determined, so (18) is chosen rather than deduced. Using
an additional equation will lead to fully determined system with the same result, see e.g.
[26]
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Finally, one can compute the solution q∗ = RQ∗:

H∗ = {H}+
s2 + s3

2
[[H]] +

s2 − s3

2cRoe

([[Hu]]− uRoe[[H]]) (23)

(Hu)∗ = {Hu}+
s2 + s3

2
[[Hu]] +

s2 − s3

2
cRoe[[H]] +

(s2 − s3)uRoe

2cRoe

([[Hu]]− uRoe[[H]])

(24)

(Hv)∗ = {Hv}+ s1[[Hv]] +
s2 + s3 − 2s1

2
vRoe[[H]] +

(s2 − s3)vRoe

2cRoe

([[Hu]]− uRoe[[H]])

(25)

η∗ = H∗ − h (26)

u∗ = (Hu)∗/H∗ (27)

v∗ = (Hv)∗/H∗ (28)

Generally, the horizontal coordinate axes do not coincide with the element
interface and an appropriate rotation is applied to the coordinate system so
that the above formulation remains valid.

In the Riemann solver presented above it is necessary to compute the
square root of the total depth. When extending the solver to the moving
bathymetry WD method, we therefore use the modified depth H̃ for which
positivity is guaranteed. In other words, H is replaced by H̃ in equations
(23)-(25). After computing H̃∗, (H̃u)∗ and (H̃v)∗, the final solution is ob-
tained as:

η∗ = H̃∗ − {h̃} (29)

u∗ = (H̃u)∗/H̃∗ (30)

v∗ = (H̃v)∗/H̃∗ (31)

As stated earlier, the bathymetry source term is ignored in this formula-
tion. Including the bathymetry gradient is not obvious as it leads to an in-
homogeneous system that cannot be represented as fluxes [29]. In the case of
moving bathymetry this problem is even more complicated as the bathymetry
h̃ is discontinuous and also depends non-linearly on the elevation.

The presented procedure (29)-(31) is equivalent to ignoring the possible
jumps in the bathymetry and assuming that the two water columns H̃l and
H̃r stand on a common, continuous bed. In practice the procedure appeared
to be sufficient as long as the discontinuity in h̃ remains small.
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3.3. Implicit time marching

Equations (11-12) are expressed in continuous time and discrete space.
It must be noted that these equations are specific compared to common
finite element formulations. Indeed, the mass correction term, i.e. the time
derivative of the bathymetry h̃, is non-linear. In general there are two ways of
solving non-linear PDEs: Either explicit time integration with high temporal
resolution or implicit time integration featuring a non-linear solver. In order
to solve the equations accurately with reasonable computational cost, implicit
time-stepping scheme is adopted here.

Diagonally Implicit Runge-Kutta (DIRK) methods provide high order
accuracy and high flexibility, as the time step can be easily varied. Runge-
Kutta methods involve multiple stages, and with DIRK schemes a non-linear
system of equations is to be solved at each stage.

For brevity, the system (continuous in time and discrete in space) is writ-
ten as follows:

〈
ϕ
∂
(
η + h̃(η)

)

∂t

〉
K

= Sη(η,u, ϕ), (32)

〈
ψ · ∂u

∂t

〉
K

= Su(η,u,ψ), (33)

where Sη(η,u) and Su(η,u) are the discrete spatial operators for η and u,
respectively.

Given the solution (ηn−1,un−1) at time tn−1, the solution at time tn is
obtained with a fully implicit Runge-Kutta time marching defined below.
The superscript index n refers to time steps while superscript i is used to
denote the Runge-Kutta stages.

• For each stage i = 1 . . . s, solve the non-linear system of equations:

〈
ϕηi
〉
K

= −
〈
ϕh̃(ηi)

〉
K

+
〈
ϕ
(
ηn−1 + h̃(ηn−1)

)〉
K

+ ∆t
i∑

j=1

ai,jSη(η
j,uj),

(34)

〈
ψ · ui

〉
K

=
〈
ψ · un−1

〉
K

+ ∆t
i∑

j=1

ai,jSu(ηj,uj), (35)
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• The final stage reads:

〈
ϕηn

〉
K

= −
〈
ϕh̃(ηn)

〉
K

+
〈
ϕ
(
ηn−1 + h̃(ηn−1)

)〉
K

+ ∆t
s∑

j=1

bjSη(η
j,uj),

〈
ψ · un

〉
K

=
〈
ψ · un−1

〉
K

+ ∆t
s∑

j=1

bjSu(ηj,uj),

In comparison to usual implicit DG-FEM implementation the major dif-
ference here is the treatment of the non-linear mass correction term shown in
equation (32). As a consequence a new term

〈
ϕh̃(ηi)

〉
K

appears in equation
(34) that depends non-linearly on the state variable ηi.

The weights ai,j, bj and ci are the Runge-Kutta coefficients. The time
corresponding to each stage i is ti = tn+ ci∆t which is used when computing
the external forcings. Here we only use schemes for which as,j = bj, cs = 1
and thus the s-th RK stage gives the final solution directly, i.e. ηn = ηs,
un = us. In this paper we are using second and fourth order accurate
schemes, namely DIRK22 [30, section 2.6] and ESDIRK64 [31, Appendix A]
that are presented in the Appendix.

3.4. Newton solver

The equations (34)-(35) are fully implicit and non-linear. They are solved
with a conventional Newton iteration. The non-linear system is linearised,
the required Jacobian matrix of the system being approximated numerically.
The Jacobian of equations (34)-(35) is given by

J(ηi,ui) =

[
−
〈
ϕh̃(ηi)

〉
K

+ ∆t ai,iSη(η
i,ui)

∆t ai,iSu(ηi,ui)

]
[

∂
∂ηi

∂
∂ui

∂
∂vi

]
.

To compute the Jacobian reliably the presented numerical system has to
be continuously differentiable with respect to the state variables η, u, v. In
this work the partial derivatives are approximated by means of finite differ-
encing where the perturbation to the state variables was of order 10−6. Such
a numerical differentiation is valid for continuously differentiable functions.
At discontinuities, however, numerical approximation is not reliable and it
often causes oscillations that prevent the Newton solver from converging.

The advantage of the proposed WD method is that all the modifications
are indeed smooth without any discontinuities or switches. In what has been
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presented, the only non-differentiable operator is the sign function found in
the Riemann solver in equation (22). The sign function is replaced with a
smooth approximation:

sign(u) ≈ tanh β
u

U
, β ≈ 60, U ≈ 1m/s. (36)

For discontinuous Galerkin discretisation, the Jacobian matrix is com-
posed of blocks, where each block corresponds to an element. This block
structure enables an efficient Incomplete LU (ILU) factorisation. Using an
ILU factorisation with no fill-in as preconditioner for GMRES (Generalized
Minimal Residual Method, [32]) iteration appears to be sufficient to ensure
convergence. In our implementation, such an efficiency can only be achieved
with DG elements.

In practice the Newton solver appeared to be robust and it was observed
to converge rapidly. Stopping criterion was the relative error versus initial
state, i.e. εrel, i = εi

/
ε0, where εi is the residual of iteration i. Typically

only 3 to 6 iterations were required to reach εrel = 10−7. In the inner loop,
the GMRES solver required roughly 50 iterations on average to converge to
tolerance εrel = 10−3 (compared to the beginning of the GMRES iteration).

3.5. Mass conservation

Equation (5) represents mass conservation of the entire water column.
The corresponding weak formulation (11) will result in a mass conservative
scheme if the term

〈
ϕ ∂h̃/∂t

〉
K

is computed accurately. The presented Runge-
Kutta time marching will conserve mass because at each subiteration ∂η/∂t
and ∂h̃/∂t are treated similarly. Thus only requirement is that the term〈
ϕ h̃(ηi)

〉
K

is computed accurately in equation (34).

The latter imposes two restrictions: First, due to the non-linearity of h̃
an iterative solver, such as the Newton method proposed here, must be used.
Explicit methods can only provide approximate mass conservation. Secondly,
the numerical quadrature of

〈
ϕ h̃(ηi)

〉
K

must be accurate.
In this work conventional Hammer quadrature rules are used, that are

accurate up to polynomials of order 2p + 1, where p is the degree of the
FE discretisation (the extra p is required for the test function). However,
no polynomial can meet the desired properties of h̃ outlined in Section 2
and indeed f(H) must be of infinite order. Therefore simply evaluating
h̃ at integration points implies that the quadrature is not exact and mass
conservation breaks down.
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Up to this point the polynomial order of the elevation field has been free
but now we restrict ourselves to p = 1. Linear elements have the unique prop-
erty that the extrema are found at the vertices and thus it suffices to ensure
that water depth remains positive at the nodes. The moving bathymetry is
therefore defined by computing the nodal values using (4) with linear inter-
polation in between:

ˆ̃hn =
3∑

i=1

h̃(ηni , hi)ϕi(x), (37)

where ϕi are now linear discontinuous basis functions. Equation (37) results
in a mass conservative scheme. For velocity field higher order elements can
still be used. In this work first order elements are used for all fields.

3.6. Choosing the function f(H)

The function f should meet the following properties:

• H̃ = H + f(H) > 0 for all H

• f ≈ 0 for H >> 1

• f must be continuously differentiable

The first property was already mentioned in Section 2. The second property
states that the modification is restricted to shallow areas only. And the third
property is needed for ensuring convergence of the Newton iteration. In this
work the following function, that fulfils the desired properties, is used:

f(H) =
1

2
(
√
H2 + α2 −H), (38)

Clearly, f is monotonously decreasing, continuously differentiable and satisfy
f(H) > max{−H, 0} ∀H ∈ R. The free parameter controls the smoothness
of the transition: f(H) → max{−H, 0}, as α → 0 (see Figure 2a). The
dimension of both f and α is meters.

In practice the α parameter affects the width of the transition zone be-
tween wet (A(H) ≈ 1, h̃ ≈ h) and dry (A(H) ≈ 0) areas. Noting that
for H = 0, H̃ = 1/2 α, it is easy to see that α also directly controls the
water depth in dry areas. As such α is similar to the threshold depth param-
eter used in thin-layer WD methods, as both are expressed in meters and
determine the remaining water layer depth.
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For robust operation, the WD interface should be smooth implying that
the transition zone should encompass more that one element. Estimating the
variation in bathymetry within one element by

ε := Lx|∇h|, (39)

where Lx is the horizontal length scale, one can conclude that α ≈ ε, which
can be used as a rule of thumb for gradually sloping domains.

In terms of numerical stability, other more restrictive constraints may
exist. The system should be smooth enough to ensure convergence of the
Newton solver. It is also plausible that rapidly varying flows and dealing
with shock waves require larger values for α. These restrictions are, however,
more difficult to estimate a priori.

4. Tracer consistency

The tracer equation is implemented in conservative form and thus taking
into account the moving bathymetry is straightforward. Denoting the tracer
concentration by C, the depth-averaged tracer equation in conservative form
is given by

∂HC

∂t
+ ∇ · (HCu) = S + ∇ · (κH∇C) (40)

where κ is the tracer horizontal diffusivity and S contains the sources and
sinks.

We now show that it is possible to formulate the tracer equation in such
a way that it is consistent with the continuity equation (5). Consistency in
this context means that setting C = 1 in the tracer equation should lead
to exactly the same numerical procedure that is used to solve the continuity
equation [33].

It is clear that replacing H by H̃ in equation (40) leads to equation that is
consistent with (5). The weak form of the modified tracer equation becomes

〈∂H̃C
∂t

ϕ
〉
K

+
∑

e=K∩K′

〈〈
(H̃Cu)∗ · nϕ

〉〉
e
−
〈
H̃Cu ·∇ϕ

〉
K

=

∑

e=K∩K′

〈〈
κH̃∗∇C∗ · nϕ

〉〉
e
−
〈
κH̃∇C ·∇ϕ

〉
K
.

(41)
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Clearly, setting C = 1 in above leads to (11). Again the unknown values
(H̃C)∗ in the element interfaces are computed with an approximate Rie-
mann solver. A solution for (H̃C)∗ can be derived by adding the tracer
equation (with zero diffusivity) to the system (16). Because in this context
the tangential velocity v is essentially treated as a passive tracer, one obtains
a similar solution:

(HC)∗ = {HC}+ s1[[HC]] +
s2 + s3 − 2s1

2
CRoe[[H]] +

(s2 − s3)CRoe

2cRoe

([[Hu]]− uRoe[[H]])

(42)

In the above equation CRoe denotes the tracer concentration value used in
the linearised equations. Similarly to vRoe, solving the Rankine-Hugoniot
relation results in the Roe average:

CRoe =

√
HlCl +

√
HrCr√

Hl +
√
Hr

, (43)

Clearly, for an arbitrary constant tracer concentration C = C0, one gets
CRoe = C0 and (HC)∗ = C0H

∗, which confirms consistency.
If a first order time discretisation is used the first term of equation (41)

becomes

〈∂H̃c
∂t

〉
K

=
〈(h̃n+1 + ηn+1)cn+1 − (h̃n + ηn)cn

∆t

〉
K
, (44)

which is linear in cn+1 and no iterative solver is needed. Equation (41) can
therefore be solved in a conventional manner when H̃n+1 is known. How-
ever, for consistency the same fully implicit Runge-Kutta time integration
presented in Section 3.3 is used for solving the tracer equation.

5. Numerical tests

The presented DG-FEM WD method was tested with several test cases
commonly used in the literature and also a couple of novel ones. All the tests
were solved with DIRK22 time integration with 600 second time step unless
otherwise noted.
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5.1. Balzano test cases
The first test cases considered are those by Balzano [34]. They feature

a rectangular 13800 m long basin, with mildly sloping bathymetry ranging
from zero to 5 meters. As forcing, water level perturbation is prescribed at
the deep end. The Manning bottom friction coefficient is set to 0.02 s/m1/3

while Coriolis force, viscosity and free surface stress are being ignored. The
test cases are originally one dimensional but here they are solved in a 2D
basin whose width is 7200 meters. For exact description of the bathymetry
the reader should refer to [34] or [9].

The first test case considers a wave run up on a uniformly sloping bed. A
sinusoidal water level perturbation with an amplitude of 2 m and period of
12 hours is imposed. Here we are using a uniform mesh of 1200 m horizontal
resolution, similar to the original one dimensional tests by Balzano. The
vertical length scale ε = 0.43 m and a slightly smaller value is used for the α
smoothness parameter α = 0.3 m. Figure 3 shows the modified elevation field
η̃ at 20 minutes intervals for the drying and flooding phase. It is noteworthy
that the η̃ elevation curves correspond to the total water column depth and
thus these plots are directly comparable to other results in literature (e.g.
[34, 15]).

For comparison the results obtained with a fully explicit flux-limiting WD
method (see [9]) are also shown in 3. Clearly the two methods are indeed in
good agreement. Moreover, the retention volume (water trapped in the dry
areas) is not very large, in fact smaller than with some methods presented in
[34] and no oscillations or wiggles are present. The only noticeable difference
is that the shocks at the flooding front appear to be milder than with the
explicit method, which is due to the smooth WD transition.

The second test is similar, except that the bed now features a flat shelf.
The corresponding elevation field is plotted in Figure 4. The results are again
in good agreement with the fully explicit WD method and similar to those
presented in literature.

The third test case is different because the bed now features a small
“pond” that retains water in the dry phase. In this simulation the water
level at the open boundary is dropped sinusoidally to the minimal level,
holding it there for an indefinitely long time in order to test whether water
is leaking through the dry area. The elevation field after 100 hours, which
essentially corresponds to the static solution, is shown in Figure 5. Because
water fluxes do not vanish as long as the pressure gradient term operates, the
pond eventually dries up. The flux depends on the parameter α (the smaller
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the value of α, the smaller the flux) and the bottom friction parametrisation,
but neither can prevent the pond from drying as time goes to infinity. Figure
5b presents the η field that is used in the numerical implementation. Indeed
it is seen that the static case corresponds to situation where the elevation field
is horizontal and thus the pressure gradient term is zero. This test reveals
that water is leaking through dry areas which can be seen as a drawback of
the presented method. However, it must be stressed that such drawback is
common also to all porous media methods [15].
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Figure 3: Balzano 1 test case. Elevation field at 20 minutes intervals for (a)
the drying phase and (b) flooding phase. The thick line corresponds to the
static bed. For comparison results obtained with an explicit WD method are
show with a dotted line.

5.2. Steeper slopes

During the model development is was noted that the standard test cases
proposed in the literature e.g. in [34] and [35] tend to be too easy compared
to real-world simulations with complex topography. This is especially true
with a steep bathymetry [36]. In this section we therefore present similar
tests as the first test by Balzano but with increasing difficulty by steepening
the bed slope. The proposed method was tested with several different mesh
resolutions and the goal was to determine the smallest α values for which the
method remains stable. To ensure similar conditions the tests were designed
such that in each case at least one element would be completely dry at low
water. The results are presented in Table 1.
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Figure 4: Balzano 2 test case. Elevation field at 20 minutes intervals for (a)
the drying phase and (b) flooding phase. The thick line corresponds to the
static bed. For comparison results obtained with an explicit WD method are
show with a dotted line.
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Figure 5: Balzano 3 test case. The static solution after 100 h of simulation
time. a) Total water column depth superimposed on the original bathymetry.
b) Elevation field as seen by the pressure gradient term. The thick line
corresponds to the static bed.

It is seen in Table 1 that the smallest possible α value remains relatively
constant in all the cases despite the fact that the nature of the WD process
varies dramatically. Indeed, the vertical length scale ε varies from 50 m (up-
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Lx [m]
|∇h| [m/m] 25 50 100 250 500

0.10 0.3 0.3 0.3 0.3 0.5
0.05 0.3 0.3 0.3 0.3 0.5
0.01 0.2 0.2 0.3 0.3 0.3
0.001 0.2∗ 0.2∗ 0.3∗ 0.5∗ 0.5∗

Table 1: Smallest stable α parameter values (in meters) for various bed slopes
and mesh resolutions. ∗) A mild shock wave appears at flooding phase, which
requires larger α for coarse mesh.

per right corner) to 0.025 m (lower left corner in Table 1). In the case of
very steep slopes the surface remains nearly horizontal and no wave prop-
agation effects are visible at the WD front. For more gradual bathymetry
wave effects become apparent and mild shocks appear at the flooding phase.
To deal with such shocks a larger retention depth (water column depth in
the dry area) may be needed to maintain stability. Larger retention depth
implies faster wave propagation at the WD front which naturally smooths
the shocks.

5.3. Thacker test case

Thacker [37] presented an analytical solution for water oscillation in a
paraboloid bowl which has been used as a test case in many references [38,
34, 39, 28, 12]. The test case consists of a regular basin, a paraboloid of
revolution, in which the free surface oscillates without any external forcing.
The basin is large, 430.620 km in diameter, but very shallow as the depth
is not more than 50 m at the centre. Initially the free surface is also a
paraboloid of revolution. The dimensions of the bowl are chosen such that
the free surface oscillation has a 12 hour period. For exact description of the
test case see e.g. [9, 34].

This is a challenging test case as no bottom friction (or other dissipation)
is present. Moreover the horizontal length scales are larger than in a typical
application. Due to the large diameter of the basin, a common grid resolution
ranges from 4 km to 10 km. Consequently, although the bed slope is very
gradual, the vertical WD length scale is large: ε = 2.4 m for a 10 km mesh.
A slightly smaller value α = 2.2 m was used for the smoothness parameter.
Using a smaller α resulted in oscillations at the boundary, that in the absence

22



of any dissipation eventually deteriorated the solution in the whole domain.
In order to simulate the WD process accurately, the simulations were carried
out in a slightly larger domain, 495.2 km in diameter.

A cross section of the elevation at three time instances is shown in Figure
6a. In the centre of the domain, the numerical model is very close to the
analytical solution while the difference increases towards the WD front. The
smooth transition between the wet and dry regimes is clearly visible. As
stated earlier the smoothness of the solution is controlled by the parameter
α and thus smaller α yields more accurate solution. However, the smallest
feasible α value appeared to depend on the horizontal resolution, and α
was observed to be proportional to ε. Thus more accurate solutions can be
obtained by decreasing α but the mesh has to be refined accordingly.

Figure 6b shows the water elevation at the centre of the domain versus
time. It is seen that the proposed method is stable without noticeable ad-
ditional dissipation. Moreover, as the signal does not attenuate significantly
in time, the numerical dissipation also remains moderate. This test also
justifies the higher order Runge-Kutta time integration presented in Section
3.3: Clearly first order implicit Euler method is too dissipative to be used
in practical applications. Here the same time step was used for the implicit
Euler method, but similar excessive dissipation was observed also for shorter
time steps.

5.4. Mass conservation

Because the Thacker test case features a closed basin it is well suited for
testing the mass conservation property presented in Section 3.5. Denoting
the total mass at time t by M(t) the relative error E = (M(0)−M(t))/M(0)
was of order 10−11 throughout the 25 hour simulation period, demonstrating
that mass is conserved with sufficient accuracy.

5.5. Rate of convergence

The Thacker test case was also used to test how fast the proposed method
converges toward the analytical solution when the mesh is refined. The test
case was run with several meshes with increasing resolution Lx = {10, 15,
20, 30, 40} km. As the smoothness parameter α affects the solution, it was
tuned to match the length scale: the corresponding variable values were set
to α = 0.9ε i.e. α = {2.16, 3.24, 4.32, 6.48, 8.64} m. These values are close
to the smallest stable values in each case because decreasing α significantly
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Figure 6: Thacker test case. a) Solid thin line: elevation after 6, 9, and 12
hours. Dotted line: analytical solution. Thick line: bathymetry. b) Water
level at the centre of domain versus time. Solid line: Numerical solution.
Dotted line: analytical solution. Dash-dotted line: numerical solution with
implicit Euler time integration.

caused oscillations. Examples of the different meshes are illustrated in Figure
7.

The L2 error of the elevation field η̃ was used as an error measure:

EL2 =
√〈

(η̃ − ηa)2
〉
Ω
/
〈
1
〉
Ω
, (45)

where ηa denotes the analytical solution that takes into account the dry
bed, i.e. ηa = max{ηexact,−h}. It is noteworthy that the error measure
encompasses the entire domain, both wet and dry areas.

The observed L2 error is shown on Figure 8, showing roughly 1.5 rate of
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(a) Lx=40km (b) Lx=30km

(c) Lx=20km (d) Lx=10km

Figure 7: Meshes for the Thacker convergence test case.

convergence. It has to be stressed, however, that the convergence test is not
entirely fair as we are comparing two different solutions. Indeed the analytical
solution presented in [37] was developed for the original SWEs while in here
the modified equations (5)-(6) are being solved. Moreover, the error is largest
at the WD transition, where the numerical solution is smoother than the
analytical (see Figure 6a). Therefore the error is mainly dominated by the
parameter α instead of the spatial discretisation. Nevertheless, based on this
test it can be stated that refining the mesh allows smaller α values leading
to smaller discrepancies, and thus the solution does converge towards the
solution of the original SWEs.
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Figure 8: Convergence of the L2 error versus spatial resolution. The observed
rate of convergence is mainly due to the α parameter values.

5.6. Test on tracer consistency and conservation

Tracer consistency was tested with the Thacker test case by adding a
passive tracer in the simulation. The tracer concentration was initially set to
unity throughout the domain. As demonstrated in Section 4, the concentra-
tion should remain equal to unity at all times. In fact, the solution for such
a tracer is trivial, and therefore the numerical method should converge in-
stantly without any iterations. Such behaviour was indeed observed. During
the simulation the error in tracer concentration was of order 10−8 which is
the same magnitude as the residual tolerance used in the Newton iteration.

Tracer mass conservation was also tested. Figure 9 illustrates the relative
error in total tracer mass versus time. The relative error is defined by EC =
(MC(0)−MC(t))/MC(0), where MC(t) denotes the total tracer mass at time
t. The tracer mass is conserved up to precision 10−15 which is the same order
of magnitude as the numerical precision of the model.

6. Application to the Scheldt Estuary

The Scheldt Estuary is situated between Belgium and the Netherlands
(Figure 10). The entire Scheldt River catchment area in northern France,
Belgium and the Netherlands hosts approximately 7 million people and also
features heavy industrial activity. Due to substantial and partly untreated
discharges, the water quality in the river is generally poor with elevated levels
of heavy metals, fecal bacteria and nutrients [40].

The Scheldt is a macrotidal estuary driven by the semidiurnal tides on the
North Sea. Indeed, the residual water flux due to river discharge is roughly
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Figure 9: Error in total tracer mass versus time. The error is the same
magnitude as the numerical precision.

two orders of magnitude smaller than that of the tidal flow. The width
reduces from 6 km near the mouth to 500 m near Antwerp, roughly 80 km
upstream. The tidal signal is amplified as it travels up the estuary, the tidal
range near the mouth in Vlissingen being 3.8 meters and 5.2 meters further
upstream in Antwerp. The estuary is generally very shallow (mean depth is
roughly 10 m) but features deep flood and ebb channels (see Figure 11) that
can reach the depth of 60 meters [41]. The main estuary also features large
tidal flats (mainly Saeftinge and Ballatsplaat) and sand banks between the
two main channels, both of which are submerged during high water.

It is clear that taking wetting-drying phenomenon into account in such
a domain is essential. The model domain is discretised with a triangular
mesh that not only encompasses the Scheldt Estuary but also most of the
North-western European Continental Shelf Sea (NWECSS) extending all the
way to the shelf break (see Figure 10). Although the computational domain
is extended drastically, the increase in computational cost remains moderate
as roughly half of the elements are located inside the area of interest, i.e. the
Scheldt. The mesh was generated with the GMSH software [42, 43].

The advantage of such domain extension is that the tide can be prescribed
at the shelf break using data from global tidal models. Moreover, the meteo-
rological events in the North Sea can easily be incorporated in the model. In
this work ETOPO1 bathymetry data3 [44] is used for the NWECSS while the

3http://www.ngdc.noaa.gov/mgg/global/
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Figure 10: Computational domain of the Scheldt application. The mesh
contains 29130 elements. The upstream river network is modelled with 1D
version of the SLIM (not shown here).

Scheldt bathymetry is obtained from KustZuid model4. The tidal signal at

4Courtesy of M. Zijlema of the National Institute for Coastal and Marine Management (RIKZ)
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the open boundary is defined using TPXO7.1 model5 [45]. The meteorolog-
ical forcings (wind stress and atmospheric pressure) are from global NCEP
reanalysis data6 [46]. At the upstream boundary the 2D model is coupled
with a 1D river network model that covers all the connected tidal rivers
and tributaries. The tidal rivers are forced with observed river discharge at
the upstream boundaries. In addition the freshwater discharges of Thames,
Seine, Rhine and Meuse rivers are prescribed using daily average discharge
data. More detailed information on the model setup can be found in [9] and
[23].

The hydrodynamics were solved using the DIRK22 time marching with 20
minutes time-step. The WD the smoothness parameter was set to α = 0.5 m.

Although model validation is not the main purpose of this paper, the
bottom friction coefficient was tuned to obtain a good match of the tidal
signal propagation by comparing water elevation to measurements in sev-
eral stations in Scheldt and North Sea. The Manning coefficient ranges
from 0.0235 s−1m1/3 in the shelf sea to 0.026 s−1m1/3 near Antwerp, increas-
ing linearly along the estuary. SLIM has been validated for tidal elevation
previously [23] and similar performance is obtained with the proposed WD
method. Examples of two time series versus observations are presented in
Figure 14. The model is clearly in good agreement with the data and there
is no evidence that the moving bathymetry WD process would deteriorate
the solution by affecting wave propagation, for example.

Snapshots of free surface elevation at high and low water can be seen
in Figure 11 where the drying sand banks are clearly visible. Moreover, in
Figure 12 it can be seen that the modification of the bathymetry is indeed
restricted to the dry areas which also support the notion that the physical
processes in the wet domain remain essentially unmodified. The depth av-
eraged velocity field is shown in Figure 13. The flow circulates smoothly
around the sand banks and no spurious noise is visible. Asymmetric flow
patterns between ebb and flood channels is clearly observed [41].

One can conclude that qualitatively the model performance is very similar
to what has been reported earlier [9]. The major difference is in the compu-
tational cost. As most of the WD methods rely on explicit time integration,
the longest permissible time step is heavily restricted by the CFL condition.

5http://www.oce.orst.edu/research/po/research/tide/index.html
6http://www.cdc.noaa.gov/cdc/data.ncep.reanalysis.surfaceflux.html
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Simulation
Number of
elements

Method ∆t T CPUtime Gain

Balzano 1 561 expl. ≈ 5 s 12 h 116.9 s
561 impl. 600 s 12 h 20.46 s 5.7

Scheldt 29130 expl. < 0.2 s 1 h 34592 s
29130 impl. 1200 s 1 h 129.64 s 267

Table 2: Comparison of CPU times for flux-limiting and moving bathymetry
wetting-drying. The presented method runs significantly faster due to the
implicit time stepping.

In the Scheldt Estuary the time step is less that one second due to the deep
channels and relatively small elements.

With the proposed fully implicit time marching, however, there is no
intrinsic restriction on the time step, it is only required to resolve the tide
and the forcing signals. In this simulation therefore a much longer time step
of 20 minutes is used.

In Table 2 the overall CPU time is compared to the explicit flux-limiting
WD method [9]. The comparison was carried out for Balzano test 1 and
the Scheldt application running the simulations for a short period of time
(T ). These tests were run on an Intel Xeon processor using four nodes.
It is seen that already in the Balzano benchmark implicit code runs much
faster, while in the Scheldt application the explicit time stepping is becoming
far too expensive, running more than 200 times slower. It must be noted,
however, that such a comparison is not entirely fair as neither the code nor the
model setup is optimised for explicit computation. For example, one should
eliminate too small elements in the mesh, which has not been carried out.
Nevertheless, in order to be able to capture the tidal dynamics in the estuary,
sufficiently fine mesh is required [23] and such a setup is very demanding for
explicit methods.

7. Conclusions

In this paper a novel fully implicit WD method has been proposed. Al-
though the method relies on artificially moving the bathymetry in dry areas,
both the numerical test and the real-world application in the Scheldt Estuary
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(a)

(b)

Figure 11: Wetting-drying in the Scheldt Estuary during spring tide. a)
Depth at high water b) Depth at low water. Exposed sand banks are clearly
visible. Maximum depth is roughly 60 m.

confirms that the WD processes are modelled with good accuracy. No spuri-
ous behaviour was noticed in the dry areas and wave propagation properties
seem intact.

Although the moving bathymetry WD method resembles porous media
approach, there are several differences. Since our model relies on artificial
displacement of bathymetry, there is no need to introduce the concept of
porosity nor properties of the porous layer. Generally this leads to a simpler
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(a)

(b)

Figure 12: Bathymetry displacement |h̃ − h| during a) high water b) low
water. The modification remains very small in the deep areas.

numerical formulation and fewer number of unknown parameters than in
porous media WD methods [16, 17, 15]. Indeed the moving bed was defined
by the means of a single-parameter function, which has proved out to be
sufficient in all the various test cases.

Since the main field of application of the SLIM is long-term transport
simulations simulations, we have paid special attention to ensure strict mass
conservation and tracer consistency properties, which (especially for the lat-
ter) is not common in WD literature. The numerical tests confirm that
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(a)

(b)

Figure 13: Velocity fields at a) flood and b) ebb tide.

the scheme is mass conservative, tracer mass is conserved up to numerical
precision and no spurious transport due to the WD method appears.

The main advantage of the presented method, however, lies in the com-
putational efficiency due to the implicit time integration. Indeed, it is not
obvious to develop a fully implicit WD method that is strictly mass conser-
vative and consistent with tracer equation, especially in FE framework. To
be able to really exploit the advantages of implicit time integration, higher
order DIRK schemes are suggested here. When using long time steps of order
ten minutes, simple implicit Euler time marching scheme proved out to be
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Figure 14: Simulated water elevation (solid line) versus measurements
(dashed line) in two stations.

far too dissipative.
In the Scheldt application the total CPU time was reduced by a factor

of 200 in comparison to explicit time stepping, that is often required in WD
simulations. As the unstructured grid FE models tend to be slower than
established FD models, this speed-up is essential in practical applications.

Lastly it should be stressed that although this paper deals with FE im-
plementation, other formulations are not excluded, because the method can
be described already at the level of the primitive equations.

Future work will include the development of a better representation of
the bathymetry in the approximate Riemann solver and also an extension to
higher order elements, which is not possible for most WD methods.
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Appendix

Runge-Kutta schemes are defined by the coefficients ai,j, bj and ci which
are usually gathered in Butcher’s tableau:

c1 a1,1 0 . . . 0
c2 a2,1 a2,2 . . . 0
c3 a3,1 a3,2 . . . 0
...

...
...

. . .
...

cs as,1 as,2 . . . as,s
b1 b2 . . . bs

.

Following [30, section 2.6] and [31, Appendix A], respectively, the implicit
Runge-Kutta schemes are defined as follows.

DIRK22
γ γ 0
1 1− γ γ

1− γ γ

γ = (2−
√

2)/2

ESDIRK64
1
2

1
4

1
4

0 0 0 0
83
250

8611
62500

− 1743
31250

1
4

0 0 0
31
50

5012029
34652500

− 654441
2922500

174375
388108

1
4

0 0
17
20

15267082809
155376265600

− 71443401
120774400

730878875
902184768

2285395
8070912

1
4

0
1 82889

524892
0 15625

83664
69875
102672

−2260
8211

1
4

82889
524892

0 15625
83664

69875
102672

−2260
8211

1
4
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