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Abstract

This paper describes an online coupling between a 3D discontinuous Galerkin finite ele-
ment marine model and a 1D vertical turbulence closure model based on finite differences.
The coupling exploits the topology of the 3D mesh, that is formed by stacking layers of
prisms in the vertical direction. A robust mapping between the finite difference grid and
the finite element function space is designed, taking into account the discontinuities in the
latter. The coupling is tested with two horizontally homogeneous flows and an idealised
3D estuary simulation. The results are in good agreement with those obtained with a
finite difference model using the same turbulence closure, indicating that the coupling
does not deteriorate the performance of the turbulence model.

Keywords: Finite element method, Discontinuous Galerkin, Finite difference method,
Turbulence closure, Coupling

1. Introduction

Three-dimensional marine models usually rely on Fourier-Fick parametrisations to
represent vertical fluxes due to unresolved fluctuations. The relevant eddy coefficients
are obtained by means of turbulence closure schemes. While in some applications simple
formulations, such as algebraic expressions of eddy viscosity/diffusivity, can be sufficient,
in general more sophisticated models are needed to account for the time-space evolution
of the turbulent fluxes.
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Preprint submitted to Ocean Modelling March 2012



Most popular high-level turbulence models consist of two partial differential equations,
one for the turbulent kinetic energy (TKE) and another one for an accompanying variable
that determines the relevant length scale. Such turbulence closures include the widely
used model by Mellor and Yamada (1982) (level 2.5), k–ε (Rodi, 1987), k–ω (Wilcox,
1988; Umlauf et al., 2003) and a recent generic length scale (GLS) model by Umlauf
and Burchard (2003). Choosing a turbulence model is not trivial as it may have a high
impact on mixing and circulation (Ruddick et al., 1995; Luyten et al., 1996; Burchard
et al., 1998; Burchard, 2002; Wijesekera et al., 2003; Warner et al., 2005).

GOTM1 (General Ocean Turbulence Model, Burchard et al. (1999)) is a library that
implements a generic turbulence closure model, in which all the above models can be
easily obtained by changing parameters. GOTM is based on a finite difference (FD) for-
mulation on a 1D vertical grid. It has been extensively tested and validated in numerous
studies. Offering the flexibility to easily switch from one closure to another, GOTM is
an advantageous tool for marine modelling.

GOTM has been coupled to many structured grid FD or finite volume (FV) models,
including GETM (General Estuarine Transport Model, Burchard and Bolding (2002))
and MOM (Modular Ocean Model, Griffies (2010)). Enstad et al. (2008) studied CO2

transport in a lake using GOTM with MITgcm (Massachusetts Institute of Technology
general circulation model). Rygg et al. (2009) used GOTM with both MITgcm and BOM
(Bergen Ocean Model) in a similar study. Also POLCOMS (Proudman Oceanographic
Laboratory Coastal Ocean Modelling System) has been coupled to GOTM to simulate
tidal mixing and stratification in the Northwest European Continental shelf (Holt and
Umlauf, 2008). Among unstructured grid models GOTM has been coupled to FVCOM
(Finite Volume Coastal Ocean Model, Chen et al. (2006); Tian and Chen (2006)).

The purpose of this paper is to investigate the possibility of coupling GOTM to an un-
structured grid discontinuous Galerkin (DG) finite element (FE) marine model. FE ma-
rine models have been equipped with various turbulence closure models. FEOM (Finite
Element Ocean Model,Wang (2007)) uses a Richardson number dependent Pacanowski
and Philander (1981) parametrisation. More sophisticated Mellor-Yamada level 2.5 clo-
sure has been implemented in a 1D water column model (Hanert et al. (2006, 2007);
Blaise and Deleersnijder (2008)) and a full 3D model in Blaise et al. (2007). The SELFE
(Semi-implicit Eulerian-Lagrangian Finite Element) model implements the GLS turbu-
lence closure (Zhang and Baptista, 2008). However, all these FE models are based on
continuous Galerkin (CG) formulation, i.e. the basis functions are continuous between
elements. White et al. (2008) present a FE model that features discontinuous fields in
the vertical direction, but rely on a simple parabolic parametrisation of eddy viscosity.
Therefore, to our knowledge, sophisticated turbulence models in discontinuous Galerkin
framework have not been dealt with so far.

Creating an interface between a 1D FD turbulence model and a structured grid
FD/FV circulation model is fairly straightforward given the similarities in the grid and
the functional representation of the fields. The task is more complicated with unstruc-
tured grids, where the topology of the mesh is arbitrary: for instance, the nodes are not
ordered in a regular lattice that provides easy indexing. Moreover, in FE, the solution is
a piecewise polynomial on the domain, in contrast to a set of discrete values in FD or a
piecewise constant solution in FV.

1www.gotm.net

2



In this article the coupling has been implemented in the Second-generation Louvain-
la-Neuve Ice-ocean Model (SLIM2), but the presented methodology is applicable to a
wide range of models. The only necessary assumption is that the nodes of the 3D mesh
are aligned vertically. A commonly used prismatic mesh, that is formed by extruding
triangular surface mesh in the vertical direction, fulfills this requirement. Equipotential
z-grids, terrain following σ-grids and their generalisations are equally applicable. Here
the interface is derived for standard DG basis functions but the methodology can easily
be extended to other function spaces as well.

As established models are nowadays mainly based on structured meshes and FD
formulation, while unstructured mesh models are still emerging and mostly applied to
regional studies, it is clear that there is a need to develop interfaces between the two model
classes. This paper is a contribution to such a coupling. The aim is to take the best of
both worlds, i.e. combining novel FE ocean model developments with an established FD
turbulence library.

The article is organised as follows. The governing equations are presented in Section
2. Section 3 presents the numerical models: SLIM 3D and the DG-FEM function space
are briefly presented in Section 3.1, while the spatial discretisation and the interface of
GOTM are outlined in Section 3.2. The coupling strategy is presented in Section 4.
Numerical tests and concluding remarks are presented in Sections 5 and 6, respectively.

2. Governing equations

2.1. Shallow water equations

The three-dimensional mean flow is simulated by the shallow water equations in Carte-
sian coordinates [x, y, z]T , the vertical coordinate z increasing upwards. The horizontal
momentum equation reads

∂u

∂t
+ ∇h · (uu) +

∂(wu)

∂z
+ fez ∧ u3D+

g∇hr + g∇hη =
∂

∂z

(
(ν0 + ν)

∂u

∂z

)
,

(1)

and the continuity equation is

∇h · u +
∂w

∂z
= 0. (2)

Integrating (2) over the vertical, and taking into account the impermeability of the surface
and the bottom, leads to the free surface equation

∂η

∂t
+ ∇h ·

∫ η

−h
udz = 0. (3)

Here, u, v and w are the velocity components in the Cartesian coordinates, u3D =
[u, v, w]T , u = [u, v]T denotes the horizontal velocity, ∇h is the horizontal gradient oper-
ator, f is the Coriolis parameter, g is the gravitational acceleration, η is the free surface
elevation, h is the water column depth at rest, ν0 and ν are the molecular and (verti-
cal) eddy viscosity, respectively. The vertical unit vector is denoted by ez. The gravity
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is always orthogonal to the horizontal plane and level z = 0 corresponds to the water
elevation at rest (η = 0).

The vertical velocity is computed diagnostically from the continuity constraint (2).
The density is obtained from the equation of state (Jackett et al. (2006)) using the
potential temperature T , the salinity S and the hydrostatic pressure p

ρ = ρ0 + ρ′(T, S, p), (4)

where ρ0 and ρ′ are the constant reference density and the density deviation, respectively.
The baroclinic head is given by

r =
1

ρ0

∫ η

z

ρ′dz′. (5)

Furthermore, the transport equations for T and S are solved (µ denotes the vertical
eddy diffusivity, µT,0 and µS,0 are the corresponding molecular diffusivities):

∂T

∂t
+ ∇h · (uT ) +

∂wT

∂z
=

∂

∂z

(
(µT,0 + µ)

∂T

∂z

)
(6)

∂S

∂t
+ ∇h · (uS) +

∂wS

∂z
=

∂

∂z

(
(µS,0 + µ)

∂S

∂z

)
(7)

For brevity, the horizontal viscosity and diffusivity terms in the above equations have
been omitted as they are irrelevant for the current discussion.

In this paper the molecular viscosity/diffusivity constants are taken to be ν0 = 1.3×
10−6m2 s−1, µT,0 = 1.4×10−7m2 s−1, µS,0 = 1.1×10−9m2 s−1. To close the set of equations,
the vertical eddy viscosity ν and diffusivity µ need to be solved for.

2.2. Turbulence closure models

Eddy viscosity and eddy diffusivity are calculated as proportional to a turbulence
velocity scale k1/2 (where k is the turbulent kinetic energy, TKE, per unit mass) and an
integral turbulent length scale l:

ν = cνk
1/2l, µ = cµk

1/2l. (8)

The dimensionless proportionality factors, cν and cµ, are stability functions, depending
on non-dimensional shear and buoyancy frequency squared,

αM =
M2l2

k
, αN =

N2l2

k
, (9)

respectively. Here M2 stands for the vertical shear frequency squared and N2 is the
vertical buoyancy (Brunt-Väisälä) frequency squared, defined as

M2 =

(
∂u

∂z

)2

+

(
∂v

∂z

)2

, (10)

N2 = − g

ρ0

∂ρ

∂z
. (11)

Second moment turbulence closure models are derived from the Reynolds Averaged
Navier-Stokes (RANS) equations, leading to transport equations for the Reynold stresses

4



and turbulent tracer fluxes (Burchard (2002)). These equations are then closed by as-
suming a local equilibrium and finding suitable second moment parametrisations for the
unknown third moments. Classical second-moment closures are those by Mellor and
Yamada (1982) and Canuto et al. (2001).

In the present framework, k and l are calculated by means of two budget equations.
The k-equation is derived form the Navier-Stokes equations under the assumption of
vertical shear layers and the turbulent TKE transport being down-gradient. The resulting
transport equation reads as

∂k

∂t
+ ∇h · (uk) +

∂(wk)

∂z
=

∂

∂z

(
ν

σk

∂k

∂z

)
+ P +B − ε, (12)

with the constant turbulent Schmidt number, σk, the shear and buoyancy production
terms

P = νM2, B = −µN2, (13)

respectively, and the viscous dissipation rate per unit mass, ε. The latter can be calculated
from k and l by means of

ε =
(
c0
µ

)3 k3/2

l
, (14)

with the empirical dimensionless parameter c0
µ.

The internal turbulent length scale l is calculated by the means of the generic two-
equation turbulence closure model developed by Umlauf and Burchard (2003). It intro-
duces another transport equation for the generic quantity

Ψ =
(
c0
µ

)p
kmln, (15)

with real numbers p, m and n.
Clearly, for p = 3, m = 3/2 and n = −1, Ψ = ε is obtained. Along with the k-

equation, this set of parameters results in the well-known k–ε model (Rodi (1987)). Other
well known quantities for which budget equations have been derived are the turbulence

frequency ω =
(
c0
µ

)−1
k1/2l−1 (Wilcox (1988); Umlauf et al. (2003)) and kl (Mellor and

Yamada (1982)). The transport equation for Ψ as derived by Umlauf and Burchard
(2003) reads

∂Ψ

∂t
+ ∇h · (uΨ) +

∂(wΨ)

∂z
=

∂

∂z

(
ν

σΨ

∂Ψ

∂z

)
+

Ψ

k
(cΨ1P + cΨ3B − cΨ2ε) ,

(16)

with the empirical parameters cΨ1, cΨ2, and cΨ3, and the turbulent Schmidt number
σΨ. The transport equation (16) has been derived by combining (12) with the highly
empirical ε-equation (Rodi (1987)). However, the empirical parameters have a clear
physical meaning, as discussed by Umlauf and Burchard (2003). The role of cΨ3 for
properly adjusting the balance between increased mixing due to shear and decreased
mixing due to stable stratification has been highlighted by Burchard and Baumert (1995);
Umlauf and Burchard (2005) by analysing conditions for steady state solutions of (12)
and (16) for homogeneous shear layers (i.e. zero gradients of k and Ψ):

P +B = ε, cΨ1P + cΨ3B = cΨ2ε, (17)
5



which implies

Rst
i =

cΨ1 − cΨ2

cΨ3 − cΨ2

· cµ (Rst
i )

cν (Rst
i )

(18)

and

Γst =
cΨ1 − cΨ2

cΨ3 − cΨ1

, (19)

with the steady state gradient Richardson number, Rst
i = N2/M2 and the steady state

mixing efficiency, Γst = −B/ε, where M and N are shear and buoyancy frequency ful-
filling (17). It should be noted that the stability functions cν and cµ are functions of Rst

i

only for turbulence equilibrium P + B = ε. By means of (18), cΨ3 can be calculated as
function of Rst

i which is expected to be Rst
i = 0.25 (Shih et al. (2000)). Burchard and

Hetland (2010) showed that when calculating cΨ3 using the stability functions developed
by Cheng et al. (2002), a steady-state mixing efficiency of Γst = 0.22 is obtained by means
of (19), a value close to the estimate by Osborn (1980).

The most stable boundary conditions for k and l have proved to be Neumann con-
ditions, which are generally derived from the law of the wall and depend on the surface
friction velocity us∗ and the bottom friction velocity ub∗, unless surface wave breaking
effects are considered (Umlauf and Burchard (2005)).

3. Numerical models

3.1. 3D finite element ocean model

In this work we use the Second-generation Louvain-la-Neuve Ice-ocean Model (SLIM).
SLIM is based on the discontinuous Galerkin finite element method, and consists of
coupled 1D, 2D and 3D shallow water models. SLIM 2D has been applied to various
studies. Modelling the flow in the entire Great Barrier Reef, Australia, is presented
in Lambrechts et al. (2008) with validation against measurement data. Coupled 2D-1D
model has been applied to modelling the Scheldt river, estuary and adjacent coastal zone,
where the tidal water elevation is simulated with good accuracy across the multi-scale
domain (de Brye et al. (2010)).

White et al. (2008) present an early barotropic version of SLIM 3D model with semi-
discontinuous function space. Full DG discretisation of the 3D baroclinic equations is
presented in Blaise et al. (2010) and an implicit-explicit Runge-Kutta time integration
method in Comblen et al. (2010). In contrast to the references above, the 3D simulations
in this paper are conducted using a simple explicit time integration scheme (third order
Adams-Bashforth), except for vertical diffusion which is treated semi-implicitly.

3.1.1. Spatial discretisation of SLIM

For solving boundary value problems with the finite element method, the domain is
divided into a finite number of elements. By means of the elements, a discrete function
space, spanned by a set of basis functions, is defined. A FE solution belongs to this
function space and approximates the exact solution of the boundary value problem in
the sense of the L2 norm. Consequently, a FE solution is a function defined in the entire
domain, instead of a set of discrete values as in FD. Usually Lagrangian basis functions
are used, which implies that the nodal values are interpolated inside the elements.

In SLIM the 3D mesh is made up of prismatic elements (see leftmost panel in Figure
1). Each element is a triangular prism of order o, that is formed as a product of a o-
th order triangle in horizontal and o-th order linear element in vertical. As such, the
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solution is a piecewise polynomial of degree o in both horizontal and vertical directions.
Due to the discontinuous Galerkin (DG) formulation, the solution is discontinuous at the
element interfaces. The same spatial discretisation is used for all fields.

Prismatic elements are advantageous in ocean modelling, because they allow for a
flexible discretisation in horizontal direction while the lateral edges remain vertically
oriented. Therefore vertical and horizontal dynamics can easily be separated, which is
essential for the modelling of geophysical flows, where the aspect ratio of vertical and
horizontal length scales generally is much smaller than unity.

Since the FE mesh is unstructured, there is no a-priori ordering of elements or element
nodes. Assuming that there are nE elements in the mesh, an element is identified by an
integer e = 1, . . . , nE. Each element e contains nNe nodes, and consequently a node is
identified by a pair of integers, (e, ξ), ξ = 1, . . . , nNe and the nodal values of a field u are
denoted by u(e,ξ). The set of all nodes (e, ξ) is denoted by D.

Denoting the ξ-th basis function of the element e as ψ(e,ξ), a field u is expressed as
uh =

∑
(e,ξ)∈D u(e,ξ)ψ(e,ξ)(x, y, z), which is a discontinuous piecewise polynomial of degree

o. In this work we are concentrating on first order elements, i.e. o = 1.

3.2. GOTM turbulence closure model

GOTM solves the equations (12) and (16), except for the advection terms that must
be implemented in the 3D circulation model. GOTM is based on a 1D vertical staggered
grid extending from the bed to the fluctuating free surface, divided into q cells (see the
rightmost panel in Figure 1). Internally, the mean flow variables are defined in the cell
centres (crosses in Figure 1), while the turbulent variables are defined at cell interfaces.
Thus the mean flow variables are denoted by um+1/2, m = 0, . . . , q−1 while the turbulent
quantities read νm, m = 0, . . . , q.

3.2.1. GOTM interface

The variables required at runtime by GOTM are listed in Table 1. The user must
provide the input variables at each time step. The output variables evolve in time and
are updated by GOTM. If a single GOTM instance is used for computing several 1D
segments, the output variables of the previous iteration must be provided. Consequently,
one must store the arrays νj,m, µj,m, qj,m, εj,m for each vertical segment j.

4. Coupling strategy

4.1. Mapping nodes between 3D and 1D

In order to couple a 3D model with the 1D turbulence model, one needs to define
vertical segments in the discontinuous 3D mesh, and build a mapping between the corre-
sponding nodes.

In the simplest form, a 1D vertical array is built for each (discontinuous) node in the
triangular surface mesh. Then there exists a bijective mapping ΠDG that maps each 3D
node to a position i in a vertical array j. Using the nodal values of a field u in the 3D
mesh, u(e,ξ), the values at the 1D array are denoted uj,i = ΠDGu(e,ξ), i = 0, . . . , nDG

j − 1.
The 1D array defined above is discontinuous in the vertical. To account for the fact

that the 1D FD grid has only continuous (unique) values at the cell interfaces, another
mapping ΠCG is needed. Unlike above, ΠCG ignores the discontinuities in vertical, and
hence it is no longer a bijection. ΠCG is used to fetch GOTM generated data back to the
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3D fields, denoted by ν(e,ξ) = ΠCGνj,m. Consequently the field ν(e,ξ) is continuous in the
vertical direction.

The mappings ΠDG and ΠCG are illustrated in Figure 1. For first order elements it
holds nCG

j = nDG
j /2 + 1.

Alternatively, the 1D vertical arrays can be located at the centroids of the surface
triangles. In this case there exists only a single 1D array for each column of prisms.
In order to fetch data from the 3D mesh to such an array, the FE basis functions are
evaluated at the DG points corresponding to the triangle centroid, which can be seen
as a generalisation of the map ΠDG. To map turbulent quantities back to the 3D mesh,
the 1D values are copied to the entire column of prisms, i.e. the values are constant in
the horizontal, and linear continuous in the vertical direction. The 3D field is further
smoothed in horizontal direction by taking a nodal average weighted by the volume
associated to each node. This approach provides horizontal filtering on the input data,
which improves the stability of the turbulence closure model in the presence of strong
horizontal gradients.

4.2. Computing M and N

The key input parameters for GOTM are the vertical shear frequency M and buoyancy
frequency N , defined in (10) and (11).

The buoyancy frequency requires the computation of the vertical gradient of the po-
tential density, which is obtained by differentiating the equation of state at a constant
pressure

∂ρ

∂z
= A(T, S, p)

∂T

∂z
+B(T, S, p)

∂S

∂z
, (20)

A =
∂ρ(T, S, p)

∂T

∣∣
S,p
, (21)

B =
∂ρ(T, S, p)

∂S

∣∣
T,p
. (22)

Consequently, for computing M and N , the vertical gradients of T , S, u and v need
to be evaluated at the element interfaces. Here we present two different strategies for
obtaining the gradients.

In FE discretisation the most intuitive way to evaluate gradients is by using the
gradients of the basis functions. The vertical gradient of a field T is given as ∂T

/
∂z =∑

(e,ξ)∈D T(e,ξ)∂ψ(e,ξ)

/
∂z, which is a discontinuous polynomial of degree o− 1. The nodal

values of such a field are given by(∂T
∂z

)
(e,ξ)

= T(e,ξ)

∂ψ(e,ξ)

∂z

∣∣
x(e,ξ)

, ∀(e, ξ) ∈ D

Using the mapping ΠDG, an array
(
∂T
/
∂z
)
j,i
, i = 1, . . . , nDG

j is created for each

vertical line j, assigning the appropriate values(∂T
∂z

)
j,i

= ΠDG

(∂T
∂z

)
(e,ξ)

. (23)
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The above values are discontinuous at the element interfaces. An estimate of the gradient
can be obtained by taking an arithmetic mean( ∂̂T

∂z

)
j,m

=
1

2

[(∂T
∂z

)
j,2m

+
(∂T
∂z

)
j,2m−1

]
, (24)

m = 1, . . . , nCG
j − 2.

The drawback of (24) is that it only uses the gradient in each element, thus ignoring
the jump at the interface. The gradient fields also tend to be more noisy than the
corresponding scalar fields.

Another possibility is to use finite differencing across the element interface. First, the
field nodal values are fetched in the 1D arrays

Tj,i = ΠDGT(e,ξ). (25)

Denoting the z coordinates of each node by zj,i, element heights and the total depth
are obtained as

dj,m+1/2 = zj,2m+1 − zj,2m, l = 0, . . . , nCG
j − 2, (26)

Hj = zj,nDG
j −1 − zj,0. (27)

Next, T is evaluated at element centres using the 1D DG-FEM basis functions ψi(ξ), i =
1, . . . , nN1D, defined on a reference element ξ ∈ [−1, 1]. For first order elements nN1D = 2
and we can write (see Figure 1):

T̃j,m+1/2 = Tj,2mψ1(0) + Tj,2m+1ψ2(0),

m = 0, . . . , nCG
j − 2

(28)

For Lagrangian basis functions, we have ψ1(0) = ψ2(0) = 1/2, implying that the above
is equivalent to an arithmetic mean of the nodal values.

Now the vertical gradient of T can be estimated by finite differencing

d̃j,m =
1

2

(
dj,m+1/2 + dj,m−1/2

)
,( ∂̂T

∂z

)
j,m

=
T̃j,m+1/2 − T̃j,m−1/2

d̃j,m
, (29)

m = 1, . . . , nCG
j − 2 (30)

The formulation (29) is more accurate because (for first order elements) the field
values are more reliable at the element centres. Clearly, (29) depends on a stencil of 4
nodal values and thus ignores neither the jump nor the gradient at the interface. To
obtain better estimates, more sophisticated interpolation methods could be used, but
those are not dealt with in this article.

Once the gradients are obtained, the buoyancy frequency squared is computed as

(N2)j,m = − g

ρ0

[
Aj,m

( ∂̂T
∂z

)
j,m

+Bj,m

( ∂̂S
∂z

)
j,m

]
, (31)
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where Aj,m and Bj,m are computed with the mean temperature and salinity at the inter-
face.

The vertical shear frequency is computed in a similar fashion. Denoting the shear
frequency in x direction by Mx, the following temporal averages are defined with respect
to the velocity field of the previous iteration:

(M̄x)j,m = δ
( ∂̂u
∂z

)
j,m

+ (1− δ)
( ∂̂u
∂z

)old

j,m
,

(M̄ ′
x)j,m =

1

2

( ∂̂u
∂z

)
j,m

+
1

2

( ∂̂u
∂z

)old

j,m
.

The implicity parameter δ ∈ [0, 1] depends on the temporal scheme of vertical diffusion.
Here, the Crank-Nicholson scheme is used for vertical diffusion, so that δ = 1/2.

Now, the square of vertical shear frequency in x direction is computed as:

(M2
x)j,m = (M̄x)j,m(M̄ ′

x)j,m, (32)

m = 1, . . . , nCG
j − 2

The shear frequency in y direction, My, is computed analogously, with the respective
velocity field v. Finally the shear frequency is given by

M =
√
M2

x +M2
y . (33)

The temporal averaging in (32), proposed by Burchard (2002), guarantees that the
(Reynolds averaged) kinetic energy is transformed to turbulent kinetic energy in a con-
servative manner, which improves the numerical stability of the TKE computation.

The above formulation for computing N and M is derived for first order Lagrangian
DG basis functions, but it similar formulae can be derived for other (e.g. higher order or
continuous) function spaces as well.

4.3. Advection of k and Ψ

The equations (12) and (16) contain advection terms for k and Ψ, respectively. These
terms are not included in the 1D vertical turbulence closure model that deals only with
turbulent processes. Therefore k and Ψ are advected in the 3D model as a passive tracer
using the same Adams-Bashforth scheme as for T and S.

For stability it is crucial to ensure strict positivity of these variables which may be
challenging due to strong gradients. A monotonous tracer advection scheme is achieved
by applying a slope limiter similar to that by Aizinger (2011). Slightly negative values
(of the order of the machine precision) may still appear, which are clipped to a small
positive value.

5. Numerical tests

In order to validate the presented coupling, a number of numerical tests were con-
ducted. All the tests were run on SLIM 3D coupled to GOTM. In typical estuarine
conditions the k–ε, k–ω and (improved) Mellor-Yamada level 2.5 turbulence closures
have proven to produce similar results (e.g. Warner et al. (2005)). In these tests a k–ε
turbulence closure with the stability functions of Canuto et al. (2001) (Model A) was
used. For a detailed set of parameters refer to Burchard et al. (1998).

10



5.1. Bottom boundary layer

The 3D model’s ability to reproduce bottom boundary layer was assessed with pressure
gradient driven free flow. The fluid is initially at rest, forced only by a constant free
surface slope. In the absence of rotation, the flow velocity near the bottom boundary
follows the usual logarithmic profile, which can be expressed as (Hanert et al. (2007))

u(z) =
ub∗
κ

log

(
zb0 + z + h

zb0

)
, (34)

where ub∗ is the bottom friction velocity and κ is the von Karman constant.
In accordance with (34), the conventional quadratic friction law is imposed at the

bottom:

ν
∂u

∂z
= cd|ub|ub, (35)

cd =

 κ

log(
zb+h+zb0

zb0
))

2

, (36)

where cd is the drag coefficient, zb is the vertical coordinate at the middle of the bottom
most element and ub = u(zb). Using (34) and (36), the bottom friction velocity is
obtained as ub∗ =

√
cdub.

Pressure gradient driven free flow was simulated in a 10 km by 10 km square domain
in horizontal, 15 m deep, with 30 cm vertical resolution. Throughout the simulation
the free surface slope was fixed to −10−5 in x direction. Bottom roughness length was
zb0 = 1.5 mm. The simulation was run for 24 h until it reached a steady state, i.e. a
balance between pressure gradient force and friction. The shear frequency was computed
either with finite differencing according to (29) or by the means of the FE basis functions
(24). For reference, the same simulation was performed with 1D GOTM alone using its
FD mean flow module 3.

The steady state vertical velocity profile is presented in Figure 2. SLIM+GOTM
produce very similar profile to GOTM when the FD gradient are used. With the FE
gradient, on the other hand, the flow velocity is overestimated in the upper part of the
water column.

Vertical profiles of turbulent kinetic energy, dissipation rate and turbulent viscosity
are presented in Figure 3. The TKE profile obtained with SLIM+GOTM corresponds
very closely to that of GOTM, except at the bottom boundary where TKE is higher.
Similarly SLIM+GOTM overestimates the TKE dissipation rate at the bottom. The
deviation is much larger in the case of FE gradients.

Based on these results, the numerical method for computing vertical gradients has
a significant impact on the simulated turbulence. Figure 4 compares the vertical shear
frequency M computed with both FD and FE gradients for the same velocity profile. It is
seen that FE gradients produce higher M near the bottom, but the difference is confined
only to the two bottom most elements. In the central part of the water column, where
the velocity profile is smoother, the two methods are in good agreement.

3Since the flow is horizontally homogeneous, a 1D vertical model and a 3D model produce comparable
results. As a 3D FE model (in contrast to common FD models) cannot be reduced to a 1D vertical model,
we are using full SLIM 3D here.
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Because P = νM2 appears as a source term for both the k and ε equations, overesti-
mation of M explains the high values of TKE and ε near the bottom seen in Figure 3. In
the central part of the water column, TKE is almost unaffected, but ε is still slightly over-
estimated by roughly 1% (not shown), which results in smaller eddy viscosity (bottom
panel in Figure 3), and higher flow velocity (Figure 2).

Due to the fact that FD gradients also overestimate the bottom TKE slightly, it is
plausible that M is somewhat overestimated in this case as well, but resulting difference
in the mixing is much smaller.

5.2. Wind-driven entrainment

The next test examines mixed layer deepening due to surface stress, based on the
laboratory experiment originally conducted by Kato and Phillips (1969).

Initially the fluid is motionless and linearly stratified. A constant surface stress is
applied at the surface. As a consequence, a mixed layer is formed at the surface, growing
deeper in time. Price (1979) suggested a formula for the evolution of the mixed layer
depth:

dML = 1.05us∗

√
t

N0

. (37)

Here the surface friction velocity is taken as a constant us∗ = 0.01 m s−1 while the initial
Brunt-Väisälä frequency is N0 = 0.01 s−1 following Deleersnijder and Luyten (1994) and
Burchard et al. (1998), among others. In practice N0 is prescribed by imposing a suitable
vertical density gradient.

The mixed layer entrainment was simulated in a 50 m deep water column for 30 h.
Two vertical resolutions were investigated, namely 1 m and 20 cm. Again, the vertical
gradients were computed either with the FD (29) or the FE formulation (24).

Previously it has been concluded that the model’s capability to predict the mixed
layer deepening depends more on the choice of the stability functions rather that the
two-equation model itself (Deleersnijder and Luyten (1994), Burchard and Deleersnijder
(2001), Umlauf et al. (2003), Deleersnijder et al. (2008)). As stated above, we are using
the stability functions by Canuto et al. (2001), that have proved out to perform well in
this test case.

Evolution of the mixed layer depth, defined as deepest point where k > 10−5 m2 s−2,
is shown in Figure 5 for the two resolutions. The results obtained by the SLIM+GOTM
(using the FD gradients) are very close to those by GOTM, and both agree well with the
formula by Price (37). For a coarser resolution, the mixed layer depth oscillates as mixing
penetrates new cells. This is in line with other published results, such as in Burchard
and Deleersnijder (2001). Turbulent viscosity profile after 30 h of simulation is shown in
Figure 6. The profiles are also very similar, SLIM+GOTM appears to produce marginally
larger maximum viscosity.

However, using the FE gradients cause spurious behaviour: the mixed layer depth,
defined as the deepest point with significant TKE, oscillates with time. This is due to
the fact that the N and M fields are noisy, which occasionally triggers the turbulence
model to produce high eddy viscosity at certain nodes, thus mixing the water column in
a non-homogeneous manner. Due to these defects, only the more robust FD formulation
(29) is considered for the rest of the manuscript.
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5.3. Idealised estuarine circulation

The idealised estuarine scenario proposed by Warner et al. (2005) is used here to
verify the behaviour of the turbulence model in a full three-dimensional setting.

The domain is a rectangular basin 100 km long, whose depth varies linearly from 10 m
in the “ocean” end (x=0 km) to 5 m in the “river” end (x=100 km). In the cross-channel
direction the domain is taken to be 2 km in width with impermeable lateral boundaries.
The domain is discretised with 1 km horizontal resolution and 20 sigma layers in the
vertical, resulting in 0.25 m to 0.50 m vertical resolution. The mesh is illustrated in
Figure 7 and all the model parameters are presented in Table 2. A constant seaward
freshwater discharge is applied at the river boundary, while a sinusoidal tidal flow with
12 h period is prescribed at the ocean boundary. Initially the salinity varies linearly from
30 PSU to 0 PSU between 30 km and 80 km along the channel (Figure 8). At the ocean
boundary the salinity is prescribed to 30 PSU during inflow.

During the simulation, an estuarine circulation quickly develops, driving the saline
water under the fresh water. The forming salt wedge oscillates with the tide. The flow
stabilises and becomes nearly periodic after roughly 5 days of simulation, when only a
small seaward salt flux persists. Warner et al. (2005) designed this test case to compare
different turbulence closure models. Indeed, the salinity distribution is largely controlled
by vertical mixing, therefore providing a useful benchmark for the SLIM+GOTM cou-
pling.

In this simulation, the 1D turbulence closure models are placed at the centroids of the
triangles, as mentioned in Section 4.1. This provides horizontal smoothing of the input
fields which improves the stability of the simulation4. Similar horizontal filtering is also
used in FD models (e.g. Burchard and Bolding, 2002). Furthermore, similarly to Warner
et al. (2005), the turbulent length scale l is limited from above following Galperin et al.
(1988), which also reduces noise in the turbulent quantities.

Figure 8 shows the salt distribution at the end of flood phase, after 16 days of sim-
ulation. The salt intrusion is very similar to that obtained with a k–ε model in Warner
et al. (2005), where the 0 PSU and 5 PSU contour lines lie between 50 km and 60 km (see
Figure 7 in their manuscript). The surface mixed layer is likewise confined in the first
couple of metres of the water column, although it is somewhat thinner than in Warner
et al. (2005).

Figure 9 presents vertical profiles taken at x=30 km after 14.40 days of simula-
tion (corresponding to a typical flood tide). Qualitatively these profiles are similar to
those presented in Figure 9 in Warner et al. (2005). The salinity profile predicted by
SLIM+GOTM is identical, but slightly smaller in magnitude (17 PSU versus 20 PSU at
the bottom layer). The turbulent length scale is roughly 30% smaller. Turbulent eddy
viscosity is also underestimated, the maximum value is 0.013 m2s−1 versus nearly 0.02
m2s−1. In Warner et al. (2005), the local maximum in TKE is not present for k–ε model,
although it appears with other closures. All in all, as these quantities are very sensitive
to the characteristics of the flow and details of the turbulence closure, one can conclude
that the coupled SLIM+GOTM model produces the expected flow features with good
accuracy.

In addition to differences in the turbulence closure models, also other aspects, such
as the boundary conditions or numerical mixing (Burchard and Rennau, 2008; Rennau

4Note that applying such a filter would have no effect in the two previous test cases where the flow
was homogeneous in the horizontal direction.
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and Burchard, 2009) may have a significant impact on the distribution of salinity and
turbulent quantities. As Warner et al. (2005) used a structured grid FD model, model-
dependent features are likely to play a role. However, assessing such differences is out of
the scope of the current article.

6. Conclusions

We have presented an online coupling between a 3D discontinuous Galerkin FE marine
model and a FD 1D vertical turbulence model. The coupling exploits the vertically
orientated topology of the 3D prismatic mesh.

Implementing turbulence closure models in discontinuous Galerkin framework is not
often addressed to in the literature. In this manuscript we show that coupling GOTM to
a DG FE model is not trivial due to the different mesh topology and the discontinuous
functional representation of fields.

Ensuring stability of the turbulence closure model is an essential part of the presented
methodology. Stability is achieved by suitable data processing, i.e. computing the vertical
gradients more reliably at the element interfaces by taking into account all the nodal
values in the elements above and below. In contrast, evaluating the gradients simply by
means of differentiating the basis functions resulted in overestimation of the gradients,
rendering the turbulence model unstable. Further, in horizontal direction the 1D vertical
turbulence models are placed at the centre of each column of prisms, which provides
horizontal filtering of the input data.

The coupling has been validated with several test cases. Bottom boundary layer is
produced accurately, TKE and viscosity profiles are close to those produced by GOTM.
The mixed layer deepening in the Kato-Phillips test case is also correctly predicted.
Finally the 3D implementation is validated in an idealised estuary simulation where the
results are well in line with those presented in Warner et al. (2005).

In the future the coupled model will be applied to more complicated benchmarks and
real world applications.
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SLIM 3D GOTM

Figure 1: Schematic illustration of the coupling. The operator ΠDG maps 3D nodes (e, ξ)
to DG nodes in 1D vertical. ΠCG maps 3D nodes to cell interfaces (j,m) in GOTM. For
illustration purposes, the discontinuities of the SLIM 3D mesh has been exaggerated; in
reality there is no gap between the elements.
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Figure 2: Steady-state velocity profile for the bottom boundary layer test. Solid line,
SLIM+GOTM; Dashed line, GOTM; Dash-dotted line, SLIM+GOTM with FE gradients.
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Figure 3: Profiles of turbulent kinetic energy (top), TKE dissipation rate (middle) and
eddy viscosity (bottom). Solid line, SLIM+GOTM; Dashed line, GOTM; Dash-dotted
line, SLIM+GOTM with FE gradients.
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Figure 4: Vertical shear frequency at the lower part of the water column computed with
the FD gradients (solid line) and the FE gradients (dash-dotted line) for the same velocity
profile. Here the velocity profile obtained with SLIM+GOTM and FD gradients (solid
line in Figure 2) is used.
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Figure 5: Mixed layer depth versus time for the Kato-Phillips test with 1 m (top) and 20
cm (bottom) vertical resolution. Solid line, SLIM+GOTM; Dashed line, GOTM. Dotted
line, the solution by Price (37); Dash-dotted line, SLIM+GOTM with FE gradients.

19



0 0.005 0.01 0.015
−35

−30

−25

−20

−15

−10

−5

0

ν (m2/s)

z
(m

)

Figure 6: Turbulent viscosity with 20cm vertical resolution. Solid line, SLIM+GOTM;
Dashed line, GOTM. Results obtained with the FE gradients are omitted.
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Figure 7: Estuary simulation: 3D Mesh. Horizontal edge length is roughly 1 km. The
mesh consist of 396 surface triangles and 7920 prisms.
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Figure 8: Estuary simulation: Top: Initial salinity distribution. Bottom: Salinilty after
16 days of simulation.
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Figure 9: Estuary simulation: Vertical profiles after 14.4 days of simulation at x = 30 km.
a) salinity, b) turbulent kinetic energy, c) TKE dissipation rate, d) turbulent length scale,
e) eddy diffusivity.
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User provided input m

H total depth
us∗ surface friction velocity
ub∗ bottom friction velocity
zs0 surface roughness length
zb0 bottom roughness length

dm+1/2 cell height 0, . . . , q − 1
Nm buoyancy frequency 1, . . . , q − 1
Mm vert. shear frequency 1, . . . , q − 1

Output m

νm turbulent vert. viscosity 0, . . . , q
µm turbulent vert. diffusivity 0, . . . , q
km turbulence kinetic energy 0, . . . , q
εm TKE dissipation rate 0, . . . , q

Table 1: Input and output variables in the GOTM interface with q cells.

Parameter Symbol Value

Domain dimensions Dx, Dy 100 km, 2 km
Mesh lenght scale Lxy 1 km
Vertical layers nσ 20
Bathymetry (river) hR 5 m
Bathymetry (sea) hS 10 m
Salinity (river) SR 0 PSU
Salinity (sea) SS 30 PSU
Temperature T0 10 ◦C
Tidal period τ 12 h
Residual velocity Ū0 -0.08 m s−1

Tidal velocity Ūτ 0.4 sin(2πt
τ

) m s−1

Depth av. velocity ūR
Ū0hR
ηR + hR

m s−1

Depth av. velocity ūS
Ū0hS + ŪτhR
ηS + hS

m s−1

Bottom roughness zb0 0.005 m

Table 2: Parameters of the estuary simulation. The underscripts R and S stand for river
and sea boundary, respectively. Ū0 and Ūτ are the depth averaged residual and tidal
velocity, respectively, assuming static water depth (hR and hS). At the boundaries, ūR
and ūS are prescribed to account for the free surface movement and guarantee constant
water volume over a tidal period. Symmetry boundary conditions are used for the three-
dimensional velocity. ηR and ηS are taken as the simulated values on the respective
boundary.
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