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Abstract

Numerical modelling of coastal flows is a challenging topic due to complex topography of the
coastal zone, rapid flow dynamics and large density variations. Such phenomena are best
simulated with unstructured grid models due to their highly flexible spatial discretisation.
This article presents a three-dimensional discontinuous Galerkin finite element marine model.
The spatial discretisation and explicit mode splitting time integration scheme are described.
Free surface movement is accounted for by means of an arbitrary Lagrangian Eulerian (ALE)
moving mesh method. Mass and volume are conserved. The conservation properties and
baroclinic adjustment under gravity are tested with numerical benchmarks. Finally, the
model is applied to the Rhine river plume in an idealised setting.

Keywords: Marine model, Finite element method, Discontinuous Galerkin, Baroclinic
processes, River plume

1. Introduction

Although there has been interest in regional and coastal marine modelling for decades,
simulating coastal flows and complete river-estuary-plume-shelf systems still poses several
challenges. In coastal domains it is crucial to capture the complicated topographical and
bathymetric features, which favours highly flexible unstructured mesh models. Coastal areas
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often feature relatively rapid currents as the flow (e.g. tides) tends to amplify in shallow
seas and funnel-like embayments. Due to riverine freshwater input, coastal flows are often
significantly impacted by buoyancy and feature strong density gradients in estuaries and
river plumes. Strong density gradients and rapid dynamics often lead to numerical stability
issues that do not appear in deep ocean applications. Excessive numerical diffusion, inherent
to some types of models, may smear out fronts and thus prevent models from capturing
essential features of the flow (Hetland, 2005; Baptista et al., 2005; Burchard and Rennau,
2008). As the water density is governed by temperature and salinity, the quality of these
fields has an impact on both accuracy and stability, stressing the importance of monotonous
tracer advection schemes. In long term simulations strict tracer mass and water volume
conservation is also important, yet not always satisfied.

The most commonly used marine models rely on structured grids (MITgcm, Marshall
et al. 2004; ROMS, Shchepetkin and McWilliams 2005; POM, Mellor 2004; MOM, Griffies
2010; GETM, Burchard and Bolding 2002; TRIM, Casulli and Cheng 1992). Consequently
the disadvantage of these models is the lack of flexibility in the computational grid and poor
representation of the coastline. Embedded grids (Debreu and Blayo, 2008; Warner et al.,
2010), curvilinear coordinates (Blumberg and Mellor, 1999) and composite grids (Warner
et al., 2010) can be used to improve the quality of the spatial discretisation, but it is unclear
whether such approaches can be used in highly complex domains (e.g. tidal river networks,
de Brye et al. 2010, or the Great Barrier Reef, Lambrechts et al. 2008). Some structured
grid models have been extended to unstructured grids by imposing orthogonality between
the cells, e.g. TRIM and UnTRIM (Casulli and Walters, 2000) model classes. However,
satisfying the orthogonality criterion in practical applications is very difficult, hindering the
accuracy of such models (Zhang and Baptista, 2008).

Unstructured mesh models are usually based on finite volume (FV) (FV-COM, Chen
et al. 2006; UnTRIM) or finite element (FE) (FESOM, Wang 2007; ICOM; SELFE, Zhang
and Baptista 2008) method. Although some of these models are already widely used, un-
structured mesh models generally are not as mature as structured grid ones. For example,
finding an optimal spatial discretisation in terms of numerical stability, control of spurious
modes, low numerical dissipation and computational efficiency still remains a challenge.

In this article we present a discontinuous Galerkin finite element (DG-FE) marine model
and its application to baroclinic coastal flows. In general DG-FE can be seen as a hybrid
formulation between FV and continuous FE formulations. In contrast to continuous FE , the
DG method is well suited for solving advection dominated problems, but requires stabilisation
for diffusion terms (Arnold et al., 2002). As the equations are solved element-by-element,
DG methods are locally conservative by construction. Generally DG methods are also less
diffusive than finite difference (FD) or FV models, especially with high order discretisations.
Furthermore, completely discontinuous elements offer some attractive numerical properties,
such as straightforward parallelisation of explicit schemes and extension to hp-adaptivity
(Cockburn, 2003). Monotonic advection schemes can be achieved by means of slope limiters
(Cockburn, 2003; Kuzmin, 2010; Aizinger, 2011).

Existing marine models use various time integration methods. The widely used mode
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splitting technique (e.g. Griffies (2004)) relies on solving the fast propagating surface gravity
waves in a depth averaged 2D framework, coupled to the slower 3D dynamics. In split-explicit
schemes the 2D mode is treated explicitly with a high temporal resolution (Killworth et al.,
1991). Split-implicit schemes (e.g. Dukowicz and Smith, 1994), on the other hand, solve the
2D mode implicitly and the same time step is used for both the 2D and the 3D mode. Mode
splitting always introduces some discrepancy. Alternatively there exists semi-implicit models
without mode splitting (TRIM, UnTRIM, SELFE). Some of these models, however, do not
conserve volume or lack proper representation of the non-linear free surface dynamics. In
this work, we rely on the split-explicit approach (Shchepetkin and McWilliams, 2005), which
has shown to be robust in practice, and can be parallelised efficiently.

To correctly account for the free surface movement, the 3D mesh has to move in the
vertical direction to match the instantaneous surface position. Here, an arbitrary Lagrangian
Eulerian (ALE) formulation is used to represent the mesh movement. This formulation
results in a generic framework, where volume and tracer mass conservation is guaranteed
for any type of vertical mesh. In this work, a terrain following σ-coordinate-like mesh is
used. Another important property is the consistency between discrete tracer and continuity
equations, which ensures that an uniform tracer field is preserved (White et al., 2008b). This
consistency criterion is sometimes referred to as constancy preserving property (Shchepetkin
and McWilliams, 2005).

The article is organised as follows. Mathematical notation and the primitive equations
are presented in Section 2. In the next section the ALE formulation and moving mesh
algorithm are described. Section 4 presents the DG-FE discretisation. A matrix form of the
discrete equations is given in Section 5. The time integration scheme is presented in Section
6. Finally Section 7 presents numerical results on conservation properties, gravitational
adjustment flow and an application to a river plume simulation.

2. Governing equations

2.1. Domain

The three-dimensional computational domain is denoted by Ω. The position vector in
Cartesian coordinates is x = [x, y, z], and the associated velocity components are u, v and
w. The horizontal velocity vector is denoted by u = [u, v, 0]. The domain is delimited by
the bottom boundary Γb defined by the bathymetry z = −h, the closed lateral boundary Γc,
open horizontal boundary Γo and the time dependent free surface Γs corresponding to the
free surface height z = η. Due to the free surface movement, Ω is time dependent (Figure
1).

For the mathematical formulation it is convenient to define a time-independent reference
domain Ω0 that corresponds to η = 0. Coordinates associated with the reference domain
are denoted by ξ = [x, y, z0]. The reference sea surface of Ω0 is denoted by Γs,0 and the
coordinates restricted on Γs,0 are xh = [x, y, 0].

Traditionally the bathymetric features and free surface movement has been taken into
account by introducing specific vertical coordinate systems, such as terrain following σ-
coordinates (e.g. POM, Blumberg and Mellor, 1999) or isopycnal coordinates (e.g. Bleck
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Figure 1: Possible configuration of the computational domain Ω at some time t. The reference surface Γs,0,
marked with a dashed line, corresponds to η = 0.

and Smith, 1990). In equipotential z-coordinate models, the grid displacement is usually
restricted to the top most cells. As each vertical coordinate system has its advantages and
disadvantages, generalised coordinate transformations have been introduced (e.g Kasahara,
1974). Currently hybrid vertical coordinates are widely used (Song and Haidvogel, 1994;
Pietrzak et al., 2002), including dynamically adaptive vertical grids (e.g. Hofmeister et al.,
2010).

Here, a generic Arbitrary Lagrangian Eulerian (ALE, Donea et al., 2004) formulation is
adopted to facilitate the movement of the grid. In contrast to the aforementioned vertical
coordinate systems, the equations are solved in the Cartesian (x, y, z) coordinates, and the
grid deformation is taken into account by introducing a mesh velocity in the equations. Below
the primitive equations are presented without the mesh velocity (i.e. for static domain), while
the ALE formulation is described later in Section 3.

2.2. Momentum equation

In this work the 3D hydrostatic Boussinesq equations are considered. The horizontal
momentum equation reads

∂u

∂t
+ ∇h · (uu) +

∂ (wu)

∂z
+ fez ∧ u+

1

ρ0

∇hp

= ∇h · (νh∇hu) +
∂

∂z

(
ν
∂u

∂z

)
,

(1)

where ∇h is the horizontal gradient operator, f the Coriolis factor, ez is vertical unit vector,
p is the pressure and νh and ν are the horizontal and vertical diffusivity, respectively.

Under the hydrostatic assumption the vertical momentum equation reduces to

∂p

∂z
= −gρ, (2)
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where g is the gravitational acceleration.
The water density ρ is computed by means of an equation of state (Jackett et al., 2006)

as a function of the temperature, salinity and pressure. It is expressed as a sum of a constant
reference density ρ0 and a deviation ρ′ � ρ0:

ρ = ρ0 + ρ′, (3)

Integrating (2) from η to z results in

p = gρ0(η − z) + g

∫ η

z

ρ′dζ + pa,

where pa is the atmospheric pressure acting on the sea surface. Defining the baroclinic head
as

r =
1

ρ0

∫ η

z

ρ′dζ, (4)

the pressure gradient term appearing in (1) can be written as

1

ρ0

∇hp = g∇hη + g∇hr +
1

ρ0

∇hpa. (5)

In this article the effect of the atmospheric pressure is omitted as it is irrelevant for the
presented applications.

2.3. Continuity and free surface equations

The continuity equation is given by

∇h · u+
∂w

∂z
= 0, (6)

from which the vertical velocity w is computed.
Integrating the continuity equation over the water column and taking into account the

impermeability boundary conditions (defined later) on Γb and Γs, one obtains the free surface
equation,

∂η

∂t
+ ∇h ·

∫ η

−h
udz = 0. (7)

2.4. Tracer equations

The evolution of temperature T and salinity S are simulated with an advection-diffusion
equation. Denoting the horizontal and vertical diffusivity by µh and µ, respectively, the
equations read

∂T

∂t
+ ∇h · (uT ) +

∂ (wT )

∂z
= ∇h · (µh∇hT ) +

∂

∂z

(
µ
∂T

∂z

)
, (8)

∂S

∂t
+ ∇h · (uS) +

∂ (wS)

∂z
= ∇h · (µh∇hS) +

∂

∂z

(
µ
∂S

∂z

)
. (9)
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2.5. Turbulence model

To close the aforementioned set of equations, the vertical eddy viscosity ν and diffusivity
µ must be determined in terms of the flow state. In this work, the k − ε turbulence closure
model (Rodi, 1987) is used with the stability functions of Canuto et al. (2001) (Model A). The
evolution of turbulent quantities is solved with GOTM1 (General Ocean Turbulence Model,
Burchard et al., 1999) turbulence model library that has been coupled to the present finite
element model (Kärnä et al., 2012).

2.6. Boundary conditions

On the surface and bottom boundaries the conventional impermeability boundary con-
ditions are prescribed

w + u ·∇hh = 0, x ∈ Γb (10)

w − ∂η

∂t
− u ·∇hη = 0, x ∈ Γs. (11)

Further, a slip condition is enforced to take into account the bottom and surface stresses,

ν
∂u

∂z
=
τb
ρ0

, x ∈ Γb (12)

ν
∂u

∂z
=
τs
ρ0

, x ∈ Γs. (13)

The bottom stress is given by

τb
ρ0

= Cd‖ubf‖ubf, (14)

Cd =

[
κ

ln((zbf + h)/δ0)

]2

,

ubf = u(x, y, zbf),

where κ is the von Karman constant, δ0 is the bottom roughness length and zbf denotes the
vertical coordinate where the bottom velocity ubf is defined.

On the closed lateral boundaries Γc, assumed to be strictly vertical, impermeability is
imposed

u · nh = 0, (15)

where nh = [nx, ny, 0] is the horizontal unit normal vector.

1www.gotm.net
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2.7. Depth averaged equations

For computational efficiency, the fast propagating surface gravity waves are simulated
with two-dimensional depth averaged equations. Introducing the depth averaged horizontal
velocity ū and the decomposition u = ū+ ũ, equation (7) can equivalently be written as

∂η

∂t
+ ∇h · (Hū) = 0, (16)

where H = η + h is the total depth.
Depth averaging (1), the momentum equation becomes (see e.g. (White et al., 2008a))

∂ū

∂t
+ ū ·∇hū+ fez ∧ ū

+g∇hη + g
1

H

∫ η

−h
∇hrdz = ĀH + D̄H +

τb + τs
ρ0H

,
(17)

with

D̄H =
1

H

∫ η

−h
∇h · (νh∇hu)dz

ĀH = − 1

H

∂

∂x

∫ η

−h
ũũdz − 1

H

∂

∂y

∫ η

−h
ṽũdz.

Above ĀH represents the advection of ũ, while D̄H stands for the horizontal viscosity
of momentum. For the sake of simplicity the latter is parametrised by the conventional
two-dimensional diffusion operator

D̄H =
1

H
∇h · (Hνh∇hū). (18)

This parametrisation is justified given the small contribution and large relative uncertainty
of the viscosity term. Moreover, this form is purely dissipative, which is not necessarily the
case for the exact operator in (17).

3. ALE formulation

The 3D mesh adapts to the instantaneous position of the free surface. Consequently,
the top boundary Γs will coincide to the z = η surface while the bottom Γb remains static.
Following Farhat et al. (2001) and White et al. (2008b), we define a mapping from the static
domain Ω0 to the time dependent domain Ω:

x = x(ξ, t) = [x, y, z(x, y, z0, t)].

The mapping is assumed to be invertible with the Jacobian J = ∂x
/
∂ξ and J = det(J) =

∂z
/
∂z0 > 0.
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The primitive equations are expressed in such a way that they can be solved in the moving
domain Ω, given the instantaneous domain (or mesh) velocity

wm =
∂z

∂t

∣∣∣
ξ
.

The conservative ALE formulation of the tracer equation (8) reads (Formaggia and No-
bile, 2004)

1

J

∂(JT )

∂t

∣∣∣
ξ

+ ∇h · (uT ) +
∂ ((w − wm)T )

∂z
= DH , (19)

where DH denotes the right hand side of (8).
Consequently, the conservative ALE formulation implies a change in the time derivative

and modification in the vertical advective velocity. As the time derivative is taken with
respect to the static coordinates ξ, this formulation is useful in the FE method. Taking
an arbitrary test function ϕ, and noting that Jdξ = dx, the weak formulation of the time
derivative can be expressed as∫

Ω

1

J

∂(JT )

∂t

∣∣∣
ξ
ϕdx =

d

dt

(∫
Ω

Tϕdx

) ∣∣∣
ξ
.

This approach is applied to all the 3D prognostic variables (T, S, u and v).
Alternatively, using a non-conservative ALE form, the tracer equation reads

∂T

∂t

∣∣∣
ξ

+ T
∂wm
∂z

+ ∇h · (uT ) +
∂ ((w − wm)T )

∂z
= DH , (20)

where the additional second term accounts for the volumetric change. A numerical scheme
based on this formulation does not conserve mass, but can be used in cases where ∂T

/
∂t is

computed in a static geometry.

3.1. Moving mesh algorithm

In this work a σ-coordinate-like moving mesh algorithm is adopted, which distributes the
vertical perturbation linearly over the water column. The presented methodology can be
easily generalised for other grid types as well. Using the vertical coordinates z0 ∈ [−h, 0] of
the static domain Ω0, the time dependent vertical coordinates are then obtained as

z = z0 + η
z0 + h

h
(21)

implying z ∈ [−h, η] and J = (η + h)/h. The vertical mesh velocity wm can be deduced
from the impermeability boundary conditions. At the surface, wm = ∂η

/
∂t which can be

computed as

wm
∣∣
Γs

= w −∇hη · u. (22)
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At the bottom wm = 0 because Γb is static. In the interior wm then becomes:

wm = wm
∣∣
Γs

z0 + h

h
, ξ ∈ Ω0. (23)

Expressing wm in the time dependent coordinates yields

wm = wm
∣∣
Γs

z + h

η + h
, x ∈ Ω. (24)

The non conservative ALE formulation also requires ∂wm/∂z which is given by

∂wm
∂z

= wm
∣∣
Γs

1

η + h
, x ∈ Ω. (25)

4. Finite element discretisation

4.1. Function spaces

The sea surface Γs,0 is divided into a set of triangles T . A piecewise discontinuous
polynomial function space W is defined on T so that each function in W is a linear polynomial
inside the triangles Q ∈ T , and discontinuous on the interfaces e = Q ∩ Q′. The space W
is defined by means of Lagrangian basis functions ϕi : R2 → R, i = 1, . . . , NT , where NT

is the total number of nodes in the triangulation T . The basis functions ϕi are non-zero in
exactly one element and attain unity only in a single node xh,i = [xi, yi, 0], being zero in all
the others, ϕi(xh,j) = 0, ∀i 6= j.

The triangular surface mesh is extruded in vertical direction towards the bottom Γb
resulting in columns of triangular prisms. Each column is further divided equally into Nσ

prisms, thus forming a terrain following grid similar to conventional σ-coordinates2.
The set of NP prisms is denoted by P . A piecewise polynomial function space V is defined

on P by a set of Lagrangian basis functions ψi : R3 → R. Each ψi is a linear polynomial
both in the horizontal (x, y) and vertical (z) direction, and non-zero only in a single prism
K. Also here the Lagrangian property holds on the nodes xi, i = 1, . . . , NP : ψi(xi) = 1,
ψi(xj) = 0, ∀ i 6= j.

In the present DG discretisation all the scalar fields (including u and v) belong to the
same function space V (in the 3D mesh) or W (in the 2D mesh). Therefore all the fields
share the same basis functions and same nodes. In this article first order basis functions are
used, where the nodes correspond to the vertices of the prisms (in 3D) or triangles (in 2D).
Consequently there are 6 degrees of freedom associated to each prism (3 for each triangle),
which is substantially more than in a continuous Galerkin discretisation.

2Note that the equations are still solved in Cartesian coordinates, in contrast to σ-coordinate models.
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4.2. Interfaces

In the set of prisms, all interfaces associated to an element K ∈ P are defined as

I(K) := {K ∩K ′|K ′ ∈ P}. (26)

For each interface I ∈ I(K), the unit normal vector is n = [nx, ny, nz] chosen to point from
K to K ′. The lateral and horizontal interfaces, respectively, are denoted by

Ilat(K) := {K ∩K ′|K ′ ∈ P ,n · ez = 0}, (27)

Ih(K) := {K ∩K ′|K ′ ∈ P ,n · ez 6= 0}. (28)

Figure 2: Interfaces for triangular surface mesh (left) and prismatic 3D mesh (right).

In the case of a prismatic mesh, Ilat(K) correspond to the vertical quadrilateral faces, and
Ih(K) to the top/bottom triangles of a prism K (Figure 2). It is noteworthy that Ilat(K)
are always vertical, but due to the movement, Ih(K) are not strictly horizontal (i.e. nx and
ny are not necessarily zero).

On the triangulation T the interfaces are defined similarly,

J (Q) := {Q ∩Q′|Q′ ∈ T }. (29)

On an interface, all variables have two different values associated to the elements K and
K ′. In DG method it is essential to compute the interface fluxes carefully in order to ensure
numerical stability of the scheme. Possible methods include (approximate) Riemann solvers
for advective fluxes (Toro, 2009) and interior penalty methods for diffusive fluxes (Arnold
et al., 2002). Denoting the variables on the “left” (corresponding to K) by subscript L
and on the “right” (corresponding to K ′) by subscript R, arithmetic mean, difference and
maximum operators are then defined as

{•} =
•L + •R

2
,

[[•]] =
•L − •R

2
,

d•e = max(•L, •R),

respectively. This notation is used for both 2D and 3D elements.

10



In the derivation of the weak form, the following shorthand notation is used for spatial
integrals (dA and dS denote the infinitesimal area and line elements on I and J , respec-
tively): 〈

•
〉
K

=

∫
K

•dx, K ∈ P〈〈
•
〉〉
I

=

∫
I
•dA, I ∈ I(K)〈〈

•
〉〉
Q

=

∫
Q

•dxh, Q ∈ T〈〈〈
•
〉〉〉
J

=

∫
J
•dS, J ∈ J (Q)

In practice, the integrals are evaluated with numerical quadrature rules. In 2D, a Hammer
quadrature (?) of order 2o+ 1 is used on the triangles. In 3D, a combination of 2o+ 1 order
Hammer quadrature (in the horizontal) and Gauss-Legendre quadrature (in the vertical
direction) is used.

4.3. Depth averaged equations

The weak (or variational) formulation for the depth averaged equations is obtained by
multiplying (16) by a test function ϕ ∈ W and (17) by ϕ ∈ W ×W and integrating over
Γs,0. As the basis functions are non-zero only within a single element, the weak formulation
can be written separately for each element Q ∈ T .

〈〈∂η
∂t
ϕ
〉〉
Q

+
〈〈
∇h · ((η + h)ū)ϕ

〉〉
Q︸ ︷︷ ︸

Eu

= 0, (30)

〈〈∂ū
∂t
·ϕ
〉〉
Q

+
〈〈
ū ·∇hū ·ϕ

〉〉
Q︸ ︷︷ ︸

Ūu

+
〈〈
fez ∧ ū ·ϕ

〉〉
Q

+
〈〈
g∇hη ·ϕ

〉〉
Q︸ ︷︷ ︸

Ūη

+
〈〈
g

1

H

∫ η

−h
∇hr ·ϕ

〉〉
Q

=
〈〈
ĀH ·ϕ

〉〉
Q

+
〈〈 1

H
∇h · (Hνh∇hū) ·ϕ

〉〉
Q︸ ︷︷ ︸

Ūhν

+
〈〈 τb
ρ0H

·ϕ
〉〉
Q

+
〈〈 τs
ρ0H

·ϕ
〉〉
Q
.

(31)
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Note that these equations are purely local in Q, as there is no dependency on the neigh-
bouring elements Q′. Inter-element fluxes arise when the underbraced terms are replaced by
the following terms, obtained by integrating by parts:

Divergence of Hū:

Eu = −
〈〈

(η + h)ū ·∇hϕ
〉〉
Q

+
∑
J (Q)

〈〈〈
(η∗ + h)(ū∗ · nh)ϕ

〉〉〉
J

(32)

Horizontal advection of momentum:

Ūu = −
〈〈
∇h · (ūϕ) · ū

〉〉
Q

+
∑
J (Q)

〈〈〈
(ū∗ · nh)ū∗ ·ϕ

〉〉〉
J

(33)

External pressure gradient:

Ūη = −
〈〈
gη∇h ·ϕ

〉〉
Q

+
∑
J (Q)

〈〈〈
gη∗ϕ · nh

〉〉〉
J

(34)

Diffusion of momentum3:

Ūhν = −
〈〈
νh(∇hū) : (∇hϕ)T

〉〉
Q

+
〈〈
νh

1

H
(∇hH) · (∇hū) ·ϕ

〉〉
Q

+
∑
J (Q)

〈〈〈
(νh∇hū)∗ · nh ·ϕ

〉〉〉
J

(35)

In the interface terms of (32)-(35), the variables marked with an asterisk are unknown,
and must be deduced from the state variables on both sides of the interface. The variables
η∗ and ū∗ are related to the propagation of surface gravity waves and are solved with an
approximate Riemann solver described below. The flux (νh∇hū)∗, on the other hand, is
related to the horizontal diffusion operator, described in Section 4.3.2.

4.3.1. Riemann solver for surface gravity waves

A Riemann problem consist of solving a hyperbolic conservation law subject to a discon-
tinuous initial condition. Therefore Riemann solvers (Toro, 2009) are a natural choice for
computing the interface fluxes in FV and DG-FE methods.

If advection of momentum is negligible and η � h, surface gravity waves can be modelled
with the linear shallow water equations:

∂η

∂t
+ ∇h(hū) = 0,

∂ū

∂t
+ g∇hη = 0

3The colon denotes the Frobenius inner product: A : B =
∑
i,j AijBij
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Denoting the wave celerity by c =
√
gh, the well-known Riemann solution to these

equations is (LeVeque, 2002; Comblen et al., 2010)

η∗ = {η}+
h

c
[[ū]], (36)

ū∗ = {ū}+
c

h
[[η]]. (37)

Combined with the DG method, the jump operators on the right hand side introduce suffi-
cient dissipation to guarantee numerical stability.

If the advection is not negligible, a more complex non-linear Riemann solver correspond-
ing to the full shallow water equations should be used. In this work, non-linear solver
presented in Comblen et al. (2010) is used for the 2D mode, while the above linear solution
is used in the 3D mode.

4.3.2. Interior penalty stabilisation

In DG-FE diffusion operators require additional stabilisation. In this work the Incomplete
Interior Penalty Method (IIPM, Rivière, 2008) is adopted. In IIPM the interface flux is
replaced by a mean flux {νh∇hū} and an additional penalty term σνh[[ū]] is introduced,
with the penalty factor defined as (Shahbazi, 2005)

σd =
(o+ 1)(o+ d)

d

N0

2Lmin
, (38)

where d stands for the dimension of the problem and N0 is the number of neighbours of an
element (N0 = 3 for triangles). Lmin approximates the effective element length scale normal
to the interface. In 2D, Lmin = min(|Q|, |Q′|)/|I|, where |Q| is the element area and |I|,
I = Q ∩Q′ the interface length .

Thus the whole diffusion operator of the 2D momentum equation (35) becomes

Ūhν = −
〈〈
νh(∇hū) : (∇hϕ)T

〉〉
Q

+
〈〈
νh

1

H
(∇hH) · (∇hū) ·ϕ

〉〉
Q

+
∑
J (Q)

〈〈〈
{νh∇hū} · nh ·ϕ

〉〉〉
J

+
∑
J (Q)

〈〈〈
σ2dνhe[[ū]]

〉〉〉
J
.

(39)

4.4. Momentum equation
The weak formulation of the horizontal momentum equation is obtained by multiplying

(1) by a test function ψ ∈ V× V, integrating over the time dependent domain Ω. Here the
equations are developed for the conservative ALE formulation (19) for brevity, as the non-
conservative formulation (20) leads to very similar equations. Element-wise weak formulation
then reads:

d

dt

〈
u ·ψ

〉
K

+
〈
∇h · (uu) ·ψ

〉
K︸ ︷︷ ︸

Uu

+
〈∂ ((w − wm)u)

∂z
·ψ
〉
K︸ ︷︷ ︸

Uw

+
〈
fez ∧ u ·ψ

〉
K

+

〈
g∇hη ·ψ

〉
K︸ ︷︷ ︸

Uη

+
〈
g∇hr ·ψ

〉
K

=
〈
∇h · (νh∇hu) ·ψ

〉
K︸ ︷︷ ︸

Uhν

+
〈 ∂
∂z

(
ν
∂u

∂z

)
·ψ
〉
K︸ ︷︷ ︸

Uvν

.
(40)
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For a complete DG weak formulation, underbraced terms are replaced by the following
terms. Horizontal advection

Uu = −
〈
∇hψ : uu

〉
K

+
∑
Ilat(K)

〈〈
ψ · u∗u∗ · nh

〉〉
Ilat

+
∑
Ih(K)

〈〈
ψ · uuw(ud · nh)

〉〉
Ih
,

(41)

vertical advection

Uw = −
〈

(w − wm)u · ∂ψ
∂z

〉
K

+
∑
Ih(K)

〈〈
(wd − wm)uuw ·ψnz

〉〉
Ih
, (42)

and external pressure gradient

Uη = −
〈
gη∇h ·ψ

〉
K

+
∑
Ilat(K)

〈〈
gη∗ψ · nh

〉〉
Ilat

+
∑
Ih(K)

〈〈
gηψ · nh

〉〉
Ih
. (43)

In the Ih integrals ud, wd stand for values in the lower element, while uuw refers to the
conventional upwind value. Note that η and wm are unique on Ih.

The horizontal diffusion operator becomes

Uhν = −
〈
νh(∇hψ) : (∇hu)T

〉
K

+
∑
I

〈〈
ψ · {νh∇hu} · nh

〉〉
I
, (44)

and the vertical diffusion operator

Uvν = −
〈
ν
∂ψ

∂z
· ∂u
∂z

〉
K

+
∑
Ih(K)

〈〈
ψ ·
{
ν
∂u

∂z

}
nz

〉〉
Ih
. (45)

4.4.1. Riemann solver for the 3D mode

Similarly to the 2D mode, in (41) and (43) the Riemann values η∗ and u∗ are needed. In
this work η∗ is computed with the linear Riemann solver (36), while u∗ is computed as

u∗ = {u}+
c

h
[[η]]. (46)

The above formulation is consistent with the linear Riemann solver, because the depth
average of (46) reduces to (37). Here we are using the linear solver as it is not possible to
derive a similar formula for u∗ with the full non-linear 2D Riemann solver. As the surface
gravity waves are essentially solved in the 2D mode and imposed in the 3D mode, this is not
a major drawback.
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4.4.2. Interior Penalty stabilisation for the 3D mode

Also in 3D the diffusion operators are stabilized with IIPM. An additional penalty term
is added to the right hand side (Ern et al., 2009),∑

I(K)

〈〈
σ3(n ·Dν · n)ψ · [[u]]

〉〉
I

=

∑
I(K)

〈〈
σ3νh(n

2
x + n2

y)ψ · [[u]]
〉〉
I

+
∑
Ih(K)

〈〈
σ3νn

2
zψ · [[u]]

〉〉
Ih
,

(47)

where Dν = diag(νh, νh, ν) is the diffusivity tensor and the penalty factor σ3 is computed
with (38). Here Lmin = min(|K|, |K ′|)/|I|, with the element volume |K| and interface area
|I|. Note that (47) is defined on I = Ih ∪Ilat. Due to the fact that the Ih interfaces are not
strictly horizontal the whole diffusivity tensor has to be taken into account.

The final diffusion operators read

Uhν = −
〈
νh(∇hψ) : (∇hu)T

〉
K

+
∑
I(K)

〈〈
ψ · {νh∇hu} · nh

〉〉
I

+
∑
I(K)

〈〈
σ3νh(n

2
x + n2

y)ψ · [[u]]
〉〉
I
,

(48)

Uvν = −
〈
ν
∂ψ

∂z
· ∂u
∂z

〉
K

+
∑
Ih(K)

〈〈
ψ ·
{
ν
∂u

∂z

}
nz

〉〉
Ih

+
∑
Ih(K)

〈〈
σ3νn

2
zψ · [[u]]

〉〉
Ih
.

(49)

4.5. Tracer Equations

The weak formulations of the temperature and salinity equations are obtained by multi-
plying (8) and (9) by a test function ψ ∈ V, integrating over Ω and adopting the ALE form.
As (8) and (9) are equivalent only the T equation is developed for brevity. Element-wise
weak formulation reads:

d

dt

〈
Tψ
〉
K

+
〈
∇h · (uT )ψ

〉
K︸ ︷︷ ︸

Cu

+
〈∂ ((w − wm)T )

∂z
ψ
〉
K︸ ︷︷ ︸

Cw

=

〈
∇h · (µh∇hT )ψ

〉
K︸ ︷︷ ︸

Chµ

+
〈 ∂
∂z

(
µ
∂T

∂z

)
ψ
〉
K︸ ︷︷ ︸

Cvµ

.
(50)
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After integration by parts, the advection terms become

Cu = −
〈
Tu ·∇hψ

〉
K

+
∑
Ilat(K)

〈〈
T (u∗ · nh)ψ

〉〉
Ilat

+
∑
Ih(K)

〈〈
T uwud · nhψ

〉〉
Ih
,

(51)

Cw = −
〈

(w − wm)T
∂ψ

∂z

〉
K

+
∑
Ih(K)

〈〈
(wd − wm)T uwψnz

〉〉
Ih
, (52)

where ud, wd are the velocity in the lower element and T uw stands for upwind value. For
consistency the same Riemann value u∗ (46) must be used as in the momentum equation.
The diffusion terms are treated similarly as before

Chµ = −
〈
µh(∇hψ) · (∇hT )

〉
K

+
∑
I(K)

〈〈
{µh∇hT} · nhψ

〉〉
I
, (53)

Cvµ = −
〈
µ
∂T

∂z

∂ψ

∂z

〉
K

+
∑
Ih(K)

〈〈{
µ
∂T

∂z

}
nzψ

〉〉
Ih
. (54)

Defining the diffusivity tensor Dµ = diag(µh, µh, µ), the additional interior penalty term
is ∑

I(K)

〈〈
σ3(n ·Dµ · n)ψ[[T ]]

〉〉
I

=
∑
I(K)

〈〈
σ3µh(n

2
x + n2

y)ψ[[T ]]
〉〉
I

+
∑
Ih(K)

〈〈
σ3µn

2
zψ[[T ]]

〉〉
Ih
.

(55)

Including the interior penalty terms, the final horizontal and vertical diffusion operators,
respectively, are

Chµ = −
〈
µh(∇hψ) · (∇hT )

〉
K

+
∑
I(K)

〈〈
{µh∇hT} · nhψ

〉〉
I

+
∑
I(K)

〈〈
σ3µh(n

2
x + n2

y)ψ[[T ]]
〉〉
I
,

(56)

Cvµ = −
〈
µ
∂T

∂z

∂ψ

∂z

〉
K

+
∑
Ih(K)

〈〈{
µ
∂T

∂z

}
nzψ

〉〉
Ih

+
∑
Ih(K)

〈〈
σ3µn

2
zψ[[T ]]

〉〉
Ih

(57)

4.6. Computing the vertical velocity

Vertical flow velocity is computed diagnostically from the continuity equation (6). At
the bottom boundary, w is determined by the impermeability boundary condition:

w = −u ·∇hh, x ∈ Γb. (58)
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In the interior, w is obtained by integrating ∂w
/
∂z = −∇h ·u over the vertical. In practice

this is solved with the following weak formulation over an element K:〈∂w
∂z

ψ
〉
K

= −
〈
∇h · uψ

〉
K
⇔ (59)〈〈

wdψnz

〉〉
Itop
−
〈
w
∂ψ

∂z

〉
K

= −
〈〈
wdψnz

〉〉
Ibot
−
∑
Ilat(K)

〈〈
ψu∗ · nh

〉〉
Ilat

−
∑
Ih(K)

〈〈
ψud · nh

〉〉
Ih

+
〈
u ·∇hψ

〉
K

(60)

The top and bottom faces of the element K are denoted by Itop and Ibot, respectively.
As w is unknown on the top interface, the left hand side of (60) is assembled in a modified
mass matrix4, while the other terms are assembled on the right hand side.

The vertical velocity is first solved for the bottom most elements, using the bottom
boundary condition. Consequently w is known at the top of these elements which is used
as a “bottom boundary condition” for the next layer of elements. Repeating the procedure
until all elements are integrated results in a fully discontinuous w field in the whole domain.

In the right hand side of (60), a value of u∗ is required in the lateral interfaces. To ensure
discrete consistency with the horizontal momentum equation and the tracer equation it is
essential that u∗ of (46) is used also here.

4.7. Computing the baroclinic head

The definition of the baroclinic head (4) contains a vertical integral. It is solved in a
manner similar to w, except that here the solution is known at the surface:

r = 0, x ∈ Γs. (61)

Therefore, the integration is performed from the surface to the bottom, i.e. r = −(1/ρ0)
∫ z
η
ρ′dz.

The corresponding weak form is〈〈
ruψnz

〉〉
Ibot
−
〈
r
∂ψ

∂z

〉
K

= −
〈〈
ruψnz

〉〉
Itop
− 1

ρ0

〈
ρ′ψ
〉
K
, (62)

where ru denotes the value above the interface.
Assembling the two first terms to the modified mass matrix, r can be solved with a

similar recursive procedure starting from the top most elements.

4.8. Computing the internal pressure gradient

The horizontal gradient of r appears in the momentum equation (1). As in the case of
the external pressure gradient, g∇hη, obtaining a robust estimate of g∇hr is essential for

4It is noteworthy that the associated matrix does not depend on vertical scaling of the mesh and thus it
is not necessary to recompute it as the mesh is updated.

17



numerical stability. In the DG method this must be done carefully as the discontinuities of r
should also be taken into account in the gradient. For the external pressure gradient g∇hη,
numerical stability is achieved by integrating the term by parts and using an approximate
Riemann solver for the 2D surface gravity waves as explained in Section 4.3.1.

For the baroclinic head r, however, it is not straightforward to derive an approximate
Riemann solver, because r is not a local variable (i.e. it depends on ρ′ in the interval [z, η]).
Here ∇hr is solved with the following weak form:〈

∇hr ·ψ
〉
K

=
∑
I(K)

〈〈
r∗ψ · nh

〉〉
I
−
〈
r∇h ·ψ

〉
K

(63)

In above, r∗ is still required at the interface. As no Riemann solution is available, an
arithmetic mean r∗ = (rL + rR)/2 is used. Although the arithmetic mean ignores potentially
significant physical processes (e.g. advection and gravitational adjustment) across the inter-
face, (63) still produces a better estimate of ∇hr than using the local gradient (i.e. field r
and gradients of the basis functions).

For the 2D momentum equation, a depth average of the internal pressure gradient must
be computed. Once ∇hr is known, it is obtained from the definition

∇hr =
1

H

∫ η

−h
∇hrdz, (64)

where the vertical integral is computed by summing the nodal values, weighted by the element
heights.

5. Matrix form

5.1. 2D equations

A discrete system of the 2D free surface equation is obtained from (30) by replacing η, h
and ū by the respective DG-FE approximations η̂ =

∑
i ηiϕi, ĥ =

∑
i hiϕi and ˆ̄u =

∑
k ūkϕk.

Using the basis functions ϕj as the test function and summing over all the elements, the
weak formulation can then be written as

〈〈∂∑i ηiϕi
∂t

ϕj

〉〉
Γs,0

=
∑
Q

〈〈∑
i

(ηi + hi)ϕi
∑
k

ūkϕk ·∇hϕj

〉〉
Q

−
∑
Q

〈〈〈(
η∗ +

∑
i

hiϕi
)
ū∗ · nh)ϕj

〉〉〉
J (Q)

, ∀j.
(65)

As Γs,0 and ϕi do not depend on time, the latter can be expressed in a matrix form

dE

dt
= (M2D)−1Bη =: B̃η, (66)
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where [M2D]ij =
〈〈
ϕiϕj

〉〉
Ω

is the 2D mass matrix, [E]i = ηi and Bη denotes the right hand
side (RHS) of (65).

The mass matrix is block diagonal, each block MQ
2D ∈ RN2D×N2D corresponding to an

element Q with N2D nodes. Consequently M−1
2D can be easily obtained by inverting the

blocks MQ
2D. As the 2D mesh does not depend on time, the inverses can be precomputed.

In the case of the depth averaged momentum equation (31) a matrix form is derived in a
similar manner. Taking ϕ = [ϕj, 0] and ϕ = [0, ϕj] as the test function leads into equations
for ūi and v̄i, respectively. Denoting the nodal values by [Ūu]i = ūi and [Ūv]i = v̄i, and the
corresponding RHS by Bū and Bv̄, one obtains

M̃2D =

[
M2D 0

0 M2D

]
, Ū =

[
Ūu

Ūv

]
, Būv̄ =

[
Bū

Bv̄

]
,

dŪ

dt
=
(
M̃2D

)−1

Būv̄ =: B̃ūv̄. (67)

5.2. 3D equations

In the case of the 3D equations, a discrete system is obtained from the weak formulation
by introducing the DG-FE approximation η̂ =

∑
i ηiψi for all the scalar fields (η, w, wm,

∂wm
/
∂z, T ,S,νh, ν) and û =

∑
i uiψi for the vector fields u and ∇hr.

Summing over all the prisms, the weak form of the tracer equation (50) becomes∑
i

d

dt

〈
Tiψiψj

〉
Ω

=
∑
K

BK,j
u (T̂ , û, . . .) +

∑
K

CK,j
u (T̂ , . . .), ∀j, (68)

where CK,j
T contains the terms related to vertical diffusion (49), while all the other terms are

grouped in BK,j
T .

Denoting the nodal values by [T ]i = Ti, equation (68) can be written in matrix form

d

dt

(
M3DT

)
= B̃T + C̃T , (69)

where B̃T and C̃T denote the contribution of BK,j
T and CK,j

T , respectively, and [M3D]ij =〈
ψiψj

〉
Ω

the 3D mass matrix. The mass matrix is again block diagonal with blocks MK
3D ∈

RN3D×N3D , N3D being the number of nodes in a prism K. Due to the moving mesh, however,
M3D and its inverse must be recomputed after each mesh update.

The momentum equation (40) is treated in a similar fashion. With the nodal values
[Uu]i = ui and [Uv]i = vi, the discrete system can be expressed as

M̃3D =

[
M3D 0

0 M3D

]
, U =

[
Uu

Uv

]
, B̃uv =

[
B̃u

B̃v

]
, C̃uv =

[
C̃u

C̃v

]
,

d

dt

(
M̃3DU

)
= B̃uv + C̃uv, (70)

where C̃u and C̃v correspond to the vertical diffusion terms (49), while all the remaining

terms are encapsulated in B̃u and B̃v.
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6. Time integration

This section outlines the time integration method for the coupled 2D-3D shallow water
equations. First, the typical time step constraints are outlined. Then the overall time
integration method is presented, followed by a scheme for the 3D and 2D equations.

6.1. Maximum admissible time step

The long surface gravity waves travel at speed c =
√
gH. If the length scale of an

element in the triangulation T is Lh, the longest admissible time step according to the CFL
(Courant–Friedrichs–Lewy) condition is

∆tc ∝
Lh

c+ U
, (71)

where U ≥ 0 is the maximal advective speed. In many marine applications c � U , i.e.
the surface gravity waves are more restrictive than horizontal advection, or internal wave
propagation alone.

Due to the aspect ratio of the horizontal and vertical length scales of the ocean, the
stability constraint due to vertical advection is comparable to that of horizontal advection.
Vertical diffusion, on the other hand, may impose a stricter condition on a fine vertical mesh

∆tν ∝
L2
z

ν
. (72)

Consequently, for computational efficiency, the split-explicit method is adopted for treat-
ing the external (2D) and internal (3D) modes. The surface gravity waves are solved with
relatively inexpensive 2D depth averaged equations with a high temporal resolution satisfy-
ing (71). The restriction imposed by (72), on the other hand, is circumvented by treating
the vertical diffusion semi-implicitly.

6.2. Overview of the time integration method

Starting from an initial condition at time t0, the temporal discretisation is defined on
interval [t0, tend], with constant time increments ∆t. The variables at tn = t0 + n∆t are
denoted by a superscript n. The domain at tn is denoted by Ωn.

The overall time marching scheme is illustrated in Figure 3. The 3D equations advanced
in time with a third order Leap-Frog-Adams-Moulton (LF-AM3) predictor-corrector scheme
following Shchepetkin and McWilliams (2009). The 2D equations are solved in a separate
sub-routine described in Section 6.4. Considering only the tracer T , the complete time
marching procedure can be summarized as follows

• Prediction stage ( in Ωn )

T n−1/2 = (
1

2
− 2γ)P n

n−1T
n−1 + (

1

2
+ 2γ)T n

T n+1/2,∗ = T n−1/2 + ∆t(1− 2γ)(Mn
3D)−1Bn

T (73)
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Figure 3: Schematic of the time integration method. During each macro time step, the 2D mode is advanced
M∗ iterations with a time step δt = ∆t/M . The 2D variables are averaged with a filter defined by the weights
am (see Section 6.4.1).

• Advancing the 2D equations

• Correction stage ( in Ωn+1 )

T n+1,† = P n+1
n T n + ∆t(Mn+1

3D )−1B
n+1/2
T (74)

T n+1 = T n+1,† + ∆tΘ(Mn+1
3D )−1Cn+1

T + ∆t(1−Θ)(Mn
3D)−1Cn

T . (75)

Above, γ and Θ are parameters related to the temporal scheme and the operator P a
b =

(M a
3D)−1M b

3D.
The 2D mode provides η and ū for the 3D mode. The free surface elevation η is used

both to update the geometry Ωn and to compute the external pressure gradient. The depth
averaged velocity ū is used to adjust the 3D horizontal velocity as explained in Section 6.5.
The 3D mode, on the other hand, affects the 2D mode through bottom friction, internal
pressure gradient and advection of ũ as seen in equation (17).

6.2.1. Conservation and consistency

The prediction stage is solved in a single domain Ωn using the non-conservative ALE
formulation. The correction stage, on the other hand, includes both Ωn and Ωn+1 and
thus the conservative ALE formulation is used in this stage. This choice leads to a mass
conservative and consistency preserving scheme.

Using the conservative ALE formulation in the prediction stage would break tracer
consistency, because the volumetric change is not properly taken into account. The non-
conservative formulation in this stage, on the other hand, preserves tracer consistency at the
expense of losing mass conservation. Mass conservation, however, is required only for the cor-
rection stage, for the whole scheme to be mass conservative (Shchepetkin and McWilliams,
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2005). Therefore only the correction stage is required to be both mass conservative and
tracer consistent.

6.3. Advancing the 3D equations

The prediction stage consists of updating T from tn−1/2 to tn+1/2, with RHSBT evaluated
at tn. The initial condition T n−1/2 is obtained by temporal interpolation, controlled by
the parameter γ. Setting γ = 0 results in a centred average and the LF-TR (Leap-Frog–
Trapezoidal Rule) scheme. The third order accurate LF-AM3 scheme is obtained with γ =
1/12 (Shchepetkin and McWilliams, 2005), which eliminates the numerical modes of LF
schemes.

After the 2D equations have been advanced from tn to tn+1, new geometry Ωn+1 becomes
available. The corrector stage then updates T to time tn+1, where the RHS is computed
with the predicted state (Un+1/2,∗,T n+1/2,∗, etc.).

For both prediction and correction stages, the 3D velocity is updated first, followed by a
similar update of the tracers.

The correction stage is finalized by a semi-implicit evaluation of the vertical diffusion
of momentum and the tracers. Setting Θ = 0.5 corresponds to the classical second order
Crank-Nicolson method. In this work a slightly higher value Θ = 0.6 is chosen to damp
possible spurious oscillations. In (75) Cn

T is originally evaluated in the previous time step
with geometry Ωn, and consequently it is multiplied by the old inverse mass matrix. Note
that the right hand sides Cuv and CT consist only of terms (49) and (57), respectively. As
there are no terms involving the lateral interfaces, Ilat, these equations are independent for
each column of prisms and can be solved separately.

6.4. Advancing the 2D equations

The depth averaged equations are advanced in time with a standard third order Adams-
Bashforth (AB3) scheme. The time step of the 2D mode is denoted by δt and the micro time
steps are indicated with an index m ∈ [0,M∗] with the corresponding time tm = tn + mδt.
For consistency, the 3D time step must be a multiple of the 2D time step ∆t = Mδt, where
M is the time step ratio. In practice the 2D model will be advanced further than the next
3D time step tn+1, so that M∗ > M (Figure 3).

Using the notation of Section 5.1, the AB3 iteration is then given by

Em+1 = Em + δt

[(
3

2
+ β

)
B̃m
η −

(
1

2
+ 2β

)
B̃m−1
η + βB̃m−2

η

]
, (76)

Ūm+1 = Ūm + δt

[(
3

2
+ β

)
B̃m
ūv̄ −

(
1

2
+ 2β

)
B̃m−1
ūv̄ + βB̃m−2

ūv̄

]
. (77)

For AB3 scheme β = 5/12, while setting β = 0 results in second order accurate AB2 scheme.
Given the state (E0, Ū 0) at macro time step n, the iteration is initialized with a forward
Euler and an AB2 step.
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6.4.1. Computing temporal averages

The 3D mode requires η and ū at macro time steps tn and tn+1/2. However, as the 2D
mode is solved with a higher temporal resolution than the 3D equations, η and ū contain
high frequency components that cannot be resolved in the 3D iteration. Consequently, in
order to avoid signal aliasing, the 2D variables are low-pass filtered in time to represent their
evolution in time scales close to ∆t (or above).

Given the fields η, ū at the micro time steps m, the temporal average centred at time
n+ 1 is defined by a set of weights {am}M∗m=1. The following averages are defined

ηn+1
⊗ =

M∗∑
m=1

amη
m, (78)

ūn+1
⊗ =

M∗∑
m=1

amū
m, (79)

(Hū)n+1
⊗ =

M∗∑
m=1

amH
mūm. (80)

The domain geometry is updated with ηn+1
⊗ . The temporal averages ηn+1

⊗ and ūn+1
⊗ are used

as initial conditions for the next 2D iteration. Finally (Hū)n+1
⊗ and (Hū)

n+1/2
⊗ (defined

below) are used to adjust the 3D velocity field.
The weights must fulfil the following normalization and centroid conditions (Shchepetkin

and McWilliams, 2005)

M∗∑
m=1

am = 1,
M∗∑
m=1

m

M
am = 1. (81)

The latter condition means that the centroid of the filter corresponds to tn+1, implying that
the temporal averaging must extend beyond the next macro time step, i.e. M∗ > M .

The temporal average of Hū centred at n + 1/2 is defined by another set of weights
{bm}M∗m=1

(Hū)
n+1/2
⊗ =

M∗∑
m=1

bmH
m−1/2ūm−1/2, (82)

subject to similar conditions

M∗∑
m=1

bm = 1,
M∗∑
m=1

m

M
bm =

1

2
. (83)

This temporal average should be in agreement with a single macro time step update of the
elevation

ηn+1
⊗ = ηn⊗ + ∆t∇h · (Hū)

n+1/2
⊗ . (84)
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Shchepetkin and McWilliams (2005) show that the above condition holds if the weights bm
are chosen as

bm′ =
1

M

M∗∑
m=m′

am, (85)

so that bm are unique and depend only on am. The exact form of the filter coefficients am
bm is presented in Appendix A.

It is worth noticing that, split-explicit models have the advantage that the filters can
be specially designed for desired properties (low dissipation and dispersion in active range,
sufficient damping of high frequencies). Shchepetkin and McWilliams (2005) show that even
a highly dissipative constant filter ai = 1/M∗, M∗ = 2M is in fact less dissipative than a
backward Euler implicit free surface model, that is still used in some models.

6.5. Adjusting the 3D velocity

Because the horizontal momentum equation is defined both in 3D and in 2D, the corre-
sponding velocity fields u and ū do not automatically agree. Therefore the 3D velocity field
u is corrected such that its depth average matches ū, which is in agreement with the η field.
The adjusted velocity can be written as

unadj = un +
1

Hn

(
(Hū)n⊗ −

∫ η

−h
undz

)
. (86)

The 3D velocity is adjusted after each update in the prediction, correction and semi-
implicit stages. At the end of each macro time step, the final un+1 is adjusted with (Hū)n+1

⊗ .
During the prediction stage, at tn+1/2, the 2D mode is not yet solved and consequently

(Hū)
n+1/2
⊗ is not yet available. In this case older (Hū)n⊗ is used instead, before executing

the prediction stage of the tracers. After the 2D mode is solved, un+1/2,∗ is adjusted again
with the correct (Hū)

n+1/2
⊗ .

6.6. Slope limiter

Monotonicity preserving advection schemes used with marine models include Total Varia-
tion Diminishing (TVD) schemes in finite volumes (Pietrzak, 1998) or flux-corrected schemes
in continuous finite elements (Kuzmin et al., 2005). The monotonicity property ensures that
local maxima (minima) do not increase (decrease) in time.

Many slope limiter families exist in the literature for DG-FEM, for example the minmod
limiter by Cockburn and Shu (1998). However, the implementation of many such filters
depends on the element type and dimension. Therefore in this work a mass conservative,
geometry-independent slope limiter is used. In its simple form, with only one degree of
freedom per element, the limiter is similar to the one of Kuzmin (2010) and Aizinger (2011).
An optimal version, that modifies the nodal values as little as possible, similarly to the
minmod limiter, is also tested. These two versions are briefly outlined in Appendix B.
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6.7. Updating mesh geometry

The water elevation η, as computed by the depth averaged equations, belongs to the
space W and is thus discontinuous. The mesh, however, must remain conforming, so that
the lateral faces on Ilat are the same on both sides. A conforming 3D mesh can be achieved
by updating the mesh with a continuous elevation field ηc (Aizinger and Dawson, 2007),
obtained from the discontinuous η. In this work a mass conserving weighted average filter is
used. Another possibility is to project η on continuous basis functions with L2 projection,
which also conserves mass. However, the L2 projection tends to create overshoots, while the
average operation is purely diffusive.

Consequently, the time dependent domain Ω corresponds to ηc, and in all the equations
related to surface boundary conditions and the mesh movement – namely (11) and (21) – η
is replaced by ηc. Furthermore all the vertical integrals are defined on interval z ∈ [−h, ηc].
This leads into a small discrepancy in the numerical implementation, due to the error η−ηc.

7. Numerical tests

The performance of the presented 3D model were tested in a sequence of numerical
benchmarks. Conservation and consistency properties were assessed in a barotropic test
case, followed by a baroclinic gravitational adjustment benchmark. Finally, the model was
applied to simulating the Rhine river plume in Section 7.3.

7.1. Surface gravity waves and conservation properties

Volume and mass conservation properties were tested with propagating surface gravity
waves in a rectangular channel 10 km long, 1 km wide and 50 m deep. All lateral boundaries
were set impermeable. Initially a free surface perturbation was prescribed along the channel:
η0 = a0 exp (−(x/σ0)2), with a0 = 0.1 m and σ0 = 2000 m. Salinity evolution was computed
with (8) imposing a constant initial value S0 = 4 PSU. Temperature was taken as a constant
10◦C throughout the simulation. Bottom friction and vertical diffusion were omitted in this
test.

The domain was discretised with 100 m horizontal resolution and 20 vertical layers. The
propagation of the gravity waves were simulated for 8000 s with 0.2 s 2D time step and
M = 30. The observed relative error in volume and total tracer mass was of order 10−14.
The deviation in tracer concentration was higher, 10−6. This error is due to the fact that
the 3D fields and the free surface elevation are not exactly compatible, thus breaking tracer
consistency. The dominant source of error is proportional to ηc−η, related to the smoothing
of the free surface.

The simulation was repeated for a non-constant tracer field. Initially S = 4 PSU was
prescribed at the bottom and S = 3 PSU at the surface boundaries with linear transition
in between. Also in this case, the relative error in total tracer mass was of order 10−14,
thus verifying mass conservation. During the simulation, the tracer extrema were decreasing
monotonically, suggesting that numerical dissipation alone was sufficient to filter out the
spurious extrema in the tracer field.
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A mesh refinement analysis was further carried out for the same setup. Horizontal reso-
lutions ranged from 1000 m to 100 m and number of vertical layers were increased from 2 to
20. The finest resolution was used as a reference solution. Figure 4 presents the L2 error in
horizontal velocity versus horizontal mesh resolution, verifying the theoretical second order
convergence.
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Figure 4: Convergence analysis of u in the surface gravity wave test.

7.2. Gravitational adjustment of a density front

The model’s ability to simulate buoyancy driven flows was assessed in a standard non-
rotating gravitational adjustment test (e.g. Wang (1984); Haidvogel and Beckmann (1999);
Jankowski (1999)). Initially a rectangular domain, 64 km long and 20 m deep, is filled with
two fluids of slightly different densities. In the left half of the domain ρ′1 = 2.15 kgm−3,
while on the right ρ′2 = −2.15 kgm−3 is prescribed. At time t = 0 the barrier separating
the fluids is removed, and a density driven exchange flow develops, driving the dense fluid
under the lighter fluid. Assuming that ∆ρ = ρ′1 − ρ′2 � ρ0 and that all potential energy is
transformed into movement, it can be shown that the top and bottom fronts advance with
speed c = (1/2)

√
g′H, where g′ = g∆ρ/ρ0 is the reduced gravity (Jankowski, 1999).

The exchange flow was simulated with horizontal resolution Lh = 833 m and Nσ = 12
sigma layers. Vertical diffusion, bottom friction and Coriolis force were neglected. The
simulation was carried out using both the simple and the optimal slope limiter.

Figure 5 shows the initial density distribution and the situation after 31 500 s of simulation
for both limiters. It is seen that the solution oscillates in both cases, suggesting that the
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Figure 5: Gravitational adjustment without background diffusion. a) Initial density. Density after 31500 s
of simulation in the case of the b) simple and c) optimal slope limiter.

internal pressure gradient term, that couples the tracer and momentum equations, is not fully
stabilised. However, it is worth noticing that the slope limiter also plays a role: oscillations
are much larger for the simple limiter. This is due to the fact that it tends to alter the
solution excessively, which leads to noise in the tracer field. Therefore for the subsequent
tests, only the optimal limiter is considered.

The mean exchange flow velocity is estimated as the front displacement divided by the
elapsed time. For results shown in Figure 5, one obtains roughly 0.44 ms−1 which is compa-
rable, and – as expected due to numerical dissipation – slightly smaller than the theoretical
value c = 0.46 ms−1.
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Figure 6: Gravitational adjustment with a constant background diffusion νh = κh = 5 m2s−1. Density at
31 500 s for a) coarse mesh (Lh = 833 m, Nσ = 12) b) fine mesh (Lh = 312 m, Nσ = 32). c) Convergence
plot.

Also here a convergence analysis of the density distribution was performed. The mesh
resolution varied between Lh = 1250 m (Nσ = 8) and Lh = 312 m (Nσ = 32). Because no
analytical solution is available, the finest solution was used as a reference. However, owing
to the oscillations, the simulation became unstable for finer meshes and as a remedy a small
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Figure 7: Gravitational adjustment with the Smagorinsky diffusion. Density at 31 500 s for a) coarse mesh
(Lh = 833 m, Nσ = 12) b) fine mesh (Lh = 312 m, Nσ = 32). c) Convergence plot.

horizontal diffusion was added.
The results obtained with a constant background diffusivity are presented in Figure 6.

Alternatively, a Smagorinsky diffusivity,

νh = κh =
C2
sL

2
h

π2

√(∂u
∂x
− ∂v

∂y

)2

+
(∂u
∂y

+
∂v

∂x

)2

,

was applied5, with Cs = 1.0. This case is illustrated in Figure 7. It is seen that the oscillations
are damped and the solution on the finest mesh is very smooth. Using the Smagorinsky
scheme appears to be more diffusive – especially the fronts are smoother – but yields better
rate of convergence, 2.26. In the case of a constant diffusion, small wiggles remain in the
finest solution near the fronts, and the rate of convergence is only 1.66. It should be noted
however, that the wiggles in the reference solution may hamper the convergence analysis in
this case.

It can be concluded that under gravitational adjustment the model produces realistic
results. However, some diffusion may be necessary to damp oscillations, especially with
high resolution meshes. The oscillations are most likely related to insufficient stabilisation
of the internal pressure gradient feedback. The rate of convergence is super-linear but not
necessarily second order.

7.3. River plume

Areas where freshwater induced buoyancy plays an important role are often referred to
as regions of freshwater influence (ROFI, Simpson, 1997). Typically ROFIs feature strong
density gradients, that on the one hand drive the water motion, but on the other hand
are affected by advection and mixing processes. Thus the flow exhibits a highly non-linear

5Note that although the Smagorinsky scheme was developed for viscosity, it is sometimes applied to
tracers as well (e.g. Mellor, 2004).
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behaviour, arising from the interaction of the tides, the Coriolis force, buoyancy and vertical
mixing. In all the complexity ROFIs provide a good benchmark for baroclinic marine models.
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Figure 8: Horizontal mesh for the Rhine ROFI simulation. a) The whole domain (3167 triangular elements)
b) Enlargement near the area of interest. The resulting 3D mesh, with 20 sigma layers, consists of 63 340
prisms and 380 040 degrees of freedom.

Numerical 3D modelling of the Rhine ROFI has been discussed in Ruddick et al. (1994,
1995); de Boer et al. (2006); de Boer et al. (2008); Fischer et al. (2009), among others. Here
a simulation is carried out in an idealised geometry following de Boer et al. (2006). In this
configuration the Dutch coastal zone is modelled as a 20 m deep rectangle extending 100
km in the alongshore (“north”) and 35 km in the across-shore (“west”) directions. The river
is represented by a 45 km long and 500 m wide perpendicular channel whose depth reduces
linearly to 5 m at the inlet. Such a simplistic geometry is acceptable as the Rhine ROFI is
relatively unaffected by coastal and bathymetric features (de Ruijter et al., 1997).

To avoid issues caused by waves reflecting on the open boundaries, the domain is extended
some 700 km north and west from the river inlet, gradually decreasing the mesh resolution
(Figure 8). Near the river mouth the horizontal resolution is similar to the setup of de Boer
et al. (2006). The element edge length is set to 500 m in the river, increasing to roughly
1200 m in the rest of the domain of interest (roughly 50 by 30 km in the alongshore and
cross-shore directions). In vertical direction 20 sigma layers are used. The mesh is generated
with GMSH mesh generation tool (Geuzaine and Remacle, 2009).

Initially the salinity is set to a constant 32 PSU value and a constant freshwater discharge
1500 m3s−1 is prescribed at the Rhine inlet. Following Fischer et al. (2009) the water elevation
is forced at the three open boundaries with an M2 Kelvin wave (amplitude 1.0 m, period
τ = 44714 s). The Coriolis factor, taken as a constant, corresponding to latitude 52.2◦ north.
Wind forcing is neglected.

The freshwater inflow causes a well formed salt wedge in the river. Once released from the
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river, the plume turns to the right and forms a typical freshwater source for the northward
coastal current. After roughly 20 tidal cycles the main plume shows nearly periodic be-
haviour. The results discussed in this section are of the 31st tidal cycle, similarly to de Boer
et al. (2006); Fischer et al. (2009).
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Figure 9: Tidally averaged salinity distribution. a) Depth average. Vertical transect at b) river mouth y=0,
c) 15 km downstream, d) 30 km downstream.

Tidally averaged salinity is presented in Figure 9. The main plume extends to some 30
km offshore and 100 km northward alongshore from the river mouth. In the “upstream”
direction, the river plume extends roughly 20 km southward. In the surface layer, roughly
5 m deep, the water column is strongly stratified with fresh water trapped near the surface.
Further below bottom friction induced mixing dominates and the water column becomes
nearly homogeneous in vertical direction, salinity decreasing toward the coast.
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Figure 10: Evolution of surface salinity (0.5 m below surface) over a tidal cycle. Arrows illustrate the
horizontal flow velocity. Maximal velocity is roughly 1.3 ms−1. Temporal evolution of velocity is examined
in stations A and B, and stratification in stations C, D and E.
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de Ruijter et al. (1997) showed that the Rhine river plume exhibits a pulsed freshwater
discharge due to two reasons. First, the along-river tidal current is stronger than the mean
discharge velocity at the mouth, pinching off the river discharge periodically. Second, the
river mouth is narrow compared to the inertial trajectory radius of the discharged water, so
that a freshwater lens is separated from the river mouth before a new pulse is generated. The
tidal evolution of the surface salinity and currents is presented in Figure 10. The freshwater
lens, released south west from the river mouth during rising tide (t/τ = 3/6 to t/τ = 5/6),
is clearly visible. It is transported northward during the ebb, merging with the main plume
at low tide.
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Figure 11: Time series of velocities at Station A (10 km offshore and 20 km north of the river mouth). a)
Cross-shore velocity. b) Alongshore velocity.
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Figure 12: Time series of velocities at at Station B (10 km offshore and 0 km north of the river mouth). a)
Cross-shore velocity. b) Alongshore velocity.

In the ROFI the flow velocity shows asymmetric pattern. On the surface, the tidal velocity
rotates clockwise (anti-cyclonically) while in bottom layer (below 5m depth) the rotation is
anti-clockwise (cyclonic). Further downstream, where the influence of the stratification is
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small, the flow reduces to nearly unidirectional (i.e. cross-shore component is zero) as in the
case of pure Kelvin waves. Figures 11 and 12 present time series of the horizontal velocity
at two locations, marked A and B in Figure 10. In station A the asymmetric velocity
pattern is visible as the cross-shore velocity has opposite sign in the surface and bottom
layers. This behaviour is related to the movement of the freshwater lens in the cross-shore
direction. Intensified river outflow associated with the freshwater pulse, compensated by a
similar saline intrusion in the bottom layer, can be seen in station B (Figure 12).

It is well known that in the ROFI the stratification conditions vary significantly in time
and space (Simpson et al., 1993; de Boer et al., 2008). Figure 13 presents the minimal and
maximal gradient Richardson number Ri = N2/R2 (where N and R are the Buoyancy and
(vertical) shear frequency respectively) in the surface layer over the tidal cycle. Comparing
the two plots, it is evident that in several locations the surface layer alternates between
stratified and mixed conditions. The temporal evolution of the stratification is examined in
more detail in the locations C,D and E in Figure 13.

Figure 14 presents the temporal evolution of stratification is station C. This station is
located at the southern boundary of the main “bulge” of the plume. It is influenced by the
freshwater outflow during the rising tide (see the two last panels in Figure 10). Otherwise
the water column is well mixed, and unstably stratified (N2 < 0) after high water. The
unstable stratification is a good example of Strain Induced Periodic Stratification (SIPS,
Simpson et al., 1990). The tidal currents, being stronger near the surface, tilt the horizontal
salinity gradient. As ∂S

/
∂y is negative at this location, flood currents push saline water

over lighter water giving rise to N2 < 0. In de Boer et al. (2008) the different processes
affecting stratification in the Rhine ROFI are analysed using the potential energy anomaly
equation in a numerical 3D model. Their results also confirm that in this part of the plume,
the stratification is dominated by alongshore straining and advection.

The situation at station D is presented in Figure 15. Because this location lies already 40
km North of the river mouth, the water column is quite homogeneous throughout the tidal
cycle. However, here the SIPS pattern is opposite: as ∂S

/
∂y is positive it is the ebb that

induces the unstable stratification.
The stratification pattern is more complicated at station E (Figure 16) due to the passing

fronts related to the fresh water lens. The surface layer remains strongly stratified, but the
shear is also significant due to stronger surface velocities (Figure 10). The competition of
N2 and R2 result in a patch of Ri < 0.25 during the falling tide at depth 5 m below surface.

8. Conclusions

Discontinuous Galerkin methods are well-suited for solving advection dominated prob-
lems and have advantageous numerical properties, but so far they have not been extensively
applied to ocean modelling. This article presents a DG baroclinic marine model that fulfils
the essential requirements for simulating coastal density driven flows. Water volume and
tracer mass are conserved up to machine precision. Spurious extrema in tracer fields are
filtered by means of a slope limiter.
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A split-explicit predictor-corrector time integration method similar to that of Shchepetkin
and McWilliams (2005) is used. In the DG framework, explicit models bring some important
advantages, such slope limiters and straightforward parallelisation. As computational cost is
a major challenge for emerging unstructured grid models, the latter is an important feature
for large scale and/or high resolution applications.

Vertical mesh movement is taken into account by means of ALE (Arbitrary Lagrangian
Eulerian) formulation. A conservative ALE formulation is used for the correction stage, while
a non-conservative formulation is used in the prediction stage. This choice leads to a strictly
mass conservative scheme. However, as it is cumbersome to ensure discrete compatibility of
the 2D free surface equation and the 3D equations, the tracer consistency criterion is satisfied
only approximately. Alternatively, one could use the non-conservative formulation in both
stages, yielding exact tracer consistency at the expense of losing global mass conservation. In
this work we have chosen to retain mass conservation as it is presumably a more important
property in environmental applications.

The model is tested with a gravitational adjustment benchmark, where the general fea-
tures of the flow are well represented. Nevertheless some oscillations are visible, due to the
lack of rigorous stabilisation of the internal pressure gradient. More work is needed to tackle
this issue, as it seems that deriving a stabilisation term for internal wave processes is not
straightforward. However, using an optimal slope limiter, that modifies the nodal values as
little as possible, produces significantly better results. Moreover, a small diffusivity can be
further introduced to reduce the oscillations.

Finally, the model is applied to the Rhine river plume in an idealised geometry following
the setup of de Boer et al. (2006). The river plume results are well in agreement with other
results in the literature, e.g. obtained with Delft-3D (de Boer et al., 2006; de Boer et al.,
2008) and GETM (Fischer et al., 2009). The plume exhibits pulsating behaviour, releasing a
clearly defined lens of riverine water each rising tide. In several locations, the stratification
conditions change over the tidal cycle, altering between fully mixed and strongly stratified
states.
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Appendix A. Temporal filter coefficients

In this work we are using a filter defined by the following generating function (Shchepetkin
and McWilliams, 2005)

A(τ) = A0

[( τ
τ0

)p(
1−

( τ
τ0

)q)
− r
( τ
τ0

)]
, τ =

m

M
, (A.1)

with parameters p, q ∈ N and r ∈ R. Let τ ∗ be the largest real root of A(τ). Then the
length of the filter is obtained as M∗ = τ ∗M and weights are am = A(m/M),m ∈ [1,M∗].
The constant A0 is found by imposing the constraint

M∗∑
m=1

am = 1. (A.2)

The constant τ0 is obtained from the second constraint

M∗∑
m=1

m

M
am = 1, (A.3)

which leads to a non-linear problem. It is solved with a secant method using the initial guess

τ0 =
(p+ 2)(p+ q + 2)

(p+ 1)(p+ q + 1)
. (A.4)

Optimizing τ0 also ensures that bm sums to unity and its centroid is close to half.
Notice that the root τ ∗ depends on the filter type (i.e. parameters p, q and r), but not on

mode split ratio M . In contrast A0 and τ0 do depend on M , and must be computed in the
model initialization. In this work the filter p = 2, q = 2, r = 0.2846158 is used (Shchepetkin
and McWilliams, 2009).

Appendix B. 3D vertex-based slope limiter

In this work a mass conservative vertex-based slope limiter is used. It is applicable to
deformed prismatic elements where the top and bottom faces are not necessarily horizontal.

Given a certain node xi in the 3D mesh, a “neighbourhood” of xi is defined as a set of
elements sharing the node: P(xi) = {K ∈ P|xi ∈ K}. Consider a scalar field T whose nodal
values in element K are {TKj }N3D

j=1 . A mapping χ(j,K) maps a node j in element K to i in
the global mesh indexing, so that TKj corresponds to node xχ(j,K).

The idea of a vertex based slope limiter is to ensure that no nodal value TKj at xχ(j,K)

can exceed the minimum/maximum mean value of the elements sharing the node xχ(j,K).
These bounds are denoted by TMin

χ(j,K) and TMax
χ(j,K), respectively. Defining the total mass in the

34



element K by ‖TK‖ :=
∑

j V
K
j T

K
j , where V K

j =
〈
ψj
〉
K

is the volume associated with node

j, the limiter consists of finding limited values T̃Kj so that

TMin
χ(j,K) ≤T̃Kj ≤ TMax

χ(j,K),

‖T̃K‖ = ‖TK‖.

The major advantage of such vertex based limiter is that it is geometry independent,
applicable to any dimension and all types of elements (Kuzmin, 2010; Aizinger, 2011).

Appendix B.1. Simple one-parameter limiter

A simple choice for the finding T̃Kj is to consider the convex combination between the
original values (λ = 1) and the mean value (λ = 0),

T̃Kj = λTKj + (1− λ)
‖TK‖∑
j V

K
j

.

Clearly the mass conservation criterion is met for all λ ∈ [0, 1]. Knowing the bounds,
the maximum acceptable λj is determined for each node j, and the solution is taken as
λ = minj(λj) (Kuzmin, 2010).

The advantage of this approach is that the single parameter λ can be easily found. The
drawback is that the solution is not optimal; if only a certain node needs to be limited, the
solution may change significantly in other nodes as well. This disadvantage becomes more
severe as the dimension of the problem is high, as with 3D elements.

Appendix B.2. Optimal limiter

An better limited solution can be found by requiring that the modification on each node
remains minimal. Using a conventional quadratic penalisation, one obtains the following
quadratic programming problem

minimize
∑
j

|TKj − T̃Kj |2,

‖T̃K‖ = ‖TK‖,
TMin
χ(j,K) ≤T̃Kj ≤ TMax

χ(j,K).

This problem has N3D− 1 degrees of freedom. Consequently it is more complicated to solve
but provides better results in 3D applications.
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Figure 13: Maximal and minimal gradient Richardson number over the tidal cycle in the surface layer ( 1 m
below surface ). The surface layer is strongly stratified in areas where Ri & 1 (left) and unstably stratified
where Ri < 0 (right).
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Figure 14: Temporal evolution of the stratification is station C (15 km offshore and 10 km south of the
river mouth). a) Gradient Richardson number. The critical Richardson number Ric = 0.25 is indicated by
a contour line. b) Salinity. c) Buoyancy frequency squared. d) Shear frequency squared. White patches
indicate unstable stratification (Ri,N2 < 0).
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Figure 15: Temporal evolution of the stratification is station D (10 km offshore and 40 km north of the
river mouth). a) Gradient Richardson number. The critical Richardson number Ric = 0.25 is indicated by
a contour line. b) Salinity. c) Buoyancy frequency squared. d) Shear frequency squared. White patches
indicate unstable stratification (Ri,N2 < 0).
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Figure 16: Temporal evolution of the stratification is station E (5 km offshore and 8 km north of the
river mouth). a) Gradient Richardson number. The critical Richardson number Ric = 0.25 is indicated by
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indicate unstable stratification (Ri,N2 < 0).
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