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parameters. Two numerical parameters control the stability and the conver-
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either in terms of the residual of the is theoretically analysed and demon-
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1. Introduction

Most sea ice models use some variant of the viscous-plastic (VP) rheology
(Hibler, 1979) and give realistic drift pattern. Simulations at high resolution
does not performed very well in reproducing the deformation field especially
at small spatial and temporal scales (Kwok et al. (2008) and Girard et al.
(2009)).

It raises questions about the principal assumptions on which plastic mod-
els have been build (Coon et al., 2007) and it generates a regain of interest
to build up a new framework for sea ice dynamics as in Girard et al. (2011),
Hibler and Schulson (2000), Wilchinsky and Feltham (2004) and Schreyer
et al. (2006). Some authors still claim that with a high enough resolution
and a correct solving method, the VP rheology is able to simulate high defor-
mation bands similar to what is observed in reality (Wang and Wang (2009)
and Maslowski and Lipscomb (2003)).

Several methods are used to solve the non-linear VP rheology. One of the
most famous method is the elastic-viscous-plastic (EVP) method that is thor-
oughly documented in Hunke (2001); Hunke and Dukowicz (1997, 2002), and
Hunke and Lipscomb (2008). Other numerical methods have been developed
as in Lemieux et al. (2012) and Zhang and Rothrock (2000). Several methods
have been proposed to solve the VP rheology. Hibler (1979) proposed an im-
plicit treatment of the momentum equation with viscosities computed from
velocities of the last time step but it suffers very slow convergence towards the
ellipse. Sub-iterations or smaller time step have been used to the detriment
of the computational cost and without a fast enough convergence rate as
shown by Lemieux and Tremblay (2009). Another approach is to iteratively
solve the non-linear set of equations by the Newton method as in Lemieux
et al. (2012). But the most popular method is the EVP method proposed by
Hunke and Dukowicz (1997) where an additional elastic term is added to the
constitutive law (3) to allow an explicit solving of the momentum equation
while keeping a stable scheme. All those methods are based on sub-iterations
performed within each global time step. The number of sub-iterations may
be fixed or automatically adapted to reach a certain degree of convergence
either in terms of stresses or ice velocities.

We work in the framework of the NEMO sea ice-ocean model (?) which is
discretised on a C-grid. will modified the discretisation of the EVP method
implemented by Bouillon et al. (2009b) in the LIM2 version of the sea ice
model (see Madec et al. (1998) and Fichefet and Maqueda (1997) for the
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other aspects of the LIM2 model).
The VP rheology has the property to dissipate energy. The spatial dis-

cretisation is build to preserve that property. VP equations are solved by a
modified EVP method that ensures a good solution even.

2. The Viscous-Plastic Model and its dissipative property

The VP rheology and the continuous sea ice dynamics are coupled by a
constitutive equation defining the internal stress tensor σσσ as a function of the
derivatives of the ice velocity and the 2D momentum equation equation:

0 = σσσ − ggg(u)

m∂tu = ∇ · σσσ + f(u)
(1)

where m is the combine mass of snow and ice per unit area and u the hori-
zontal ice velocity.

The momentum equation is obtained by integrating the 3D momentum
equation through the thickness of the snow and ice in the vertical direction.
The momentum advection is being ignored in (1) and all the terms that do
not depends on the internal stress are grouped in f(u) by

f(u) = a (τττa + τττw)−mf k× u−mg∇φo. (2)

The wind stress τττa and the ocean stress τττw are multiplied by the ice concen-
tration a (Connolley et al., 2004). τa is an external forcing and τw is given
by a quadratic expression cD ρo |uo−us−1|(vo−v). The other two terms are
stresses due to Coriolis effects and due to the sea surface slope.

The constitutive law proposed by Hibler (1979) relates the internal ice
stress σij and the rates of strain εij = 1

2
(∂ui
∂xi

+
∂uj
∂xj

) by

σ1 = P
(DD −∆)

(∆ + ∆min)

σ2 =
P

e2

DT

(∆ + ∆min)

σ12 =
P

2e2

DS

(∆ + ∆min)

∆ =

√
DD

2 +
1

e2

(
DT

2 +DS
2
)

(3)
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where

σ1 = σ11 + σ22

σ2 = σ11 − σ22

DD = ε11 + ε22

DT = ε11 − ε22

DS = 2ε12

(4)

and ∆min is the parameter determining the transition from viscous to plastic
deformation.

In the pure plastic case when ∆ � ∆min, equation 3 corresponds to
an elliptical yield curve in the stress state space.The compressive stress σ1

and the shearing stress σs = (σ2
2 + 4σ2

12)
0.5 are related though the quadratic

expression (σ1 +P )2 + e2σ2
s = P 2D

2
D

∆2 + e2 P 2

e2
DT

2+DS
2

∆2 = P 2. The length of the
major axe corresponds to the maximum compressive stress 2P . e is the ratio
between the major axe and the minor axe. The ellipse is not centred on the
origin but translated into the σ1 <= 0 part of the stress space. The ice pack
is assumed having no resistance to pure divergence but resist compression
and shearing motion in the other cases.

The response of the ice is plastic. It does not depend on the magnitude
of the deformation rate but only on the direction of the strain rate vector
defined by the shear strain rate

√
DT

2 +DS
2 and divergence strain rate DD.

Each possible stress state on the ellipse corresponds to a certain direction
of the strain rate vector. This constitutive law respects the normal flow
rule because the strain rate vector will always be normal to the yield curve
in principal stresses and strain rates plane. P is measure of ice strength
that depends on thickness and compactness by P = P ∗a h ec

∗(1−a), where P ∗
and c∗ are empirical constants and h is the mean ice thickness (in our case
P ∗ = 104Nm−2 and c∗ = 20). Other constitutive laws with a different yield
curve or another flow rule may be used but this combination of the ellipse
yield curve and the normal flow rule is very popular and will be used in this
paper.

One of the main characteristics of the VP rheology is the dissipation of
energy. We will develop that property from the continuous equations and it
will help in defining a correct spatial discretisation for the VP equations in
the following.
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Table 1: Symbols used in the text

Symbol Definition Units
P ice pressure (strength) N m−1

M mass of snow and ice per unit area Kg m−2

h mean ice thickness m
a ice concentration -
∆ measure of the deformation rate s−1

D rate of internal work N m s−1

DD Divergence s−1

DS shearing strain rate s−1

DT tension strain rate s−1

F = (Fu, Fv) stress divergence N m2

εij component of the strain rate tensor s−1

σij component of the stress tensor N m2

U = (u, v) ice velocity m s−1

D = −1

2

∫∫
S

(DD σ1 +DT σ2 + 2DS σ12) dS

= −
∫∫

S

P

2∆

(
DD (DD −∆) +

1

e2

(
DT

2 +DS
2
))

dS

= −
∫∫

S

P

2∆
∆ (∆−DD) dS

= −
∫∫

S

P

2
(∆−DD) dS

(5)

As ∆ is obviously larger or equal to DD and P ≥ 0, D is always negative
or zero. Therefore, the work of internal ice force over the ice pack is to
dissipate energy. This dissipation of energy is a fundamental property of the
VP rheology. It is important to preserve this property in the discretisation
such that the discrete system dissipates energy in the same manner as the
continuous system (Hunke and Dukowicz, 2002).
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3. Discretisation and the EVP method

The spatial discretisation is the same as presented in Bouillon et al.
(2009a). It is based on the C-grid arrangement of variables with cells centred
on scalar points (t-points) and velocity points (u- and v-points) defined in
the centre of each face of the cells. σ1 and σ2 are defined on t points as well
as DD and DT . σ12 and DS are defined on the corner of the cells (f -points).
This arrangement minimizes the need of averaging operator for the evalua-
tion of the different derivatives by the finite difference method. Only two
variables have to be interpolated. DS is needed on (t-points) to compute
∆ and ∆ on (f -points) to compute σ12. The average operators have to be
be of that form: � DS

2 �t and � 1
∆
�f to satisfy the property of energy

dissipation (??)(see annex). Any linear combination of ∆ on f -point and any
linear combination of DS on t-points will fail in satisfying the dissipation of
kinetic energy constraint. Those operators are the only differences with the
spatial discretisation presented in Bouillon et al. (2009a).

3.1. The temporal discretisation
To illustrate the temporal discretisation the following simplified one-

dimensional version of the VP equation will be used:

0 =
P

2∆
∂xu− σ

M ∂tu = ∂xσ + f

∆ = |∂xu|

(6)

.
The simplest discretisation is an explicit scheme to advance in time from

time step n to time step n+ 1 using:

M
un+1 − un

∆t
= ∂x

P

2∆n

∂xun + f (7)

. The stability criterion scales quadratically with ∆x as

∆t ≤ M∆

P
∆x2 (8)

Because the deformation rate ∆ can be as small as 10−9 s−1. In that case and
with a spatial resolution ∆x = 50km, P = 20000N/m andM ∼ 1000kg m−2,
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the order of magnitude of the required time step would be 10 s. To enhance
larger time step, implicit scheme are preferred.

VP equations are non-linear. Newton’s method has been recently used
(Lemieux et al., 2010) but in most sea ice models the solving of those non
linear equation is based on outer loop iterations (Zhang and Hibler, 1997).
Within each outer loop iteration (s+ 1) a linearised version of the equation
is solved. In our simple case, ∆ would be computed with velocity from the
previous outer loop iteration (s).

M
um+1
n+1 − un

∆t
= ∂x

P

2∆m
n+1

∂xu
m+1
n+1 + f (9)

. The main drawback of this method is the slow convergence towards the
solution. Even with 40 outer loop the velocity field can have significant error
as shown by Lemieux and Tremblay (2009). Within each outer loop a solver
is called to solve the linear system of equation (GRES, LSOR, ...).

The EVP method developed by Hunke (2001) and the modified EVP
approach (Lemieux et al., 2012) can be interpreted as a a fixed iteration
point iteration method. This approach aims at finding un+1 and σn+1 that
satisfy the VP implicit equations rewritten as

G (u), σ) = g(un+1)− σn+1 = 0

F (u), σ) = ∇ · σn+1 + f̂(un+1) = 0
(10)

where f̂(u) = f̂(u)−M∂tu.
A each iteration an approximate solutions um+1 and σm+1 is generated

from the um and σm. The objective is to converge to the solution of (10) by
successively executed those operations:

σm+1 = σm − G (um), σm)

G′
1

α
um+1 = um − F (um), σm+1)

F ′
1

β
(11)

where α and β are two adimensional parameters and G′ and F ′ are approxi-
mate derivatives of each equation with respect to the respective variable.

G′ = −1

F ′ = −M
∆t

(12)
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Name T [s] ∆t [s] ∆te [s] α β
Hunke (b) 1296 3600 30 43.2 120
Hunke (a) 1296 3600 3 432 1200
Lemieux 432 1200 30 14.4 40
Lemieux 432 1200 10 4.8 120

Table 2: Values of the numerical parameters for each experiment. Exp1 uses the standard
values.

This method looks like the Newton’s method but in a much simpler form.
G′ and F ′ are a very crude approximation of the Jacobian and each variables
are decoupled. No solver are needed as each variables are decoupled.

The algorithm presented here is exactly equivalent to the generalized EVP
method if

α =
T

∆te

β =
β∗
M

∆t

∆te

(13)

where T is the elastic time parameter, β∗ is the extra inertial tuning param-
eter, ∆te is the sub iteration time step and ∆t is the global time step. It also
corresponds to the standard EVP method if β∗ = M and if the number of
iteration if fixed at nevp = ∆t

∆te
. In that case β corresponds to nevp.

α and β control the speed of convergence to the solution while their
product controls the stability of the method. Those two parameters are very
useful to compare EVP simulations made in different configurations. For
example the test-case of Hunke (2001) with ∆te = 3 s and with the ratio α

β

In Hunke test case the ratio α
β
is the same (0.36) in both experiments

but the product is much smaller in the experiment (b). The oscillation in
the divergence field is be better explained by a lack of stability than by a
problem of convergence. In Lemieux et al. (2012) the product is the same
and the better convergence is observed with the smaller value for α.

The termination criterion can be a maximum number of iteration or de-
pends on a measure of the residual in function ofG (um), σm) and F (um), σm).
In our experiments the error is either defined as the maximum velocity up-
date between two iterations max(||um+1 − um||, ||vm+1 − vm||) over all the
domain, either as the norm of the difference in velocity with an approximate
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solution obtained with a much larger number of iteration. We also evaluate
the error by the distance of the stress state with regard to the yield curve and
by the difference in the shear and the divergence rate field with a solution
obtained with more iterations. In our case the termination criterion is fixed
by a maximum number of iterations.

The method is consistent meaning that if (um), σm) is solution of (10)
(um+1), σm+1) given by (11) is equal to (um), σm).

To analyse the convergence it is convenient to interpret the solving process
as the evolution of the approximate solution in function of a dimensionless
variable s. (11) corresponds to an explicit discretization of a partial dif-
ferential set of equations. One iteration corresponds to one step ∆s with
∆s = 1.

In the one dimensional case the iterative process corresponds to

α∂sσ =
P

2∆
∂xu− σ

β∂su =
(
∂xσ + f̂

) ∆t

M
∆ = |∂xu|

(14)

Combining both equations leads to a wave equation

∂2
su =

γ

αβ
∂2
xu−

1

α
∂su (15)

where γ = P
2∆

∆t
M
. ∆ is considered constant and non homogeneous terms have

been dropped. From this equation two adimensional numbers are defined:

Se =

√
αβ

γ
∆x

Sv =
β

γ
∆x2

(16)

. Se is the spring, it drives the approximation towards the solution. Sv is
the dashpot, it limits the update of the approximation. Se could also be
interpreted as an elastic pseudo time scale and Sv as a viscous pseudo time
scale. It explains the name of the EVP method and the confusion with the
VP model. The ratio ξ = Se

Sv
=
√

αγ
β∆x2

determines the damping. Oscillations
occur during the approach of the solution only if ξ > 1.
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Following Hunke (2001) the approximate solution evolves as ei(kx−ωs)
where i =

√
−1, k is the wave number (k ≤ 1

∆x2
) and ω the damping rate

which is a complex number obtained by the dispersion relation:

ω2 +
1

α
iω − γk2

αβ
= 0 (17)

. The damping is controlled by the imaginary part of w that is given by

w =
1

2α

(
−i−

√
ξ − 1

α

)
(18)

. If ξ > 1 the convergence rate is controlled by 1
2α

and oscillations preclude

local convergence. If ξ < 1, the convergence rate given by 1
2α

(
1 +

√
1−ξ
α

)
is

higher and local convergence is allowed.
Following the analysis made by Hunke (2001), the stability criterion is

2Se > ∆s where ∆s = 1.
In cases where internal stress vanishes, under divergence or in region with

lower concentration, the problem reduces to

β∂sun+1 = −cun+1 + d (19)

where d regroups all the terms independent of un+1 and c is a linearisation
of the implicit term given by c = 1 + ρ0cD|u − uo|∆tM where ρ0 the water
mass density, cD is the water drag coefficient and uo is the oceanic surface
velocity. The solution is approach as e−

c
β
s. In the worst case c = 1 and the

convergence is controlled by 1
β
.

To summarize: α and β are two adimensional parameters controlling the
stability and the convergence of the method. Both are ≥ 1.

In high internal stress areas the convergence is faster with low α. The
product of α and β controls the stability by the criterion Se > 1

2
. The local

convergence is controlled by their ratio and is allowed if ξ < 1. The residual
approximately decreases as e−

m
2α in both cases.

In low internal stress areas the convergence is faster with low β. The
method is always stable and locally convergent The residual decreases as
e−

m
β where m is the number of performed iterations.
The first part of the exponential decay of the residual observed in Lemieux

(ok) is a bit faster than e−
s
β but it is even slower after 1500 iterations.
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Name α β Se Sv ξ
Hunke
(ko)

43.2 120 0.02 0.06 10−4 2600

Hunke
(ok)

432 1200 0.16 0.62 10−4 2600

Lemieux
(ko)

14.4 40 0.08 4.8 10−4 170

Lemieux
(ok)

4.8 120 0.08 15 10−4 57

Table 3: Values of the numerical parameters for each experiment. Exp1 uses the standard
values.

Name P∗ ∆t ∆min γ
Hunke 27500 3600 10−11 4950 1012
Lemieux 27500 1200 2 10−9 8.25 1012

Table 4: Values of the numerical parameters for each experiment. Exp1 uses the standard
values.

The stability will be endanger with the smallest value of ∆ which is
defined by ∆min. In both paper this lowest value is observed during the
simulation and could then be used to verified the stability criterion and the
damping criterion. concentration equal or near to 1, P = P ∗ he−c(1−a),
M ' ρih, γ = P∗∆t

2∆minρi

At the first iteration (m = 1) an initial guess have to be defined. We
take zero for σ1, σ2 and σ12 and the ice velocity at the previous time step
un. It avoids the propagation of a ill resolved stress state from one time step
to another. Other initial guess as the free drift velocity for u or a smooth
version of the previous velocity could be used to limit the propagation of
undamped oscillations.

To summarize: EVP is a non-linear solver developed for solving equa-
tions (10) obtained from the implicit time discretisation of the VP model.
Convergence rate and stability of this simple fixed point iteration method
are controlled by two numerical parameters. With the stability criterion and
the damping ratio, they entirely defined the behaviour of the solver and offer
a simple way to compare different implementations of the EVP method in
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different configurations. The parallelisation is trivial but the convergence is
not very high and underdamped solution could generate great problems when
coupling with the ice thickness redistribution.

In previous implementations of the EVP method, numerical and physical
term were mixed up. The numerical terms were interpreted as an artificial
inertial mass and artificial elastic term generating some confusion between
the numerical method and the physical model. The number of iteration
nevp was a constant and ∆s had to be equal to ∆t

nevp
. The generalized EVP

method suppresses the need of a fixed number of iterations by separating the
solving of the physical inertial term to the update of the velocity between to
sub-iterations.

The stress update terms also differ a little in comparison with standard
EVP. For σ1, α = 2T

∆te
with T the elastic time parameter and ∆te the pseudo

time step defined in previous studies. For σ1 and σ12, it would be α = 1
e2

2T
∆te

to really corresponds to the standard EVP method. Keeping the same α for
the three equation has a surprisingly good impact on the convergence as it
will be showed in the next section.

The whole algorithm is described hereafter to give all details.
Within the iterative process, variables indexed with m are updated while

variables indexed with n are referred to the global time step and stay con-
stant.

At each solver iteration, the internal stress tensor on the C-grid is updated
first by

α(σm+1
1 − σm1 ) = P

(Dm
D −∆m)

∆m
− σm1

α(σm+1
2 − σm2 ) =

P

e2

Dm
T

∆m
− σm2

α(σm+1
12 − σm12) =

P

2e2

Dm
S

∆m
− σm12

(20)

The internal force vector is then computed by

Fm+1 = (Fm+1
u , Fm+1

v ) = ∇ · σm+1 (21)

The update of u and v is decoupled. On odd iterations, (22) is solved
first with v∗ being an interpolation of vm on u-point et u∗ equal to um+1,
then (23) is solved with v∗ = vm+1 et u∗ is um+1 interpolated on v-point.
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The inverse order is applied for even iterations.

β (um+1 − um) = (Fm+1
u − M

∆t
(um+1 − un) + A(τau + cD ρo |uo − (u∗, v∗)|(uo − um+1)) +M fv∗)∆t

M
(22)

and

β (vm+1 − vm) =

(
Fm+1
v − M

∆t
(vm+1 − vn) + Av

{
τau + cD ρo |uo − (u∗, v∗)|(vo − vm+1)

}
−M f u∗

)
∆t

M
(23)

cD is the water drag coefficient, ρ0 the water mass density and uo = (uo, vo)
the horizontal sea surface velocity.

4. Analysis

The computational time to solve sea ice dynamics a strict convergence
is almost never reached for sea ice dynamics in climate model and both
numerical parameters and physical parameters may have an impact on the
simulated fields.

The two numerical parameters α and β and the number of iterations m.
The other constraints are the convergence of the stress state, the convergence
in term of velocity and the stability criterion.

In this section we study the impact of α and β different aspects of the
simulated deformation field.

persistence of spurious deformation in near rigid regions as in the Cana-
dian Arctic Archipelago that is caused by a lack of convergence in stresses
and/or a problem of stability.

All the results presented in this section are produced with an ice-only
version of NEMO (standalone version of the LIM2 model). Sea surface tem-
perature and salinity come from a temporal interpolation of the Levitus98
monthly mean climatology. The ocean is at rest with no elevation. The ocean
drag is defined by a quadratic formulation with a drag coefficient Cd = 5 10−3

and no turning angle. The wind is interpolated from the 6 hourly DFS4.1
10m wind speed. Surface boundary conditions (wind stress and other fluxes)
are computed with the CORE bulk formulae developed by Large and Yeager
(2004). The time step is equal to 4 hours (∆t = 14400s) and all simulations
start the first of January 1991. The domain is restricted to 25◦North and ini-
tial conditions are very simple, no ice wherever the sea surface temperature
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Name α β Se Sv ξ
Exp1 49 122 0.19 7.6 10−4 250
Exp2 20 300 0.19 19 10−4 100
Exp3 63 947 0.61 59 10−4 100
Exp4 20 3000 0.61 190 10−4 33

Table 5: Values of the numerical parameters for each experiment. Exp1 uses the standard
values.

is 2 degrees above the freezing point of sea water, 3 m of ice and 50 cm of
snow elsewhere. The initial concentration of the ice pack is equal to 1. The
ORCA05 tripolar grid has a resolution (∆x) of about 15 km in the Canadian
Arctic Archipelago and around 25 km in the Central Arctic. Advection and
thermodynamics LIM2 modules are activated.

We only show results for the first time step but our analysis stay valid
for longer simulations. The variables of interest are the divergence and
the shearing rates, as well as the stress state. We also look at the evolu-
tion of the velocity update between to successive iterations of the method,
max (|us − us−1|, |vs − vs−1|). All simulations perform a fixed number of it-
erations mmax = 300.

The first simulation uses similar parameters as the standard case pre-
sented in Hunke (2001).

In our case, ∆ is evaluated a posteriori from the solution. The minimum
value simulated in a cell that is not on the coast or at the ice edge is around
2 10−9s−1. It is a better estimation than ∆min which is in our case equal to
10−20s−1. γ = P∗∆t

2∆ρi
= 36 1012.

Another annoying feature is the alignment of high deformation bands
with the grid. It suggests that the appearance of those linear bands is more
a numerical artefact than a real ability to simulate observed linear kinematic
features as announced in Wang and Wang (2009) and in Maslowski and
Lipscomb (2003).

The second part of the analysis concerns the sensitivity to the value of
T , β and ∆te. A smaller T improves the convergence to VP by damping
out the elastic waves more rapidly. However it endangers the stability of the
solution if the value of ∆te and/or the value of β are not adapted. Stability
and damping problems are the two causes of the spurious deformation in the
CAA.
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Name nevp T β ∆te
Exp1 300 0.4 ∆t m

√
6 ∆t/nevp

Exp2 300 0.4 ∆t/6 m ∆t/nevp
Exp3 300 0.4 ∆t/6 m 1√

10
∆t/nevp

Exp4 300 0.4 ∆t/6 10m ∆t/nevp

Table 6: Values of the numerical parameters for each experiment. Exp1 uses the standard
values.

Four experiments performed with different set of parameters are pre-
sented. All experiments were conducted with the two corrections described
here above.

Exp1 use the standard parameters already presented here above (see Ta-
ble 4). For Exp2, T has been divided by 6 and ∆te by

√
6 to reduce residual

elastic waves while keeping the same stability condition. The solution will re-
main stable if ∆ > 2 10−8s−1. In Exp3, we decrease the elastic time step ∆te
to improve the stability condition. Exp3 will be stable when ∆ > 2 10−9s−1

but it will slow down the convergence towards the ellipse because the num-
ber of sub-iterations is not large enough. In the last experiment Exp4, we
increase β to improve stability (ok when ∆ > 2 10−9s−1) while keeping the
same ∆te as in Exp2 to do not alter the convergence towards the ellipse.

To analyse the impact of those different sets of parameters, we look at
the divergence rate within the CAA, at the stress state after the first global
time step and at the evolution of the velocity update between successive sub-
iterations. In Figure ??, the four experiments are presented from the left to
the right. For Exp1, the first on the left, the stress state has not converged
to the ellipse and there is remaining spurious deformation in the CAA. If we
look at the evolution of the maximum velocity update (red line in Figure ??)
we see oscillations that indicate stability issues.

Exp2 has a better convergence towards the ellipse thanks to a smaller
value of T but suffers the same oscillating issue (blue line in Figure ??) and
spurious divergence rate in the CAA. It indicates that the stability is not
strong enough.

The smaller value of ∆te in Exp3 solves the stability problem (red dashed
line in Figure ??). However the convergence to the ellipse is too slow and
elastic waves stay active in the CAA even if spurious deformations are re-
duced.
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Exp4 has an optimal set of parameters. It eliminates spurious deformation
in the CAA while ensuring the convergence towards the ellipse and avoiding
stability issues. This is due to the small enough value of T combined with
a stronger stability condition thanks to the extra-inertial term related to β.
However, by slowing down the convergence in term of velocity, it acts as an
additional inertial term that remains active even after 300 sub-iterations.

While being relatively limited, this analysis gives new insights in under-
standing how EVP method works to solve the VP rheology. First of all,
we have shown how small changes in the temporal and spatial discretisa-
tion could dramatically change the appearance of linear deformation bands.
Those changes should be implemented in other sea-ice models to look at their
impacts in other configurations. The smoothed definition of viscosities could
be tested with all the different methods (EVP, VP implicit, ...) while the
new temporal scheme could only improve sea ice models based on EVP.

It indicates a more rapid convergence in the shear stress direction than
in the compressive stress direction. This is due to the different treatment of
the stress temporal derivatives in (20) where σ2,t and σ12,t are divided by e2

while σ1,t is not. We propose a new evolution equation for stresses where all
the stress temporal derivatives are treated in the same way:

T

∆te
(σs1 − σs−1

1 ) +
1

2
σs−1

1 = ζs−1
(
Ds−1
D −∆s−1

)
T

∆te
(σs2 − σs−1

2 ) +
1

2
σs−1

2 = ηs−1Ds−1
T

T

∆te
(σs12 − σs−1

12 ) +
1

2
σs−1

12 =
ηs−1

2
Ds−1
S

(24)

The effect of this change should not have an impact on the solution if
it is completely converged. It should only change the speed of convergence.
However, with this first set of parameters, the solution does not completely
converged to the right ellipse and we can see the effect of the new equation
(24) on the evolution of the stress state. Contrary to the standard equa-
tion (20), the stress state has now the right aspect ratio throughout all the
iterative process as shown in the bottom of Figure ??, meaning that the
convergence rate is the same in both principal stress directions.

That little change in the iterative process produces the same filtering
effect as the new definition of viscosities ∆smt. The linear deformation bands
completely disappear while the general pattern remains the same. On the
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contrary to the change of ∆, the deformation field is not smoother except near
the suppressed high deformation bands. The divergence and the shear rate
in Figure ?? have been obtained with the same parameters as the standard
run. The only change is new temporal stress evolution equation (24). In the
CAA, the deformation field is still spurious.

The fact that a small change completely inhibit the production of high de-
formation bands let to numerical problems than to a real ability to reproduce
the reality.

We observed the same effect for all the tested set of parameters. The
filtering of high deformation bands remain similar even with better converged
solutions.

The first part of the analysis gives clues to correctly choose the parameters
related to the iterative solving process of the EVP method. The optimal
time step eliminates spurious deformation in the CAA while giving a good
convergence towards the ellipse. The stress state will converge faster and the
oscillations will be more damped but the error in the approximate velocity
is large. Larger β should then be limited in high internal stress areas.

5. Conclusions

In this paper we address two problems observed in high resolution simu-
lations of the sea ice dynamics. Those two problems are clearly identified in
the upper left panel of Figure ??. The first one is the high deformation bands
aligned with the grid and the second one is the remaining spurious deforma-
tion in the CAA. We have shown how numerical problems could cause the
appearance of those so-called "Linear Kinematics Features" aligned with the
grid and how those features magically disappear with small changes in the
numerics. The high deformation bands can be completely filtered out either
by changing the definition of the viscosities or by changing the stress update
equation to ensure the same convergence rate in the shear and the compres-
sive stress direction as shown in the upper right panel of Figure ?? where
both corrections have been applied together. Both modifications conserve
the energy dissipation property of the discrete equations and do not really
modify the deformation field elsewhere. To mitigate the spurious deforma-
tion in near rigid ice regions, we had to tackle both the stability problem
and the damping of the artificial elastic term. Thanks to new diagnostics,
we found an optimal set of parameters for our configuration that severely
reduced the remaining spurious deformation in the CAA (see the lower left
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panel of Figure ??). Combining the corrections of the temporal and the
spatial discretisation with the optimal set of parameters led to a much more
stable sea ice dynamics.

Those changes will have a great impact on simulated sea ice. Especially
for multi-categories sea ice models that are very sensitive to the deformation
field when playing at high resolution (Lipscomb et al., 2007). It also give new
insight in how the EVP method works and how it should be used. Implica-
tions of those changes on a larger timescale within a coupled sea ice-ocean
model will be investigated and if they are validated in various configurations,
those changes will be integrated in the standard version of LIM2 and LMIM3.

Acknowledgements. To be added : IsENES european project which sup-
port this ice work in Paris.
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6. Appendix

Our main objective here is to derive a consistent discretisation of the
internal ice force, i.e. that satisfies the property of dissipation of energy :

D =

∫
(uFu + v Fv) dS + boundary terms ≤ 0 (25)

Introducing the discrete expression of the internal forces,

D =

∫
S

(Fu u+ Fv v) ds

≡
∑
i,j

{Fu u e1ue2u}+
∑
i,j

{Fv v e1ve2v}

≡1

2

∑
i,j

{
δi+1/2[σ1] +

1

e2u
2
δi+1/2[e2t

2σ2] +
2

e1ue2u

δj[e1f
2σ12]

}
u e2u

+
1

2

∑
i,j

{
δj+1/2[σ1] +

1

e1v
2
δj+1/2[e1t

2σ2] +
2

e1ue2u

δi[e2f
2σ12]

}
v e1v

(26)

Integrating D by parts,

D =− 1

2

∑
i,j

{
δi[u e2u]σ1 + δi

[
u

e2u

]
e2t

2σ2 + 2 δj+1/2

[
u

e1u

]
e1f

2σ12

}
− 1

2

∑
i,j

{
δj[v e2v]σ1 + δj

[
v

e1v

]
e1t

2σ2 + 2 δi+1/2

[
v

e2v

]
e2f

2σ12

} (27)

introducing the discrete formulation for DD, DT and DS,

D =− 1

2

∑
i,j

{DD σ1 +DT σ2} e1te2t −
∑
i,j

{DS σ12} e1fe2f (28)

and the following discrete formulation for σ1, σ2 and σ12:

σ1 = 2ζ (DD −∆)

σ2 = 2η DT

σ12 =M(η)DS

(29)
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whereM(.) is an operator that provide the value of t-point defined variable
on a f -point. The adjoint of M, M∗, providing the inverse operation. D
becomes

D =−
∑
i,j

ζ

{
DD (DD −∆) +

1

e2
DT

2

}
e1te2t −

∑
i,j

{
M(η)DS

2
}
e1fe2f

=−
∑
i,j

ζ

{
DD

2 +
1

e2

(
DT

2 +
1

e1te2t

M∗(DS
2 e1fe2f )−DD ∆

)}
e1te2t

(30)

Defining the discretisation of ∆ at t-point as

∆ =

√
DD

2 +
1

e2

(
DT

2 +
1

e1te2t

M∗(DS
2 e1fe2f )

)
(31)

D become

D =−
∑
i,j

ζ∆ {∆−DD} e1te2t ≤ 0 (32)

where the inequality results from the fact that ∆ is obviously larger or equal
to DD while the other terms are positive by nature.

DefiningM(·) = · i+1/2, j+1/2 which is an auto-adjoint operator leads to

∆ =

√
DD

2 +
1

e2

(
DT

2 +
(
DS

2
)
f

)
(33)

and to interpolate DS
2 ( P/(2 ∆) ) on t- (f -) points, as follows :

M∗(DS) =
1

e1te2t

DS
2 e1fe2f

i, j

M(ζ) = η
i+1/2, j+1/2

(34)

Note that another as simple solution is possible. DefiningM as e1fe2fM(·) =

· e1te2t
i+1/2, j+1/2

M∗(DS) = DS
2
i, j

M(η) =
1

e1fe2f

η e1te2t
i+1/2, j+1/2

(35)
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Note that any linear combination of ∆ to compute η on f -point and/or
of DS on t-points will fail in satisfying the dissipation of kinetic energy con-
straint.

In the above calculation, all boundary terms than appears in the integra-
tion by part (equivalently in the application of the adjoint of discret operator)
are zero.
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Figure 1: Divergence rate [day−1] within the Canadian Arctic Archipelago after the first
time step for ...
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Figure 2: Normalized stress state after the first time step

Figure 3: Evolution of the maximum difference [m/s] in velocity between two iterations
during the first time step. The first experience is in red, the second in blue, the third in
dashed red and the last on in dashed blue.
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Figure 4: Normalized stress state after the first time step with β divided by e2 for σ2 and
σ12 as in the standard EVP method.
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Figure 5: Figure ??: Divergence rate [day−1] (top) and shear rate [day−1] (bottom) after
the first time step with the standard parameter β = m, T = 0.4 ∆t and ∆te =

√
6

300∆t with
the modified (24).
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