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SUMMARY

This paper presents multirate explicit time stepping schemes for solving Partial Differential Equations
with Discontinuous Galerkin (DG) elements in the framework of large-scale marine flows. It addresses
the variability of the local stable time steps by gathering the mesh elements in appropriate groups. The
real challenge consists to develop methods exhibiting mass conservation and consistency. Two multirate
approaches, based on standard Explicit Runge-Kutta methods, are analyzed. They are well suited and
optimized for the DG framework. The significant speedups observed for the hydrodynamic application of
the Great Barrier Reef confirm the theoretical expectations.
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1. INTRODUCTION

The development of suitable and fast time integration methods for ocean modeling constitutes an
important challenge. It is indeed impossible to use one single time-discretization scheme that is
effective for all physical processes in a complex marine model, as different subsystems have widely
different characteristics in terms of time scales, dynamic behaviour, and accuracy requirements. The
primitive equations for ocean flows allow for the existence of phenomena exhibiting a wide spectrum
of propagation speeds. Typically, external gravity waves propagate at 10− 100 ms−1 and internal
waves at a few meters per second, whereas advection is characterized by speeds ranging from 10−3

to 1 ms−1. Large- and small-scale processes have significant interactions so that it is essential to
simulate them simultaneously. It seems impossible today to reproduce all scales with structured
uniform grids since the computational cost can become very crippling with the high resolution that
is required. Therefore variable resolution is needed both temporally and spatially.
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2 B. SENY ET AL.

Unstructured grids are well suited to capture complex topography and also allow the
representation of a wide spectrum of time and length scales in a single model. The finite volumes
and the finite elements are the two main methods that make use of unstructured grids. Many
groups are now developing finite volume codes for coastal applications like FVCOM (Finite
Volume Community Ocean Model) [1] and others [2, 3]. Finite elements methods are also widely
used in the area of large-scale ocean modeling by communities such as FEOM (Finite Element
Ocean Model) [4], ICOM (Imperial College Ocean Model) [5, 6] and [7, 8]. Our research team
is developing the Second-generation Louvain-la-Neuve Ice-ocean Model (SLIM)† [9, 10, 11, 12]
which is a discontinuous Galerkin-based finite element model.

The variable resolution and the complexity of unstructured mesh generation processes generally
lead to grids with an important dispersion of element sizes. More specifically, while finite element
meshers are able to control the average element size of a mesh, they are usually unable to control
the smallest element size. In this context, the classical conservative explicit time discretization
methods are limited due to stability requirements. The Courant-Friedrichs-Lewy (CFL) condition,
that combines the finest cell size and the highest wave velocity, may highly restrict the global
allowable explicit time step. Accordingly, the computational efficiency of explicit time-stepping
methods may be drastically low.

For instance, consider the case of a typical mesh of the Great Barrier Reef (GBR), illustrated
by Figure 1, made up of about 1 million triangles. This mesh is built by means of the open source
software GMSH‡ [13]. Element sizes were determined in order to capture the relevant bathymetric
and topographic features, and the associated hydrodynamic processes, such as eddies and tidal jets
[10]. For the mesh and bathymetry presented in Figure 1, the estimated minimum and maximum
stable time steps are 0.154 s and 7.972 s, respectively. To run a 24 hours simulation with a classical
explicit method, 561 039 time steps would have to be performed on almost 1 million elements. One
possibility to reduce these expensive computations is to adapt the time steps under local stability
conditions.

Multirate schemes represent a class of methods that use various time steps on different grid
cells. The strategy consists in gathering the grid cells in different groups that satisfy the local
CFL stability conditions for a certain range of time steps. Standard Explicit Runge-Kutta (ERK)
methods are applied on bulk groups with a local time step in such a way that the total computational
efforts are drastically reduced. Buffer groups are introduced, with adapted ERK methods, in order to
accommodate the transition between the different bulk groups. However, the development of such
methods is still challenging since convergence and conservation properties should remain satisfied
during the communication between the groups. In this context, two multirate approaches that attempt
to partly solve the transitions issues are explored. The first one, introduced by Constantinescu and
Sandu, [14], preserves the system invariants but is at most second order accurate. On the other
hand, Schlegel et al. [15] have proposed a method that borrows some ideas of the implicit-explicit
splitting scheme [16, 17]. It can be proved that a third order multirate scheme can be achieved with
an appropriate base ERK method. Unfortunately, this method turns out to be non-conservative.

† http://www.climate.be/SLIM
‡ http://www.geuz.org/gmsh
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Bathymetry [m]

Figure 1. Bathymetry and mesh of the GBR with a first zoom (bottom left, white) on the Holbourne Island
and a second one (upper right, red) on the Withsundays Inslands Archipelago. The mesh is made up of

909,185 triangles, with inner radii comprised between circa 29 m and 1.3 km, and 444,598 nodes.

The aim of this paper is to develop and adapt these multirate methods to large unstructured meshes
in the framework of the Dicontinuous Galerkin Method (DGM). The standard ERK methods and
their time step restrictions are described in Section 2. Two multirate approaches [14, 15], with
different features, are introduced and analyzed in the DGM framework, Section 3. The construction
of multirate groups for multiple levels of refinement and a way to optimize the speedup is addressed
in Section 4. Finally numerical experiments will be shown and discussed for the GBR in Section 5.
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2. EXPLICIT TIME INTEGRATION

When solving time dependent partial differential equations (PDEs), it is a common practice to
first discretize the spatial variables in order to obtain a semi-discrete method of lines (MOL) by
leaving the time variable continuous. In other words the spatial and temporal discretizations are then
independent. The advantage of this procedure is that the problem reduces to a system of ordinary
differential equations (ODEs) to which a numerical method for initial value ordinary equations can
be applied.

As an illustration, consider the case of a one-dimensional scalar advection equation written in a
conservative form

∂u

∂t
+

∂

∂x
(cu) = 0 (1)

with initial condition

u(x, 0) = u0(x) (2)

and appropriate boundary conditions. Assume a conservative DGM spatial discretization of (1)
which can be represented by a function f(ui, t). It contains the volume and interface parts of the
steady-state residual of the problem multiplied by the inverse of the mass matrix associated the
element. By notational convenience, we define ui , (ui,1 · · · ui,n) as the set off all local discrete
values defined in element Ωi. The semi-discrete DG approximation can be written, for each grid
element Ωi, as the following Cauchy problem

dui
dt

(t) = f(uj(t), t), ui(0) = u0
i (3)

which needs to be solved in time. A class of numerical methods, among many, to integrate the
solution in time is the family of Explicit Runge-Kutta (ERK) schemes. The MOL approach may
be extended to any conservation law with larger dimensions and/or multiple unknown fields. Other
discretization techniques may also be used to approximate the spatial terms of the PDEs.

2.1. Explicit Runge-Kutta schemes

ERK methods are among the most popular time stepping schemes [18, 19]. They are self-starting
meaning that they give the solution at the next time step only in terms of the current solution.
Therefore only the initial condition is needed to start the time integration. Other well-known
schemes like the Adam-Bashfort methods are multistep and use solutions at different previous time
steps. ERK methods have also the property of being relatively flexible. For instance the time step
may be changed at each iteration of the scheme. These explicit schemes may also be developed
up to high orders of accuracy with the constraint that a rth order RK method needs s ≥ r inner
stages, i.e., evaluations of the steady-state residual and multiplication by the inverse mass matrix. A
widely used ERK method is the classical 4 stages, 4th order scheme (RK44). Flux limiters, strongly
recommended for hyperbolic conservation laws with DG discretization in space, may be applied to
the solution in a simple manner. They ensure that non-oscillatory properties are achieved for strong
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shocks. An s-stage ERK method computes the next step solution un+1, at time tn+1 = tn + ∆t,
using the current solution un at tn by applying the following algorithm:

• For k=1 : s do

u(k) = un + ∆t

k−1∑
l=1

AklK
l (4)

Kk = f
(
u(k), tn + ck∆t

)
(5)

• Compute un+1 as

un+1 = un + ∆t

s∑
l=1

blK
l (6)

Butcher tableaus conveniently represent this family of ERK methods. They are defined by a matrix
A ∈ <s×s and two vectors b, c ∈ <s [20]:

c AT

bT
T

where A is strictly lower triangular. For consistency, it is required that
∑k−1

l=1 Akl = ck. The order
of the method is related to the constraints imposed on Akl, bl and ck. The u(k) variable represents
the solution at stage k of the method, that corresponds to the intermediate time t̃k = tn + ck∆t.
At each stage of the ERK method Kk is computed, i.e., the steady-state residual evaluated for
u(k) and multiplied by the inverse of the mass matrix. Afterwards, the next step solution un+1 is
obtained by summing un with a linear combination of the Kk. These methods can be rewritten
as a convex combination of Euler steps [21]. Therefore they may be categorized in the family
of strong stability preserving (SSP) time stepping schemes. This property ensures that a certain
norm, like the total variational (TV) norm [21], of the solution does not increase in time. SSP
numerical methods are often required for problems with discontinuous solutions, such as shock
waves in hyperbolic problems. Non-physical behaviors like spurious oscillations can be avoided in
this way. Gottlieb et al. [22] discussed in detail Runge-Kutta SSP schemes and several examples
of these methods can be found in [21]. As an example, consider the 2-stage, second order method,
RK2a, defined by the Butcher tableau represented in Table I.

0
1 1

1/2 1/2

u(1) = un, K1 = f(u(1), tn)
u(2) = un + ∆tK1, K2 = f(u(2), tn + ∆t)
un+1 = un + 1

2∆t(K1 +K2)

Table I. Butcher tableau and development of RK2a method
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2.2. Time-step restrictions

Even if ERK time integration methods are known to be very efficient for solving several types of
PDEs, they have a major drawback due to their stability requirements. Indeed, it is well-attested
that the global time step should be taken below a critical value, determined by the CFL condition.
For advection dominated advection-diffusion equations, the CFL constraint on the time step can be
expressed as a ratio of the grid spacing ∆x and the amplitude of the wave/advective velocity c. But
in almost all realistic scenarios, the CFL condition is not constant both spatially and temporally.

On the one hand, unstructured meshes have elements with a wide spectrum of sizes. Several
numerical applications require that some regions of the domain are examined more closely. Local
refinement is often needed to capture the topography of complex geometry and/or some specific
physical behaviors. On the other hand, even for structured meshes, the wave speed may vary
considerably across the entire domain. As an example, consider the case of the two-dimensional
shallow water equations, where the wave speed is defined as

√
gH with g defined as the gravity and

H(x, y) a strong varying water depth depending on the local horizontal coordinates. The global time
step is then determined by the element where H(x, y) reaches its maximum.

For problems with unstructured meshes, made up of N grid elements, and non-constant wave
velocities, the CFL condition can be written as:

max
Ωi

(
|c|
∆x

)
∆t < C, (7)

where Ωi represents the element number i ∈ [1, ..., N ] of the mesh. The constant C depends on the
particular PDE and on the ERK scheme that defines the shape of the stability zone [23]. This is a
severe restriction on the time step in order to guarantee overall stability. In the case of the GBR
mesh of Figure 1, the global time step is critically smaller than the one required for most elements.

Using fully implicit time integration schemes constitutes a way to avoid the restriction mentioned
before. In such strategies the only limitations on the time step come from accuracy purposes. The
drawback, however, is that implicit methods require solving large (non-) linear systems of equations.
Indeed, the dimension of the systems to solve increases with the number of degrees of freedom.

Another alternative, while using explicit schemes, is to use a multirate approach. The main
idea is to consider different regions in the discretized spatial domain where the CFL condition is
locally satisfied. Mesh elements are sorted, by their own characteristic stable time step, in different
groups, specified by a maximum time step, for which ERK methods are stable and achieve the target
accuracy. With locally adapted time steps the computational efforts of the global algorithm could be
considerably reduced.

To illustrate this, consider a one-dimensional mesh, represented on Figure 2, where elements Ωi

have a size equal to h except Ω0 that is twice smaller. If equation (1) is to be solved on this mesh,
assuming a constant wave speed c, one can determine the stable time steps for both kinds of cells.
If 1

2∆t is stable for Ω0 then ∆t may be assumed stable for Ωi>0. Consider that we are able to apply
the same s-stage ERK method with a time step 1

2∆t on Ω0 and ∆t on the other elements. For a
large value of N , the number of elements in the mesh, one can show that a speedup of 2 is obtained
compared to the same s-stage ERK method applied with the same time step ∆t

2 everywhere.
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x0

Ω0
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Ω2 ΩN−1

xN

Figure 2. One-dimensional unstructured mesh

But, in such a strategy , there exists an inconsistency at the interface between the small and large
element since they use a different time step. Therefore a coherent transition should be ensured at the
interface between groups of elements. In particular, convergence and conservation properties should
be fulfilled at the interfaces. This constitutes the major difficulty in developing multirate schemes.

3. MULTIRATE TIME INTEGRATION

Multirate schemes for conservation laws have been reported in the literature since the early 1980s,
but they were either locally inconsistent or not mass-conservative. Mass preserving multirate
schemes were developed by Osher and Sanders [24] as well as by Dawson and Kirby [25] but it
turns out that the timestepping accuracy of the overall method is only first order due to the treatment
of the interfaces. Tang and Warnecke [26] proposed multirate schemes, based on standard 2-stage
ERK methods, that achieve second order consistency in time. The drawback, however, is that the
resulting schemes are not mass preserving. Hundsdorfer et al. [27] discuss, within the framework of
partitioned Runge-Kutta methods, the defects of multirate methods of order 1 and 2 due to either the
local inconsistency or the lack of mass conservation. They give a particular attention to monoticity
properties of the considered multirate schemes.

Multirate methods have also been developed in the framework of self-adjusting strategies.
Savcenco et al. [28] consider implicit time stepping methods suitable for stiff ODEs. Those methods
use an error estimator to determine if smaller time steps are required to keep the error below given
tolerance for all components. The aim is to minimize the execution time without loosing accuracy.
At the interfaces it is necessary to interpolate the solutions associated to different times. In this
context Hundsdorfer et al. [29] studied a particular multirate scheme: the θ-method with one level
of temporal local refinement. Stability, local accuracy and propagation of interpolation errors are
analyzed in detail.

A first step, when developing multirate schemes, is undeniably to ensure that the different local
time steps are well synchronized. A solution for a coherent time progression is to combine different
time steps th ofat are integer multiples of each other. For the sake of simplicity the analysis will be
restricted to groups that have time step ratios of 2. If a reference time step ∆t∗ is assumed for the
group with the largest stable time step, the other partitions will be time-integrated with stable time
steps ∆t∗/2

z, z = 1, · · · z∗, with z∗ + 1 the number of groups and z the multirate exponent of the
group. Multirate schemes may also be developed for arbitrary integer time step ratios κ where the
different groups would have stable time steps defined as ∆t∗/κ

z .
The difficulty, when developing multirate strategies, is to manage the transition between groups

of elements that use a different stable time step. Indeed, if a final time is to be reached, the
number of stages of the respective ERK methods won’t be the same on two neighboring elements
that belong to different multirate groups. Some information is thus missing in order to ensure a
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coherent transition. This problem of communication reveals two underlying issues: conservation of
the fluxes and accuracy of a multirate method. Both Constantinescu [14] and Schlegel [15] proposed
a solution by introducing buffer groups. In these regions, adapted ERK methods are applied to
bridge the transition between bulk groups where the standard ERK methods are used. Both multirate
approaches are based on Partitioned Runge-Kutta (PRK) schemes that are used to solve problems
with two different ERK methods [30, 18].

3.1. Second order conservative Multirate Runge-Kutta schemes

The idea of Constantinescu and Sandu [14] is to extend singlerate ERK methods to multirate ERK
methods. They developed a general systematic approach, based on PRK methods [30], to construct
a family of second order multirate PRK schemes (MPRK-2). For the sake of convenience, the
following notation is used:RKx[∆t∗] means that a given ERK method x is used with a ∆t∗ time step
and its associated Butcher tableau. The methodology consists in choosing a second order accurate
s-stage ERK base methodRKb = [Ab, bb, cb] and extend it to a 2s-stage ERK method in the buffer
region. It should ensure that the transition between two partitions that have a time step ratio of 2.
Constantinescu [14] has shown that, if the ERK base method belongs to the family of the SSP time
discretization methods, the corresponding multirate scheme will maintain this property.

For the sake of simplicity, the development of the multirate approach of Constantinescu is detailed
through a basic one-dimensional example on a mesh similar to Figure 2. This will clarify the features
and the size of the buffer regions.

3.1.1. Introductory example First of all let’s define some conventions and notations. Assume that
the right-hand side fi, in equation (3), computed on element Ωi, can be split into the volume
contribution fi,i and the left and right interface contributions fi−1,i and fi+1,i, depicted in Figure 3,
that use information from the neighboring elements:

fi(ui−1, ui, ui+1, t) = fi,i + fi−1,i + fi+1,i (8)

The volume and interface terms for each element at each stage k of an ERK method may be defined
as follows:

f
(k)
i,i = fi,i(u

(k)
i , tn + ck∆t), f

(k)
i−1,i = fi−1,i(u

(k)
i−1, u

(k)
i , tn + ck∆t) (9)

At each stage of the ERK method Kk
i = f

(k)
i,i + f

(k)
i−1,i + f

(k)
i+1,i. For a classical singlerate ERK

method f (k)
i−1,i = −f (k)

i,i−1 since the normals at the interface between two neighboring elements are
opposite each other. This property ensures global conservation of the fluxes after each iteration of
the method.

Consider the second order accurate SSP ERK base method RK2a represented in Table II (a) and
the mesh depicted in Figure 2. The key idea is to extend the RK2a method, RKb[∆t∗], to a 4-stage
adapted Butcher tableau RKa[∆t∗], Table II (b), where the base method is repeated twice on the
same time interval. Actually, RKa is strictly equivalent to the base method RKb if it is used on all
elements. The Butcher tableau shown in Table II (c) corresponds to the base method applied twice
successively with the same time step 1

2∆t∗. Actually this Butcher tableau contains implicitly the
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update for un+ 1
2 . In other words RK2a is applied a first time to un to get un+ 1

2 , that corresponds
to time tn + 1

2∆t∗, and then again to un+ 1
2 in order to compute un+1. The methods RKa[∆t∗] and

RK2b[∆t∗] have now the same number of stages and therefore it enables the transition between the
two types of elements.

0
1 1

1/2 1/2

0
1 1
0 0 0
1 0 0 1

1/4 1/4 1/4 1/4

0
1/2 1/2
1/2 1/4 1/4
1 1/4 1/4 1/2

1/4 1/4 1/4 1/4

(a) RKb = [Ab, bb, cb] (b) RKa = [Aa, ba, ca] (c) RK2b = [A2b, b2b, c2b]

Table II. Butcher tableaus corresponding to (a) the RK2a base method, (b) the buffer adapted method and
(c) RK2a applied twice successively with a 2 times smaller time step

Consider the setup of Figure 3: we applyRK2b to element Ω0 andRKa to elements Ω1,2,3. Using
the Butcher tableaus of Table II and the definition of the volume and interface contributions (8, 9) on
each element, it is now possible to develop the computations related to each stage of the method. In
order to distinguish the intermediate times, defined by the c vectors of the Butcher tableau’s, notice
that t̃ki represents the current inner time used at stage k on element Ωi.

Ω0

u0

Ω1

u1

Ω2

u2

Ω3

u3

f−10
f10

f01

f21

f12

f32

f23
f43

RK2b RKa RKa RKa

Figure 3. One-dimensional unstructured mesh with interface fluxes, fi,i−1 and fi−1,i, between neighboring
elements Ωi−1 and Ωi. RK2b is applied on element Ω0 while RKa is used for elements Ω1,2,3.

At the first stage of the coupled methods there are no ambiguities. It is identical to apply the
same base method RK2a everywhere. The K1

i are all computed at the same intermediate time
level t̃1i = tn. Virtual incoming fluxes, f−10 and f43, are supplied at the boundary of the domain
as represented on Figure 3. It is assumed that the virtual element Ω−1 (resp. Ω4) is of the same type
– same size, same ERK method applied – as its neighbor Ω0 (resp. Ω3).

u
(1)
0 = un0 , u

(1)
1 = un1 , u

(1)
2 = un2 , u

(1)
3 = un3

K1
0 = f

(1)
−10 + f

(1)
00 + f

(1)
10 , K1

1 = f
(1)
01 + f

(1)
11 + f

(1)
21 , K1

2 = f
(1)
12 + f

(1)
22 + f

(1)
32 , K1

3 = f
(1)
23 + f

(1)
33 + f

(1)
43
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At the second stage the intermediate time levels are not the same on each element, i.e., t̃20 =
tn + 1

2∆t∗ while t̃2i = tn + ∆t∗ for i = 1, 2, 3.

u
(2)
0 = un0 + 1

2
∆t∗K1

0 , u
(2)
1 = un1 + ∆t∗K1

1 , u
(2)
2 = un2 + ∆t∗K1

2 , u
(2)
3 = un3 + ∆t∗K1

3

K2
0 = f

(2)
−10 + f

(2)
00 + f

(2)
10 , K2

1 = f
(2)
01 + f

(2)
11 + f

(2)
21 , K2

2 = f
(2)
12 + f

(2)
22 + f

(2)
32 , K2

3 = f
(2)
23 + f

(2)
33 + f

(2)
43

Several simplifications can be done at the third stage and are highlighted with bold characters. Every
entry of the third row in Table II (b) is zero and therefore u(3)

i = u
(1)
i for i = 1, 2, 3. It follows that

f
(3)
i,j = f

(1)
i,j if and only if i and j belong to the set {1, 2, 3, 4} implying thatK3

2 = K1
2 andK3

3 = K1
3 .

At this stage the intermediate times are different: t̃30 = tn + 1
2∆t∗ while t̃3i = tn for i = 1, 2, 3.

u
(3)
0 = un0 u

(3)
1 = un1 u

(3)
2 = un2 u

(3)
3 = un3

u
(3)
0 = + 1

4
∆t∗(K1

0 +K2
0 ), u

(3)
1 = u

(1)
1 , u

(3)
2 = u

(1)
2 , u

(3)
3 = u

(1)
3

K3
0 = f

(3)
−10 + f

(3)
00 + f

(3)
10 , K3

1 = f
(3)
01 + f

(3)
11 + f

(3)
21 K3

2 = f
(3)
12 + f

(3)
22 + f

(3)
32 K3

3 = f
(3)
23 + f

(3)
33 + f

(3)
43

K3
1 = f

(3)
01 + f

(1)
11 + f

(1)
21 , K3

2 = f
(1)
12 + f

(1)
22 + f

(1)
32 K3

3 = f
(1)
23 + f

(1)
33 + f

(1)
43

K3
2 = K1

2, K3
3 = K1

3

At the fourth and last stage it can be deduced from the previous simplifications that u(4)
2 = u

(2)
2

and that u(4)
3 = u

(2)
3 . It follows that f (4)

i,j = f
(2)
i,j for i and j belonging to the set [2, 3, 4]. The unique

simplification that can be performed at this level is thus: K4
3 = K2

3 . The intermediate times, t̃4i , are,
logically, all equal to tn + ∆t∗ at this last stage.

u
(4)
0 = un0 + 1

4
∆t∗(K1

0 u
(4)
1 = un1 + ∆t∗K3

1 , u
(4)
2 = un2 + ∆t∗K3

2 u
(4)
3 = un3 + ∆t∗K3

3

u
(′)
0 = +K2

0 + 2K3
0 ), u

(4)
2 = un2 + ∆t∗K1

2 u
(4)
3 = un3 + ∆t∗K1

3

u
(4)
2 = u

(2)
2 , u

(4)
3 = u

(2)
3

K4
0 = f

(4)
−10 + f

(4)
00 + f

(4)
10 , K4

1 = f
(4)
01 + f

(4)
11 + f

(4)
21 K4

2 = f
(4)
12 + f

(4)
22 + f

(4)
32 K4

3 = f
(4)
23 + f

(4)
33 + f

(4)
43

K4
1 = f

(4)
01 + f

(4)
11 + f

(4)
21 , K4

2 = f
(4)
12 + f

(2)
22 + f

(2)
32 , K4

3 = f
(2)
23 + f

(2)
33 + f

(2)
43

K4
3 = K2

3

The final operation is the update where the next step solution un+1 is computed by using equation
(6). From the above simplifications, highlighted in bold characters, it follows that:

un+1
0 = un0 +

1

4
∆t∗(K

1
0 +K2

0 +K3
0 +K4

0 ), (10)

un+1
1 = un1 +

1

4
∆t∗(K

1
1 +K2

1 +K3
1 +K4

1 ), (11)

un+1
2 = un2 +

1

4
∆t∗(2K

1
2 +K2

2 +K4
2 ), (12)

un+1
3 = un3 +

1

4
∆t∗(2K

1
3 + 2K2

3 ) = un
3 +

1

2
∆t∗(K

1
3 + K2

3) (13)
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MULTIRATE FOR ACCELERATING DISCONTINUOUS GALERKIN COMPUTATIONS 11

Equation (13) is thus equivalent to equation (6) for the base method RKb[∆t∗] in Ω3. This means
that the 4-stage adapted method collapses into the original 2-stage base method RK2a if and only if
the particular element is at a minimum distance of 2 connected elements from Ω0. In other words:
applying RK2a with 1

2∆t∗ on Ω0 only has an influence on the integration scheme used on the two
next elements, i.e., Ω1 and Ω2. Therefore a buffer region of size 2 is needed between the two bulk
groups that are integrated with RKb[∆t∗] and RK2b[∆t∗] respectively. Elements Ω1 and Ω2 are
stable for ∆t∗ but require twice more computations than Ω3. Despite that, this multirate approach
requires less computation than the classical singlerate method.

About the conservation of the fluxes at the interfaces between elements, we can check that
f

(k)
i−1,i = −f (k)

i,i−1 for i = 1, 2, 3 and k = 1, 2, 3, 4. Since the b vectors of the Butcher tableau are
equal, ba = b2b, for all elements, the sum of the fluxes cancels at each interface:

4∑
k=1

bakf
(k)
i−1,i +

4∑
k=1

b2bk f
(k)
i,i−1 =

4∑
k=1

1

4
(f

(k)
i−1,i − f

(k)
i−1,i) = 0, for i = 1, 2, 3 (14)

The so called first and second order conditions are verified for the two methods considered
separately [14]. At the critical interface between Ω0 and Ω1 the order of the coupling between
RKa and RK2b has to be considered. The first order coupling conditions are implicitly satisfied. It
can be verified that the second order PRK coupling conditions, i.e.,

4∑
k=1

b2bk c
a
k =

1

2
,

4∑
k=1

bakc
2b
k =

1

2
(15)

are satisfied [30]. The RK2a multirate method of Constantinescu is thus globally second order
accurate. Indeed, for PRK methods, the global order is defined as the minimum among the orders
of the two methods considered separately and the order of their coupling [30].

3.1.2. Generalization The strategy of Constantinescu [14] may be used to manage different integer
time step ratios. A time step ratio κ = 2 between the different multirate groups seems to be sufficient
for our target applications. Stable time steps of two neighboring cells are assumed to be relatively
close for the vast majority of the mesh elements. This multirate approach may be extended, not only
to any s-stage ERK base method, as shown in Table III , but also to multiple levels of refinement.
But for an s-stage base method, a buffer region of at least s connected elements is required between
two bulk groups. It is only at that distance that it is possible to collapse the adapted method into
the base method. This general property can be proved using the same arguments as in the above
introductory example. Imbricated multirate groups for buffers of size 2, 3 and 4 are illustrated around
the Holbourne island in Figures 13(a), 13(b) and 13(c).

In the DGM formulation, elements are connected through their interfaces (nodes in 1D, segments
in 2D and faces in 3D). In the context of multirate methods, this is a major advantage compared to the
standard continuous Finite Element Method (FEM) where elements are connected through nodes.
Indeed, buffer regions are generally larger and thus more elements, compared to the discontinuous
case, need twice as many operations as required by their stable time step. Hence, the efficiency of
the multirate methods is lower. Another issue to take into account is the handling of the mass matrix
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12 B. SENY ET AL.

that is not block diagonal and thus couples the whole solution. This would complicate the use of
several time steps on different multirate groups. However, we did not investigate in practice the
multirate approach for continuous finite elements.

c A

bT

c A
c A

1
2b
T 1

2b
T

1
2c

1
2A

1
21+ 1

2c
1
21b

T 1
2A

1
2b
T 1

2b
T

(a) RKb (b) RKa (c) RK2b

Table III. Butcher tableaus for (a) the arbitrary s-stage ERK base method, (b) the adapted buffer method and
(c) the base method with half of the time step applied twice successively.

Since this multirate strategy is based on the PRK method, the order of the coupled method
can be obtained as the minimum among the base methods used and the order of their coupling
[30, 31]. Constantinescu [14] has shown that the MPRK-2 schemes, defined by the Butcher tableaus
in Table III, are (1) second order accurate if the base method is at least second order accurate and
have (2) at most a second order accurate coupling regardless of the order of the base method. The
third order coupling conditions are never all satisfied for this multirate strategy [14]. It is actually at
each critical interface, between a buffer group and a more constrained bulk group, that the coupling
reduces to second order accuracy.

In spite of the order restrictions, the MPRK-2 schemes present the advantage of being
conservative. It is shown in [14] that any partitioned Runge-Kutta method with the same weights
(ba = b2b) is conservative. In particular MPRK-2 (described by Table III) is conservative.

Multiple levels of refinements can be defined recursively on nested multirate groups. The base
method, RKb, and the associated adapted method, RKa, are applied successively to the different
buffer and bulk groups. Consider an arbitrary problem with a succession of multiple multirate
groups. Bulk groups, Ωbz , are integrated with a ∆t∗/2

z stable time step as well as their neighboring
buffer groups, Ωaz . This procedure is illustrated in Figure 4 for a general case. The overall speedup
that this technique would yield compared to a classical singlerate ERK method strongly depends on
the amount of elements that are allocated to each multirate group.

· · · Ωbz+1 Ωaz Ωbz Ωaz−1 Ωbz−1 · · ·

RKb RKa RKb
RKa RKbRKb

RKb RKa RKb
RKb

...
...

...
...

...

∆t∗
2z−1

∆t∗
2z+1

Figure 4. Multiple levels of refinement. The multirate exponent of a group is z.
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MULTIRATE FOR ACCELERATING DISCONTINUOUS GALERKIN COMPUTATIONS 13

3.2. Recursive Flux Splitting Multirate

Knoth and Wolke [17] developed implicit-explicit (IMEX) integration methods in the context of
advection-diffusion equations in air pollution. An efficient solution is expected by splitting the
right-hand side of the differential equation (16) in a non-stiff advection part, the G term, and a
stiff diffusion part, the F term:

du

dt
= F(u) + G(u), u(0) = u0, (16)

which are solved with an explicit and an implicit method respectively. The IMEX method should
ensure that the cumulative integration interval for F equals the explicit time step used for G. The
key idea of Schlegel et al. [15] is to consider that F is non-stiff like G but is restricted by a smaller
time step, then solve them together with an inner method for F and an outer method for G that are
both ERK methods. The same base method can either be used for the two parts or two different
schemes ca be mixed. These choices strongly depend on the stability requirements with respect to
F . An imbricated system with s× q stages is obtained by combining a s-stage outer method RKO

with a q-stage inner method RKI . For a complete explanation about the construction of the new
Butcher tableaus, see [15]. The resulting method is called the Recursive Flux Splitting Multirate
(RFSMR) and may be written in a PRK form:

un+1 = un + ∆t∗

s×q∑
k=1

bFk F(u(k), tn + cFk ∆t∗) + ∆t∗

s×q∑
k=1

bGkG(u(k), tn + cGk∆t∗), (17)

u(k) = un + ∆t∗

k−1∑
l=1

AFklF(u(l), tn + cFl ∆t∗) + ∆t∗

k−1∑
l=1

AGklG(u(l), tn + cGl ∆t∗) (18)

for k = 1, ..., s and whereAF , bF , cF andAG , bG , cG are the Runge-Kutta parameters of the resulting
method. They are obtained by combinations of the original inner and outer methods parameters:
AO, bO, cO and AI , bI , cI .

Order conditions can be established for these mixed schemes. They consist in both the classic
order conditions for the base ERK methods and additional coupling conditions [31]. It can be shown
that the resulting methods for G andF as well as their coupling are second order accurate if and only
if the underlying base method is at least second order accurate. Knoth and Wolke [17] have derived
an additional third order consistency condition that, when satisfied by the base method, leads to
a third order accurate multirate scheme experimentally. Yet, the theoretical proof of this property
remains an open question. In particular, the RK43 scheme represented in Table IV, used as inner
and outer method, fulfills this condition and leads to a third order accurate multirate scheme. The

0
1/2 1/2
1/2 -1/6 2/3
1 1/3 -1/3 1

1/6 1/3 1/3 1/6
Table IV. RK43 Butcher tableau

two resulting schemes, RKG and RKF , that have both s2 = 16 stages, may be constructed [15].
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14 B. SENY ET AL.

The 10-stages methods, represented in Tables V and VI, are obtained by eliminating redundant rows
and columns in the resulting Butcher tableaus. More explanations about the RFSMR method and
its properties can be found in [15]. Our analysis is restricted to the interpretation of the resulting
schemes and their effective application in a multirate approach.

0
1/4 1/4
1/4 1/4 0
1/2 1/2 0 0
1/2 1/2 0 0 0
1/2 -1/6 0 0 0 2/3
3/4 1/12 0 0 0 1/6 1/2
3/4 1/12 0 0 0 1/6 1/2 0
1 1/3 0 0 0 -1/3 1 0 0
1 1/3 0 0 0 -1/3 1 0 0 0

1/6 0 0 0 1/3 1/3 0 0 0 1/6
Table V.RKG - Outer Buffer

0
1/4 1/4
1/4 -1/12 1/3
1/2 1/6 -1/6 1/2
1/2 1/12 1/6 1/6 1/12
1/2 1/12 1/6 1/6 1/12 0
3/4 1/12 1/6 1/6 1/12 0 1/4
3/4 1/12 1/6 1/6 1/12 0 -1/12 1/3
1 1/12 1/6 1/6 1/12 0 1/6 -1/6 1/2
1 1/12 1/6 1/6 1/12 0 1/12 1/6 1/6 1/12

1/12 1/6 1/6 1/12 0 1/12 1/6 1/6 1/12 0
Table VI.RKF - Inner Buffer

The RKG (resp. RKF ) method is strictly equivalent to the base method RK43 applied once with
a time step ∆t∗ (resp. twice successively with a time step ∆t∗/2), if only this method is used for all
the domain variables. Indeed, if the bold entries of table V (resp. VI) are gathered, by eliminating
rows and columns that are redundant when the method is considered independently, the Butcher
tableau of method RK43 (resp. 2× RK43 with half of the time step) is obtained. These methods are
used in an inner and outer buffer group that accommodate the transition between two bulk groups
that have a time step ratio of 2.

The critical interface is now located between the inner and the outer buffer group. Since cG = cF ,
the solutions at each inner stage of the method are all computed at the same intermediate time steps
t̃ki . This is not sufficient to draw a conclusion about the order of the coupled method but it simplifies
a lot of the third order conditions that have to be satisfied. A major drawback of the method is that
there is no conservation of the fluxes at the critical interface since bG 6= bF .

The buffer groups have a different meaning compared to the multirate approach of Constantinescu
[14]. The total buffer has again a size of two connected elements, but it isn’t necessary that it
separates two bulk groups. An inner buffer either separates a bulk group and an outer buffer group
or two outer buffer groups that have a different stable time step. This property can easily be verified
by developing the Butcher tableaus presented above. Construction of appropriate multirate groups
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for the approach of Schlegel et al. [15] will be detailed in the next section. Figure 13(d) illustrates
the different multirate groups for the method of Schlegel around the Holbourne island.

The Butcher tableaus have 10 stages in the buffer regions. This is more than the 8 stages needed
when the base method RK43 is applied twice successively. However, Table V indicates that onlyK1,
K5, K6 and K10 have to be computed while in Table VI K5 and K10 are superfluous. Indeed, some
columns in the corresponding Butcher tableaus are equal to zero everywhere. This has to be taken
into account when implementing this method but the 10 intermediate solutions u(k) are effectively
needed to ensure a coherent transition between the multirate groups.

To have an idea about how the two buffers communicate with their respective bulk neighbors, we
just need to copy Tables V and VI and replace all the non-bold entries by zeros. The two resulting
Butcher tableaus are then respectively equivalent to RK43 applied with a ∆t∗ time step and RK43
applied twice successively with a ∆t∗/2 time step.

4. MULTIRATE GROUPS

The key idea in order to achieve the best speedup is to take advantage of the multiple levels of
refinements. But the speedup that can be reached with such multirate strategies strongly depends on
the distribution of the characteristic stable time steps among the elements of the mesh. In particular,
the gap between the minimum and the maximum stable time steps as well as the amount of elements
present in each multirate group has a significant influence on the computational efficiency of the
methods. Therefore the mesh elements are to be organized in an optimized way.

The major difficulty, when implementing multirate methods, is to manage the different groups
and the communication between them. In the 2D-DGM framework, we propose to gather elements
in groups that share the same multirate characteristics and than treat them one by one. Inside each
group of elements 3 types of groups of interfaces are distinguished: (i) interfaces that are common
to elements of the same element group, (ii) interfaces that are common to 2 different element groups
and (iii) interfaces that are part of a physical boundary. The multirate groups communicate through
the interface groups of type (ii).

A generic way to construct these multirate groups is developed in section 4.1. Afterwards,
section 4.2,two efficiency issues are addressed in: the influence of the reference time on the speedup
and the duplicate computations of interface residuals.

4.1. Construction of multirate groups

Consider that the stable time steps may be computed for each element of a mesh. The minimum and
maximum stable time steps are noted ∆tm and ∆tM . A reference time step ∆t∗ < ∆tM is fixed.
By using a time step ratio of 2, the different ranges to which the elements have to belong may be
defined recursively. The maximum multirate exponent z∗ is determined as follows:

z∗ =

⌈
log2

∆t∗
∆tm

⌉
(19)
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16 B. SENY ET AL.

such that ∆t∗
2N ≤ ∆tm. Elements may now be sorted in z∗ + 1 groups. Indeed, the stable time steps

of each element in the mesh belongs to one of the following sets:

Ω3(z∗−z) =



[
∆t∗,∆tM

]
if z = 0

[
∆t∗
2z+1 ,

∆t∗
2z

[
if z = 1, ..., z∗

(20)

where z stands for the multirate exponent of the group. Since buffer groups have to be inserted, a
tag θ is attributed to each multirate group Ωθ:

θ = 3(z∗ − z) + σ, σ = 0, 1, 2 (21)

where the integer σ defines whether the group is characterized as a bulk, σ = 0, an inner buffer,
σ = 1, or an outer buffer, σ = 2. This is a general notation that is adapted to manage the two
multirate strategies. For an s-stage MPRK-2 method, the inner buffer groups are always empty
sets and the outer buffer groups have a size s. Note that two bulk groups that are integrated with
two different time steps never have neighboring elements. The building procedure is illustrated step
by step, for the two multirate approaches, on a simple mesh represented by Figure 5(a). For the
method of Constantinescu, the illustration is limited to the multirate scheme which uses a 2-stage
base method but it can be extended to a buffer of any size.

The first step, common to both methods, is to assign a bulk tag, defined by (21), to each element
depending on its characteristic time step. Buffer groups are neglected at this level. As illustrated
in Figure 5(a) there are 4 initial groups: Ω0, Ω3, Ω6 and Ω9. The transition between them is then
ensured by introducing the buffer groups.

The procedure is quite simple for the method of Constantinescu. Since there are no inner buffer
elements, the tags are either equal to 3(z∗ − z) or 3(z∗ − z) + 2. The buffers have a size of two
connected elements, since the base method, RK2aC, has 2 stages. The group with the smallest
multirate tag, Ω0, remains the same and then successively the buffer elements are introduced. At
the same time it is ensured that two neighboring elements have neighboring tags. In other words the
tags of the elements are smoothed, i.e., two connected elements have either the same tag, if they
are both members of the same buffer or bulk group, or two successive tags. Figure 5(b) shows the
distribution of the mesh elements in their respective multirate groups.

The smoothing procedure is more complex for the method of Schlegel because two types of
buffers are introduced. It is divided in two steps. The first one, shown in Figure 5(c), introduces
the outer buffer elements. The technique is identical than for the previous method but with an outer
buffer of size 1. Afterwards, as illustrated by Figure 5(d), inner buffer elements are introduced by
changing the tags of the elements that are still in the current bulk groups but that have an interface in
common with an upstream outer buffer group. Bulk group may be empty for the multirate method
of Schlegel.

As expected, introducing buffer groups has a significant influence on the repartition of the
elements. Indeed, many element are attributed to groups that have a smaller time step than prescribed
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6
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(a) First step (Common) - Assign bulk tags:
θ = 3(z∗ − z).

2

2
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2
2

0 2

2 3

3
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5

5
3 5

5

6

55

(b) Second step (Constantinescu) - Introduce
buffer groups of size 2: θ = 3(z∗ − z) + 2,

dark gray elements.

3

2

85

3
2

0 2

3 3

3

3

5

5
3 6

6

8

65

(c) Second step (Schlegel) - Introduce outer
buffer groups of size 1: θ = 3(z∗ − z) + 2,

dark gray elements.

3

2

85

4
2

1 2

3 4

4

3

5

5
4 7

7

8

75

(d) Third step (Schlegel) - Introduce inner buffer
groups of size 1: θ = 3(z∗ − z) + 1, light

gray elements.

Figure 5. Construction of multirate groups for discontinuous elements. Inner buffer groups are empty for
the method of Constantinescu (b). Inner buffer groups may recover a whole bulk group for the method of

Schlegel, i.e., tags 1 and 7 (d).

a priori. Initially present multirate tags may disappear due to the inserted buffer groups and
this leads to a loss in efficiency. In the example of Figure 5 no elements remains in group Ω9.
Nevertheless, it is a necessary condition to construct a coherent multirate scheme. If continuous
elements are used for the spatial discretization the efficiency would be worse. As shown in
Figures 6(a) and 6(b), the impact of introducing buffer groups is much more severe than in the
discontinuous case. Elements are not anymore connected by faces but by nodes and therefore the
size of the buffer regions drastically increases.

By looking to the algorithm that constructs the groups it seems difficult to determine a priori the
effective distribution of the elements in multirate groups. Therefore it seems inevitable to build the
groups in order to compute the theoretical speedup. Furthermore, it will be shown in the next section
that the choice of the reference time step ∆t∗ has a significant influence on the repartition of the
elements and therefore on the theoretical speedup.

4.2. Efficiency

4.2.1. Choice of the reference time step In practice, the effective speedup of multirate versus
singlerate is determined by taking the ratio of the two corresponding CPU times. However, it is
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(a) Method of Constantinescu.
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2
2
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4

4
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(b) Method of Schlegel

Figure 6. Construction of the multirate groups for continuous elements. The buffer elements a drastically
larger part of the domain than in the discontinuous case.

worth to have an a priori estimation about the theoretical speedup that could be achieved. The work
performed at each stage of an ERK method for each individual element may be approximated as
constant. The total work is then determined as the sum of the number of elements in each multirate
group times the number of ERK stages that have to be performed in this group. The theoretical
speedup, Sth, of a multirate method versus its singlerate equivalent can then be expressed as the
ratio of their respective work:

Sth =
∆t−1

m sN

∆t−1
∗ s

∑N
i=1 2γ(i)

=
∆t∗N

∆tm
∑N

i=1 2γ(i)
(22)

where N stands for the total number of elements in the mesh. The discrete repartition function γ(i)

defines the effective multirate exponent associated to element i. This means that 2γ(i)s stages have
to be performed on element i in order to achieve a ∆t∗ time step. The function γ(i) does not only
depend on the stable time step of the element but also on its corresponding multirate group. This
is because, in buffer regions, more stages have to be performed than prescribed a priori by their
effective stable time steps.

Assume a fixed mesh with specific Courant numbers per element that do not vary in time. Two
factors may then influence the theoretical multirate speedup (22): the reference multirate time step
∆t∗ and the function γ(e). But for each ∆t∗ there exists an optimal configuration of the multirate
groups. Actually the repartition function γ is entirely dependent on ∆t∗. For a given ∆t∗ the number
of multirate groups may vary as well as their organization and the number of elements present
in each of them. Variations of ∆t∗ may therefore have a significant influence on the theoretical
speedup. The analysis can be reduced to a fixed range of ∆t∗.

Firstly, all ∆t∗ such that 2∆t∗ < ∆tM have to be proscribed. In this situation, Sth(2∆t∗) >

Sth(∆t∗) because the reference time step is twice larger and that γ only differs for the elements
with the largest characteristic time steps where it has a larger value. The reference time step ∆t∗ has
to be chosen in a range defined as follows:

∆t∗ = max
z

(α2z∆tm), such that 2zα∆tm ≤ ∆tM (23)
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α̂

0
0.5

1

∆tm ∆tM

α

∆t∗ z∗ = 2

∆t∗
z∗ = 3

Figure 7. Influence of α on ∆t∗ and the number of multirate groups. For a certain value α̂ an additional
multirate group appears.

where α is a factor that determines the time step, α∆tm, used for the multirate groups with
the largest multirate exponent. When α = 1 this group is simply integrated with ∆tm that is the
maximum time step authorized for global stability. For α ≤ 1

2 the multirate groups are exactly the
same than for an α belonging to the set ] 1

2 , 1] and therefore ]α2 ∆tm, α∆tm[ is an empty set. The
objective is to determine the maximum of equation (22) with the constraint defined by (23). This
can be summarized as:

max
α

Sth(α), 1
2 < α ≤ 1 (24)

Multirate groups are generally almost the same for very small variations of α but it seems very
difficult to predict the maximum of the objective function Sth(α). In practice, the theoretical
speedup can be computed for each α and optimization techniques can be used to determine the
maximum α∗. Figure 12 shows the evolution of the reference time step ∆t∗ and the corresponding
multirate subdivision in function of α for an arbitrary ∆tm and ∆tM . For a certain α̂, the reference
time step, ∆t∗, jumps to a new curve starting at ∆tM . Consequently a new multirate subdivision
appears and z∗ jumps from 2 to 3, which means that for α > α̂ (resp. α < α̂) there will be 3 (resp.
4) levels of refinement. This phenomenon partly shows the complexity of predicting the theoretical
speedup depending on the parameter α.

4.2.2. Avoid duplicate computations Two types of operations are performed during ERK time
stepping: summing up vectors when the current solution is computed at an inner stage of a method,
equation (4), or when the next step solution is updated, equation (6), and computing the steady-state
residuals, equation (5). Almost all the computational efforts are contained in the operations of the
second type and can be split into an interface and a volume term. It was shown in the previous
sections that the effective computational gain, when using multirate methods, relies on the amount
of computations that are avoided compared to a singlerate method. In the DGM formulation, the
interface contributions of the steady-state residual have to be computed only once at each stage
of the method. Indeed for two neighboring elements the interface fluxes are opposite each other.
Ideally, the interface terms of type (ii), at the boundary between two multirate groups, should only
be computed once. However, this is not simple to implement since each group is treated separately
and runs with a different time step. In our implementation, this superfluous computation of interface
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terms is avoided for the methods of Constantinescu but not for the method of Schlegel. Consequently
the effective speedup will be lower than the theoretical one for the method of Schlegel.

5. NUMERICAL EXPERIMENTS AND RESULTS

The two multirate ERK methods are applied for the temporal integration in the framework of ocean
modeling. A depth-averaged barotropic 2D model is used to compute the mean horizontal velocity
vector u and the free-surface elevation η for shallow waters. Consider the non-conservative shallow
water equations:

∂η

∂t
+ ∇ ·

(
(h+ η)u

)
= 0, (25)

∂u

∂t
+ u · (∇u) + fk× u + g∇η =

1

H
∇ ·

(
Hν(∇u)

)
+
τ s − τ b

ρH
, (26)

where f, g, ν and ρ are respectively the Coriolis parameter, the gravitational acceleration, the
horizontal eddy viscosity and the mean water density. The actual water depth is H = h+ η,
where h is the reference water depth below the mean sea level. The bottom and wind stresses are
parametrized as τ b and τ s respectively. The equations are discretized with PDG1 discontinuous finite
elements for both elevation and velocity fields. Three methods of Constantinescu, RK2aC, RK33C
and RK44C, based on the corresponding base methods, and the method of Schlegel RK43S are
compared. The convergence and the performance of the methods are first analyzed on a simple
shallow water test case. The step-by-step procedure of the different multirate strategies is then
illustrated on a more realistic application, the GBR.

5.1. Convergence and performance of the multirate methods: an island in a rectangular basin

We introduce a simple shallow water test case in order to compare the different multirate methods
in terms of efficiency, convergence and conservation properties. Consider the water circulation
in a rectangular closed basin defined on the domain [−W,W ]× [−L,L] where W = 350 m and
L = 75mwith an elliptic island in the middle. Figure 8(a) represents this domain with an assiocated
bathymetry that varies between 10 m and 5 m (around the island). The bottom stress is a quadratic
dissipation term that depends on the bathymetry. A Coriolis force is also acting on the system.
The initial condition corresponds to an exponential elevation where 0 m ≤ η(x, y) ≤ 0.05 m as
represented on Figure 8(b).

We use this example to compare the different time-stepping schemes through 3 experiments.
The first experiment compares the efficiency of the methods by measuring the integrated L2

errors for both elevation and velocities and the CPU time after 25 seconds of simulation on
different meshes. We consider 4 meshes that are obtained by successive refinements of the original
mesh of Figure 8(c). The number of mesh elements, the reference time steps and the theoretical
speedups associated with each mesh and each multirate method are listed in Table VII. The
maximum multirate exponent z∗ is 4 for all meshes and methods. This means that the time step
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(a)

(b)

(c)

Figure 8. Illustrations related to the simple shallow water testcase: an island in a rectangular basin.
(a) Bathymetry. (b) Initial Condition. (c) Coarse Mesh.

for the singlerate methods is ∆tmin = ∆t∗/2
4. The stability requirements of the explicit temporal

discretization limit the time step to very small values. Therefore the temporal error is much smaller
than the spatial error and the total error is expected to scale as the spatial error [32]. In this case we
use a PDG1 discretization and we expect a second order convergence for all fields when the mesh
and the corresponding time step are refined. Indeed, as represented on Figure 9, a convergence of
order 2 is observed for both elevation and velocities regardless of the time-stepping method that
is used. Multirate methods have thus no adverse effect on the global space-time error. Moreover,
all the multirate methods give a better ratio than the singlerate ones between CPU time and error
because they need less operations. Figure 9 reveals that the RK2aC method is the most efficient.
This is because it yields the best effective speedup and uses only 2 stages. The RK43S method
needs 4 stages and has an effective speedup that is lower than the theoretical one, for the reasons
mentioned in section 4.2.

Figures 10(a) and 10(b) give the L2 error in function of the CPU time for both elevation and
velocities after 0.5 seconds of simulation. The same mesh, represented by Figure 8(c), is used for
all computations but with different time steps. The original time step associated with the mesh
is divided successively by a factor 2 such that the pure temporal error is visible. The expected
convergence rates are observed for all time-stepping schemes. However the multirate methods
produce larger temporal errors than their singlerate counterparts. For multirate methods, the error
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h h/2 h/4 h/8
# elements 892 3568 14272 57088
∆t∗[sec] 0.1084 0.0541 0.0270 0.0135
RK2aC 2.6283 2.8370 3.0110 3.1232
RK33C 2.4189 2.7022 2.9133 3.0638
RK44C 2.2296 2.5789 2.8239 3.0072
RK43S 3.2451 3.2484 3.2542 3.2553

Table VII. Theoretical speedups (α = 1) corresponding to the 4 multirate methods evaluated for 4 meshes
obtained by successive refinements of the original mesh of Figure 8(c).

associated with the largest time step ∆t∗ propagates to all mesh elements after a certain time. The
global temporal error is of the order of the largest time step. In our case, the largest time step of
the multirate RK2aC method is 16 times bigger than the time step of the singlerate RK2a method.
Both methods being of quadratic precision the error is 162 times larger. This may be verified on
Figure 10 by comparing the 2 blue convergence curves. The third order accurate RK43S method
gives the best precision for a fixed CPU time. After 3 refinements of the original time step it beats
the RK2a method. All the methods of Constantinescu achieve second order accuracy but RK33C is
slightly more performant than RK2aC andSecond RK44C.

Finally we compare the conservation properties of the 4 selected multirate schemes. The total
water volume at a time t is computed as follows:

V (t) =

∫
Ω

η(t,x) +H(x)dx (27)

We evaluate the conservation defect of a particular method as:

D(t,method) =
V (t,method)− V (0)

V (0)
(28)

Figure 11 shows the conservation defects for the selected multirate methods for a simulation of 200
seconds. The experiment confirms the theory since there is a perfect conservation of the total water
volume for the schemes of Constantinescu. The scheme of Schlegel does not preserve the water
volume.

From those three experiments, the RK2aC scheme seems the most appropriate for application
with PDG1 spatial discretization. It delivers the best total speedup (lowest number of stages,
minimum buffer size) and respects an important property in oceanography: mass conservation. Note
that first order time-stepping schemes are too dissipative and therefore inappropriate. However, the
other schemes may present some advantages for other applications e.g. when the temporal error is
dominant.

5.2. Hydrodynamics of the Great Barrier Reef

Consider the unstructured mesh of the Great Barrier Reef depicted in Figure 1 on which the two-
dimensional shallow water equations (25), (26) are solved. The parametrization of the equations as
well as multiple details about the model and the mesh can be found in [10]. Bathymetry, wind stress
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Figure 9. Integrated L2 errors for the elevation (a) and velocities (b) as a function of the CPU time for the
4 selected multirate schemes and their singlerate equivalents. The errors are computed after 25 seconds of
simulation. The first mark of each curve corresponds to the reference mesh of Figure 8(c) with an element
size h. The 3 next marks are associated with 3 successive refinements of the original mesh: h/2, h/4 and
h/8. The maximum multirate exponent is 4 for all the multirate schemes applied on all meshes (with α = 1).

Second order convergence is observed for all the schemes as expected.
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Figure 10. Integrated L2 errors for the elevation (a) and velocities (b) on the original mesh of Figure 8(c) as
a function of the CPU time for the 4 selected multirate schemes and their singlerate equivalents. The errors
are computed after 0.5 seconds of simulation. Each mark is associated to a ratio of the original time step:
∆tmin, ∆tmin/2, ∆tmin/4 and ∆tmin/8 for the singlerate methods and ∆t∗, ∆t∗/2, ∆t∗/4 and ∆t∗/8
for the multirate methods. The expected convergence rates are observed for the 8 schemes. Second order

convergence for the 3 schemes of Constantinescu and third order for the scheme of Schlegel.

and open sea boundary conditions are obtained from terrain data or measured data. A zero mass
flux and a tangential momentum proportional to the mean tangential velocity are imposed along
the impermeable boundaries (coasts and islands). The parametrization of Smagorinsky [33] for the
kinematic viscosity ν is used to incorporate unresolved features.

The 4 multirate approaches have been tested. Figure 12 shows the theoretical speedup depending
on parameter α. As expected we have that Sth( 1

2 ) = Sth(1). The 3 methods of Constantinescu yield
a curve of almost the same shape but a shift of the maximum is observed. Since the number of
elements in the buffer groups increases with the number of stages of the method, the speedup
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Figure 11. Conservation defects evaluated as the mean water volume per cubic meter that is added
or removed from the original total water volume as a function of time. As expected the methods of

Constantinescu are conservative. An oscillation of the relative mass is observed for the one of Schlegel.

declines. The method of Schlegel, RK43S, achieves a significantly higher speedup due to buffers
that do not perform more expensive operations than actually needed.

The optimal values for α associated with the reference time step and the maximum multirate
exponent z∗ as well as the corresponding theoretical speedups are listed in Table VIII for the
4 different multirate methods. An illustration of the corresponding multirate groups is shown in
Figure 13 for a zoom around the Holbourne Island. Observe that for RK2aC, RK33C and RK44C
the size of the buffer groups is increasing with the number of stages of the base method. For RK43S
a distinction can be made between the inner and outer buffer groups that are both of size 1. Figure 14
shows the multirate groups on the whole GBR for method RK2aC. The global percentage of inner
and outer buffer elements for the whole GBR mesh is given in Table VIII. The optimal α yield a
maximum multirate exponent z∗ = 6 for the 3 methods of Constantinescu while z∗ stays at 5 for the
method of Schlegel.

The 4 selected methods were used to run the GBR test case and the CPU times have been
measured. The same runs have also been performed with the corresponding singlerate methods
where the global time step is simply the minimum among all. The experimental speedups, listed in
Table VIII, are obtained by taking the ratio of the singlerate and multirate CPU times. The theoretical
and experimental speedups are relatively close for the 3 methods of Constantinescu while the one of
Schlegel yields a worser experimental speedup. As mentioned in section 4.2, this lack in efficiency is
due to the computational overhead caused by the superfluous operations performed at the interfaces
between multirate groups. Recall that the speedup strongly depends on the kind of mesh that is used.
Significantly higher speedups may be obtained for the same problem with other meshes where the
average element size is drastically larger than the smallest one.

The RK2aC scheme is used to perform a 24 hour simulation on the mesh presented in Figure 1
with data corresponding to the first of march 2000. A plot of the velocity vectors and the sea surface
elevation is presented on Figure 15 corresponding to time 21:51:23. Tidal jets and eddies due to the
interaction of the flow with the topography near the open-sea boundary are clearly visible.
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Figure 12. Theoretical speedup as a function of parameter α ∈ ] 1
2 , 1] for the GBR.

Multirate
α∗ ∆t∗ [sec] z∗

% Outer % Inner Theoretical Experimental
Method buffer buffer speedup speedup
RK2aC 0.75 7.381 6 20.0 % 0 % 4.606 4.461
RK33C 0.735 7.233 6 26.3 % 0 % 4.396 4.327
RK44C 0.695 6.840 6 31.3 % 0 % 4.218 4.183
RK43S 0.855 4.207 5 12.9 % 13.0 % 5.364 4.343

Table VIII. Comparison of the 4 selected multirate schemes.

6. CONCLUSION AND FUTURE WORK

In this paper, two ERK multirate approaches have been implemented, in the DGM framework, for
solving large-scale problems with different time steps. The first strategy is conservative and reaches
second order accuracy while the second one is not conservative but is third order accurate. Even if
the multirate methods are more complex to implement than their singlerate equivalents, they inherit
a lot of properties that makes them particularly adapted to multi-scale simulations. A significant
speedup, for a well chosen reference time step, has been observed for the two kind of multirate
methods on an unstructured mesh of the Great Barrier Reef. However, the speedup turns out to be
highly dependent on the nature of the mesh. Furthermore other parameters, like the choice of the
reference time step, have a significant impact on the speedup.

Large-scale applications such as the Great Barrier Reef require the use of parallel computers.
Some kind of load balancing strategy has to be supplied to accomodate multirate schemes. Indeed,
small elements have a higher cost than large elements in such a strategy and will require more
frequent updates at inter-processor interfaces. The key idea consists in creating an optimized mesh
partition such that the amount of grid cells of the different multirate groups is ideally the same on
each computer core. However, a compromise should also be found between the effective work on
each processor and the amount of communications between them.

Until now we have not considered that some parameters related to the local stability condition may
change in time. The meshes could be readapted at some time steps and the multirate groups would
have to be consequently changed. A more physical constraint is that the wave/advective velocity
changes considerably in time and could cause the solution to blow up after a certain number of
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(a) RK2aC (b) RK33C

(c) RK44C (d) RK43S

Figure 13. Multirate groups around the Holbourne island for the 4 multirate strategies obtained for the
optimal ∆t∗. Outer buffer groups are colored in red and inner buffer groups in blue. Bulk groups have

colors that vary from light gray to dark gray depending on the size of their time step.

iterations. A criterion could eventually be found to determine whether it is worth or not to recompute
the multirate groups at a certain moment in order to stay stable all along the simulation.
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Figure 14. Multirate groups for the RK2aC method on the whole GBR. Elements have colors that depend on
their multirate groups. Small (resp. large) time steps are used on blue (resp. red) elements.

Sea Surface Elevation [m]

Figure 15. Sea surface elevation (color levels) and bidimensional velocity field (arrows) around the
Withsunday Island Archipelago. Velocity vectors have a norm that varies between 0 and 0.822 m/s.
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