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Abstract: Semi-implicit multistep methods are an efficient tool for solving large-scale ODE systems.
This recently emerged technique is based on modified Adams–Bashforth–Moulton (ABM) methods.
In this paper, we introduce new semi-explicit and semi-implicit predictor–corrector methods based
on the backward differentiation formula and Adams–Bashforth methods. We provide a thorough
study of the numerical stability and performance of new methods and compare their stability with
semi-explicit and semi-implicit Adams–Bashforth–Moulton methods and their performance with
conventional linear multistep methods: Adams–Bashforth, Adams–Moulton, and BDF. The numerical
stability of the investigated methods was assessed by plotting stability regions and their performances
were assessed by plotting error versus CPU time plots. The mathematical developments leading
to the increase in numerical stability and performance are carefully reported. The obtained results
show the potential superiority of semi-explicit and semi-implicit methods over conventional linear
multistep algorithms.

Keywords: semi-explicit integration; semi-implicit integration; predictor–corrector method; Adams–
Bashforth–Moulton method; ODE solver

MSC: 37M15

1. Introduction

Using systems of ordinary differential equations (ODE) is a common approach for
describing dynamical systems. It is a natural way of expressing the evolution of a sys-
tem whether it is a mechanical [1], electrical [2], chemical [3], or biological system [4],
etc. From a more contemporary perspective, the solution of ODEs is proving crucial in
modeling epidemics [5]. Simulating dynamical systems on discrete computers requires the
discretization of ODEs, which is usually performed by numerical integration methods [6].
The requirements for numerical methods increase with the rapid growth of complexity and
stiffness of the simulated systems. Therefore, the development of new computationally
efficient and stable numerical methods is of certain interest. One of the main classes of ODE
solvers are linear multistep methods which efficiently solve ODE systems using a single
evaluation of the right-hand function at each integration step. Within this family, some
methods are implicit, such as the backward differentiation formula (BDF) or the Adams–
Moulton method, while others are explicit, such as the Adams–Bashforth method, which
has been applied to the population dynamics model by H. Jafari et al. [7]. Implicit methods
possess better numerical stability than the explicit ones but require performing Newton’s
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method iterations on each step and are therefore more computationally expensive [8].
Moreover, explicit methods require smaller step sizes and may lose the order of accuracy
in some cases such as stiff equations [9,10]. On the other hand, there are also explicit
Runge–Kutta methods which require more function evaluations, and implicit Runge–Kutta
methods which are A-stable but require greater computational effort than the linear multi-
step methods due to a bigger system to solve. However, Hairer et al. showed in [6] that
an explicit Runge–Kutta method can be faster than a multistep method. Moreover, some
Runge–Kutta methods are designed to be efficient such as SIRK and DIRK methods [11],
but Runge–Kutta methods have another advantage: they are parallelizable [12,13]. On top
of that, a predictor–corrector method, Adams–Bashforth–Moulton (ABM), was proposed
as a compromise between explicit and implicit linear multistep methods. The idea is to
predict the integration step by Adams–Bashforth and correct it with Adams–Moulton. Thus,
computations are entirely explicit and this technique has better numerical stability than
Adams–Bashforth [14]. Recently, efficient semi-explicit and semi-implicit modifications
of the ABM have been proposed in [15] as a trade-off between the efficiency of explicit
methods and the accuracy of the implicit ones.

In this paper, we develop the mathematical expressions needed to investigate the
numerical stability of semi-explicit and semi-implicit ABM and BDF (PEC) methods in
Section 2. In Section 3, we use the mathematical developments to plot the stability regions
of the two methods. Finally, a discussion of the obtained results is given in the last section.

2. Materials and Methods

Semi-explicit and semi-implicit modifications of the ABM methods were developed
to gain computational efficiency and numerical stability. First, the semi-explicit modifi-
cation aims to keep the computational efficiency of the explicit scheme while extending
its numerical stability [16]. For the semi-implicit modification, the goal is to keep good
numerical stability while reducing the computational cost. Indeed, a fully implicit scheme
requires solving at each step a large-scale system for each variable while the semi-implicit
modification will solve each equation separately for one variable at a time.

Let us consider the semi-explicit and semi-implicit modifications of the predictor–
corrector Adams–Bashforth–Moulton formula as described in [15]. In this section, we use
the same methodology as in [17]. In the original ABM integration, all calculations are
explicit. Furthermore, the stability of such an integration technique is higher than that of
the explicit Adams–Bashforth method [15]. Note that all abbreviations are listed at the end
of the article.

2.1. Semi-Explicit and Semi-Implicit ABM Methods

Following [17], we apply the two methods on a sample ODE system:{
ẋ = f (x, y, t)
ẏ = g(x, y, t)

(1)

The way that these equations are treated defines the unique properties of these meth-
ods: decreasing computations costs while attaining greater numerical stability.

The semi-explicit and semi-implicit methods are predictor–corrector methods (like the
initial ABM method) and their predictor stage is computed with the Adams–Bashforth method:

xp
n+1 = xn + h

k

∑
i=1

Bi f (xn−i, yn−i, tn−i)

yp
n+1 = yn + h

k

∑
i=1

Big(xn−i, yn−i, tn−i)

, (2)

where Bi are the coefficients of the Adams–Bashforth method. For the corrector stage, we
use the predicted value and the values obtained during this step to obtain the solution.
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2.1.1. General Description of Semi-Explicit and Semi-Implicit BDF (PEC) Methods

Well-known backward differentiation formula (BDF) is a family of A(α)-stable linear
multistep methods. Using this formula as a corrector allows increasing the stability of the
resulting method. The equation of the corrector stage in the semi-explicit variant of the
BDF-predictor–corrector (BDF PEC) method reads:

xn+1 +
k

∑
i=1

αixn+1−i = β0 f (xp
n+1, yp

n+1, tn+1)

yn+1 +
k

∑
i=1

αiyn+1−i = β0g(xn+1, yp
n+1, tn+1)

, (3)

where αi and β0 are coefficients of the BDF method.
Backward differentiation formula can be transformed into a semi-implicit variant of

the BDF (PEC) method. Then, the BDF (PEC) semi-implicit corrector formula reads:

xn+1 +
k

∑
i=1

αixn+1−i = β0 f (xn+1, yp
n+1, tn+1)

yn+1 +
k

∑
i=1

αiyn+1−i = β0g(xn+1, yn+1, tn+1)

, (4)

where αi and β0 are the coefficients of the BDF method.
In Table 1, we present a set of coefficients for the BDF (PEC) methods.

Table 1. Coefficients of the Adams–Bashforth–backward differentiation method.

B1 B2 B3 B4 B5 B6

1 0 0 0 0 0
3/2 −1/2 0 0 0 0

23/12 −16/12 5/12 0 0 0
55/24 −59/24 37/24 −9/24 0 0

1901/720 −2774/720 2616/720 −1274/720 251/720 0
4277/1440 −7923/1440 9982/1440 −7298/1440 2877/1440 −475/1440

α1 α2 α3 α4 α5 α6

−1 0 0 0 0 0
−4/3 1/3 0 0 0 0
−18/11 9/11 −2/11 0 0 0
−48/25 36/25 −16/25 3/25 0 0
−300/137 300/137 −200/137 75/137 −12/137 0
−360/147 450/147 −400/147 225/147 −72/147 10/147

β1 β2 β3 β4 β5 β6

1 2/3 6/11 12/25 60/137 60/147

2.1.2. Semi-Explicit ABM Method

The corrector of the semi-explicit scheme is given by :

xn+1 = xn + hM1 f
(

xp
n+1, yp

n+1, tn+1

)
+ h

k

∑
i=1

Mi+1 f (xn−i, yn−i, tn−i)

yn+1 = yn + hM1g
(

xn+1, yp
n+1, tn+1

)
+ h

k

∑
i=1

Mi+1g(xn−i, yn−i, tn−i)

, (5)

where Mi denotes the coefficients of the Adams–Moulton method, k denotes the number
of stages, h denotes the integration step, and t denotes the time moment. Note that xp
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and yp are the predicted values of x and y computed using Equation (2). Observe that
all computations are explicit because there is no equation to solve since xp

n+1, yp
n+1 and

xn are known in the first equation of system (5). For the second equation, we use the
already obtained and corrected value xn+1. Therefore, the considered method is a semi-
explicit integrator.

2.1.3. Semi-Implicit ABM Method

On the other hand, the semi-implicit method requires an implicit calculation using
Newton’s method for each equation. Its corrector is as follows:

xn+1 = xn + hM1 f
(

xn+1, yp
n+1, tn+1

)
+ h

k

∑
i=1

Mi+1 f (xn−i, yn−i, tn−i)

yn+1 = yn + hM1g(xn+1, yn+1, tn+1) + h
k

∑
i=1

Mi+1g(xn−i, yn−i, tn−i)

. (6)

Note that with this method, one does not need to compute the first predictor stage
(in this case xp

n+1 in (2)) which can be an advantage if f is a computationally expensive
function. Finally, observe that the method is semi-implicit since all equations must be
solved for the associated variable. As in the previous case, the second equation uses the
already obtained xn+1.

2.2. Stability Analysis

Since semi-explicit methods do not exist for ODEs with less than two dimensions, we
cannot use Dahlquist’s first-order test equation. Instead, we choose the similar approach
used in [17] that applies a two-dimensional test problem. Let us compose a matrix A of
dimension 2× 2 for the studied problem:

ẋ = Ax =

[
A11 A12
A21 A22

]
x, (7)

where x =

[
x
y

]
. We suppose that this matrix A has two conjugate eigenvalues λ1,2 = σ± jω.

This subsection aims to form the polynomial matrix characterizing the stability of the
methods and extract its eigenvalues. Let us define this matrix as

P(z) =
[

P11(z) P12(z)
P21(z) P22(z)

]
(8)

with z as the delay operator.
To begin, one has to study the stability of the predictor which is used in both semi-

explicit and semi-implicit ABM methods. We can form the matrix polynomial of the
predictor p(z) as

p(z) = (I + B1hA)zp−1 + B2hAzp−2 + ... + B6hAzp−6 =

[
p11(z) p12(z)
p21(z) p22(z)

]
(9)

where I is the identity matrix, h is the integration step and we take the terms with a non-
negative power of z according to the order p. Recall that B is the vector of coefficients of
the Adams–Bashforth method while M is the vector of coefficients of the Adams–Moulton
method, and p denotes the lengths of B and M. In other words, p is the order of the method
considered. Formula (9) is common to the stability analysis of both methods.
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2.2.1. Semi-Explicit ABM Method

One can rewrite the first equation of system (5) as:

xn+1 =
[
1 + M2hA12 M2hA11

]
xn + M3h

[
A11 A12

]
xn + ...

+M6h
[
A11 A12

]
xn−4 + M1h

[
A11 A12

]
xp

n+1

Recall that x =

[
x
y

]
and xp

n+1 =

[
xp

n+1
yp

n+1

]
. According to order p, we take the terms in

which the index of M is not greater than p. This leads to:

P11(z) = (1 + M2hA11)zp−1 + M3hA11zp−2 + ... + M6hA11zp−5 + M1h(A11 p11 + A12 p21)

P12(z) = M2hA12zp−1 + M3hA12zp−2 + ... + M6hA12zp−5 + M1h(A11 p12 + A12 p22)

in which we keep the terms with the non-negative power of z. Following the same idea, we
can write the second equation of system (5) as follows:

yn+1 =
[
M2hA21 1 + M2hA22

]
xn + M3h

[
A21 A22

]
xn−1 + ...

+M6h
[
A21 A22

]
xn−4 + M1h

[
0 A22

]
xp

n+1 + M1h
[
A21 0

]
xn+1

Note that, in this equation, we reuse xn+1—which we just computed—such that the
computation is explicit. From this equation, we obtain matrix P(z) of Equation (8) as:

P21(z) = M2hA21zp−1 + M3hA21zp−2 + ... + M6hA21zp−5 + M1h(A21P11 + A22 p21)

P22(z) = (1 + M2hA22)zp−1 + M3hA22zp−2 + ... + M6hA22zp−5 + M1h(A21P12 + A22 p22)

with P11 and P12 already computed.

2.2.2. Semi-Implicit ABM Method

From the first equation of system (6), we can write:

(1−M1hA11)xn+1 =
[
1 + M2hA11 M2hA12

]
xn + M3h

[
A11 A12

]
xn−1 + ...

+M6h
[
A11 A12

]
xn−4 + M1h

[
0 A12

]
xp

n+1

This leads to the expressions of P11(z) and P12(z)

P11(z) =
(
(1 + M2hA11)zp−1 + M3hA11zp−2 + ... + M6hA11zp−5 + M1hA12 p21

)
(1−M1hA11)

−1

P12(z) =
(

M2hA12zp−1 + M3hA12zp−2 + ... + M6hA12zp−5 + M1hA12 p22

)
(1−M1hA11)

−1

Following the same idea, we can write the second equation of system (6) as follows:

(1−M1hA22)yn+1 =
[
M2hA21 1 + M2hA22

]
xn + M3h

[
A21 A22

]
xn−1 + ...

+M6h
[
A21 A22

]
xn−4 + M1h

[
A21 0

]
xp

n+1

This leads to the expressions of P21(z) and P22(z):

P21(z) =
(

M2hA21zp−1 + M3hA21zp−2 + ... + M6hA21zp−5 + M1hA21P11(z)
)
(1−M1hA22)

−1

P22(z) =
(
(1 + M2hA22)zp−1 + M3hA22zp−2 + ... + M6hA22zp−5 + M1hA21P12(z)

)
(1−M1hA22)

−1
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2.2.3. Semi-Explicit BDF (PEC) Method

Using the same technique, formulas for stability matrices are obtained for the semi-
explicit BDF (PEC) method (3):

P11(z) = α1zp−1 + α2zp−2 + ... + β0h(A11 p11(z) + A12 p21(z))

P12(z) = β0h(A11 p12(z) + A12 p22(z))

P21(z) = β0h(A21P11(z) + A22 p21(z))

P22(z) = α1zp−1 + α2zp−2 + ... + β0h(A21P12(z) + A22 p22(z)).

2.2.4. Semi-Implicit BDF (PEC) Method

Stability matrices for the semi-implicit BDF (PEC) method (4) read in a similar way:

P11(z) =
(

α1zp−1 + α2zp−2 + · · ·+ β0hA12 p21(z)
)
(1− β0hA11)

−1

P12(z) = β0hA12 p22(z)(1− β0hA11)
−1

P21(z) = β0hA21P11(z)(1− β0hA22)
−1

P22(z) =
(

α1zp−1 + α2zp−2 + ... + β0hA21P12(z)
)
(1− β0hA22)

−1.

2.3. Test Problem for Estimating Method Stability

Following the ideas of [17] and particularly [18] for a two-dimensional problem, matrix
A of the test problem is built such that the conjugate eigenvalues λ1,2 defined in Section 2.2
are the eigenvalues of this matrix A. This will allow us to study the same stability regions
with valuesR(|λ1,2|). Moreover, the matrix A is built such that every possible 2× 2 matrix
with those two conjugate eigenvalues must be easily derived. In order to obtain such a
matrix, we must first ensure that A12 = A21. Then, all those two-dimensional matrices
can be described by a ratio between the first entry of the diagonal and the second one.
There exist two extreme cases for such matrices: an asymmetric triangular matrix and the
symmetric one with respect to the diagonal elements. Indeed, for 2× 2 matrices, we have
two diagonal entries such that we can express the first one as a multiple of the second one.

Taking into account those considerations, we obtain the following coefficients of the
test matrix for problem (7):

A11 = kA22

A12 = −
√

λ2 − (1 + k)A22λ + kA2
22

A21 = A12

A22 =
2σ

1 + k

where we define k = A11/A22, called the symmetry coefficient. This matrix was developed
such that every matrix with conjugate eigenvalues can be expressed by this factor k with
the two extreme cases. On the one hand, the coefficient k can be 0 or ∞ for an asymmetric
triangular matrix (Frobenius normal form). On the other hand, for a matrix in Jordan
normal form, coefficient k is equal to 1. All the other matrices that do not have one of these
two forms have an intermediate value of k. The two extreme cases can be viewed as limits
for stability functions.

Finally, in order to study the stability regions of the two methods, we need to take the
largest eigenvalue of P(z) in the modulus. We can do this with the characteristic polynomial
of P(z) given by (hλ− P11(z))(hλ− P22(z))− P21(z)P12(z). These roots must be less than
1 in modulus to make the method stable.
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2.4. Test Problems for Estimating Method Performance

We use well-known test problems for estimating the method performance. The fol-
lowing methodology is used. The test ODE is solved with a given time step. In the final
point of the simulation, an error is estimated through a comparison with a higher-order
method, and the corresponding CPU time is measured. Experiments in several points
give the line describing the method performance allowing the comparison with the other
methods. More efficient methods are distinguished by a simple criterion: the lower the
line lies, the more efficient the method is. We use DOPRI8 as the high-order method for
obtaining a reference solution. All investigated algorithms are of the order 4. In order to
avoid the influence of the operating system processes during CPU time measurements, this
time was averaged over 10 independent simulations. The following methods are compared:
Adams–Bashforth (AB), Adams–Moulton (AM), BDF, semi-implicit predictor–corrector
BDF (BDF (PEC)), semi-explicit predictor–corrector BDF (BDF (PEC, SE)).

The first investigated test problem is the renown Rössler chaotic Equation [19]:
ẋ = −y− z,
ẏ = x + ay,
ż = b + z(x− c),

(10)

In our experiments, we used the classical parameters of the Rössler system a = 0.2,
b = 0.2, c = 5.7. Initial conditions are (0.1, 0,−0.1)>. The period of simulation is 50 s. The
stepsizes under investigation are {5× 10−4, 10−3, 5 × 10−3, 0.01} s.

The second investigated test problem is the Nosé–Hoover chaotic Equation [20]:
ẋ = y,
ẏ = −x− ayz,
ż = b(y2 − 1),

(11)

The parameters used are a = 1, b = 1andc = 5.7. The initial conditions are (0.1, 0,−0.1)>.
The period of simulation lasted 15 s. The stepsizes under investigation are {5× 10−4, 10−3,
5 × 10−3, 0.01} s.

The third test problem is the van der Pol oscillator Equation [21]:{
ẋ = y,
ẏ = µ(1− x2)y− x,

(12)

The parameter used is µ = 55. Initial conditions are (1, 0)>. The period of simulation
lasted 15 s. Stepsizes under investigation are {10−5, 5× 10−5, 10−4, 5× 10−4} s.

3. Results

In this section, we provide the stability regions of the semi-explicit, semi-implicit ABM
and BDF (PEC) predictor–corrector methods for k = [0, 0.5, 1]. In each figure, the stability
regions of the methods of order 1–6 are depicted. Figure 1 shows the Adams–Bashforth–
BDF predictor–corrector semi-explicit method stability regions, and Figure 2 shows the
Adams–Bashforth–BDF predictor–corrector semi-implicit method stability regions.
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Figure 1. Stability regions of Adams–Bashforth–BDF semi-explicit methods with k = [0, 0.5, 1] (from
left to right).

Figure 2. Stability regions of Adams–Bashforth–BDF semi-implicit methods with k = [0, 0.5, 1] (from
left to right).

In Figure 3, one can see that the region of stability for the semi-explicit method is
smaller for the order 1 than the order 2 near the real axis. The method is, therefore, less
interesting to be used in the order 1. The region decreases as the order of accuracy increases
and the higher-order regions are included in the smaller order ones (except for p = 1).

Figure 3. Stability regions of the semi-explicit ABM method with k = [0, 0.5, 1] (from left to right).

For the semi-implicit method, it seems that order 1 covers the negative real axis or
at least large negative numbers in absolute value for k = 0.5, 1. Contrary to the previous
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method, the first order of the semi-implicit ABM method has a greater stability region
than the following orders. However, it retains some common characteristics: from order 4,
the stability region does not include the positive real part. Moreover, the stability region
decreases when the order of the method increases, and the stability region of an order is
included in the one of the previous order. These characteristics are common to all three
methods, which is due the semi-explicit (Figure 3) and semi-implicit (Figure 4) methods
modifying the ABM method (Figure 5).

Figure 4. Stability regions of the semi-implicit ABM method for k = [0, 0.5, 1] (from left to right).

Figure 5. Stability regions of the Adams–Bashforth–Moulton predictor–corrector method.

Note that the stability region of the semi-implicit method is strictly included in the
stability region of the implicit AM method (Figure 6) in the left part of the complex plane
(i.e., for stable problems).

Similar conclusions can be drawn for k = 0 and k = 0.5, as can be seen in Figure 3 for
the semi-explicit method and Figure 4 for the semi-implicit method. Moreover, based on
the stability regions for those three values of k, we can stress that k = 0.5 is an intermediate
case between k = 0 and k = 1. Finally, comparing the two extreme cases shows that case
k = 0 is the worst case for the numerical stability of the two modifications of ABM, whereas
k = 1 is the best case. Obviously, the ABM method is not impacted by the value of k.

The stability regions of the BDF (PEC) semi-explicit method are given in Figure 1. Its
size in the imaginary axis is sufficiently greater than the size of any other investigated
method which makes it more feasible for moderately stiff problems. The BDF (PEC) semi-
implicit method with the stability region shown in Figure 2 has an approximately similar
size in the imaginary axis as its semi-explicit counterpart has a much greater size in real
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axes. Thus, among all considered semi-explicit and semi-implicit methods, a family of
semi-implicit BDF (PEC) methods has the largest stability regions, and for high orders, they
are even greater than the stability regions of Adams–Moulton methods.

Figure 6. Stability regions of the Adams–Moulton method.

Performance tests show that on the test problems described above, the semi-implicit
predictor–corrector BDF (BDF (PEC)) and semi-explicit predictor–corrector BDF (BDF (PEC,
SE))) show the best error-to-CPU time ratio in comparison with conventional multistep
methods: Adams–Bashforth (AB), Adams–Moulton (AM), and backward differentiation
formula (BDF). The first test on the Rössler test problem (Figure 7) shows that the BDF
and AB methods are the best for the problem. This is due to the low stiffness of the
problem and using constant stepsizes. The Nosé–Hoover test problem (Figure 8) is a type
of conservative chaotic problem. While the AB method preserved its high performance, the
proposed predictor–corrector BDF methods have the advantage over it and other methods.
The van der Pol oscillator (Figure 9) with µ = 15 is moderately stiff but it also allows BDF
PEC methods with constant stepsizes to outperform all the other methods.

Figure 7. Comparison of the error versus elapsed time for the family of investigated methods on the
test Rössler problem.
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Figure 8. Comparison of the error versus elapsed time for the family of investigated methods on the
Nosé–Hoover problem.

Figure 9. Comparison of the error versus elapsed time for the family of investigated methods on the
van der Pol oscillator problem.

4. Discussion and Conclusions

In this paper, a stability analysis of the semi-implicit and semi-explicit predictor–
corrector methods was performed. We clearly show that the semi-explicit and semi-implicit
ABM and BDF (PEC) methods expand the stability regions over the conventional ABM
method and thus have better numerical stability. As one can see in Figures 2 and 3, for
the test problem with a matrix in the Jordan normal form (k = 1), the stability regions of
all considered methods are wider in the complex plane than those of the ABM method
regardless of the order or method. For the intermediate case (k = 0.5), we observe a similar
situation. For the worst case, i.e., k = 0 when the matrix is in the Frobenius form, then
this is not true. For example, in Figure 3, the semi-explicit ABM method obtains a smaller
stability region than the ABM method. In a similar case, k = 0 the semi-implicit ABM
method obtains stability regions relatively comparable to that of ABM.
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It is well-known that the original BDF is A(α)-stable, while this stability is bought by
the high costs of fully implicit computation involving Newton’s method. In the case of the
semi-explicit method, no truly implicit computation is needed, while the stability regions
are almost as wide in imaginary directions as the stability regions of the AM methods for
p ≥ 3. This allows using the BDF (PEC) semi-explicit method in many problems where the
conventional AM method is used, with less computational efforts. As for the semi-implicit
BDF (PEC) method, it has a very large negative real part of stability regions in the case of
values of k close to 1, which make it especially attractive for the problems with symmetric
Jacobian matrices. It should be noted that using the DF (PEC) methods requires twice the
amount of memory compared to using ABM. However, these algorithms can be further
optimized using the approach given in [17].

For the problems at the boundary of stability, when the eigenvalues are purely imagi-
nary, the ABM methods are interesting up to the order of 5 and BDF (PEC) is interesting up
to the order of 6 because they have a part of the imaginary axis in their region of stability.
A simple example of the problem with purely imaginary eigenvalues is the pendulum
without friction. However, a key difference in the stability of the semi-explicit and semi-
implicit methods is that BDF is not stable for orders greater than 6, while Adams–Bashforth
and Adams–Moulton methods can be used with much higher orders with sufficiently
small stepsizes.

The overall results show that, in the worst case, we lose less stability than we can gain
in the intermediate and best cases, which is evidence of the potential superiority of the
semi-explicit and semi-implicit methods over conventional AM and ABM algorithms.

In terms of computational efficiency, ref. [17] showed that semi-explicit and semi-
implicit ABM methods are efficient methods compared to other linear multistep methods
(such as ABM and BDF). Furthermore, it was shown in [17] that semi-explicit and semi-
implicit ABM methods are sufficiently flexible to optimize the computations according to
the problem features. The comparison of the error-to-CPU time ratio of the semi-explicit
and semi-implicit predictor–corrector BDF methods was performed in the current paper
with the other multistep methods. It was shown that these methods have a superior error-
to-CPU time ratio in the experiments with constant stepsize, and this superiority could
be even more valuable for variable stepsizes. Further investigation is needed to compare
variable stepsize implementations.

The motivation of semi-implicit computation is that each equation can be solved
separately, so implicit algebraic equations must be solved for one variable, and the com-
putation of the full Hessian matrix in the Newton method is not required. Moreover,
some one-dimensional variants of root-finding algorithms can also be used such as Brent’s
method or Steffensen’s method. Note that, in some cases, the computational cost can be
further optimized. For instance, ref. [15] described a problem for which an equation of
the corrector can be solved independently of the previous computations of the corrector.
Furthermore, for the semi-implicit method, the predictor of the first variable does not need
to be computed; therefore, one can choose the order of the equations in the system (1) to
decrease the computational cost excluding the computationally “heavy” right-hand side
function evaluation.

Finally, applying the semi-explicit and semi-implicit methods to other problems such
as fractional-order differential equations could be one of the possible directions for further
investigations. Numerical approaches to solving this type of problem studied in [7,22,23] ap-
plied the Adams–Bashforth explicit method. Thus, using the semi-explicit and semi-implicit
modified ABM methods may be a new application in the continuation of these articles.
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