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Abstract: A numerical stability region is a valuable tool for estimating the practical applicability of
numerical methods and comparing them in terms of stability. However, only a little information can
be obtained from the stability regions when their shape is highly irregular. Such irregularity is inherent
to many recently developed semi-implicit and semi-explicit methods. In this paper, we introduce
a new tool for analyzing numerical methods called preference regions. This allows us to compare
various methods and choose the appropriate stepsize for their practical implementation, such as
stability regions, but imposes stricter conditions on the methods, and therefore is more accurate. We
present a thorough stability and preference region analysis for a new class of composition methods
recently proposed by F. Casas and A. Escorihuela-Tomàs. We explicitly show how preference regions,
plotted for an arbitrary numerical integration method, complement the conventional stability analysis
and offer better insights into the practical applicability of the method.
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1. Introduction

One of the key problems in numerically solving initial value problems (IVP) is con-
structing an integration scheme that is suitable for obtaining an accurate numerical solution
as quickly and reliably as possible. In recent years, many novel efficient numerical methods
have been presented [1–4]. The composition and splitting schemes are of great interest at
present, being applied to problems with oscillatory solutions and especially to conservative
problems [5–10]. The fact that composition methods allow for an increase in the accuracy
order of basic methods while simultaneously saving their geometric properties provides
researchers with a powerful experimentation tool. Some of the newest approaches in
the considered field of splitting and composition schemes [11] are still not provided with
a general analysis of their numerical stability, which raises questions about the actual per-
formance of the proposed schemes and their applicability to real problems. The numerical
stability of composition schemes heavily relies on the geometric properties of the basic low-
order method. Recently proposed generalized semi-implicit and semi-explicit numerical
methods [12] were proven to be reliable and effective basic integrators for composition
schemes, combining the simplicity and computational efficiency of explicit methods with
the higher numerical stability of implicit methods.

The traditional approach to evaluating numerical methods’ stability assumes the plotting
of so-called stability regions: areas of the complex plane where a linear test problem possesses
stable solutions. This type of analysis has proven to be reliable for comparing various methods
and concluding whether the investigated method has some special stability properties that
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are useful for specific problems [13]. Nevertheless, this approach often does not take into
account the simple fact that a part of the obtained stability region is practically useless. While
the solution in this part is stable, its behavior is far from the original behavior of the prototype
continuous system. In other words, the numerical error can be too high to consider the solution
practically useful in this case. This drawback of the stability region analysis is negligible in the
case of most conventional numerical methods with relatively simple shapes of the stability
regions but makes such an analysis poorly applicable when numerical methods possess more
complicated stability regions. Excellent examples of such methods are semi-implicit and
semi-explicit methods [14]. In the case of composition methods based on semi-implicit and
semi-explicit integrators, the situation becomes even more complicated, as we show in the
current study. In this paper, we propose a new tool for stability analysis called preference
regions. The preference region of the numerical method is a region in the complex plane where
the solution of a linear test problem is stable and the local relative error of the solution does not
exceed one. A stricter definition will be given in Section 2.2. The goal of this study is to develop
a novel technique to perform an analysis of the numerical stability of numerical methods
and show its application to state-of-the-art composition integration methods. The subject of
our investigation is a family of composition schemes recently proposed by F. Casas et al. [11],
which have not yet been thoroughly analyzed for their numerical stability and applicability to
non-conservative problems. We examine these schemes using semi-implicit and semi-explicit
integrators as basic methods. We will also analyze their general performance in comparison
with completely implicit schemes and discuss the advantages of the new approach to stability
evaluation in combination with an accuracy analysis of the obtained solution.

2. Materials and Methods
2.1. Stability Regions

Initially proposed by Dahlquist and further adopted by other authors, the stability
region of the numerical method is a region in the complex plane defined as follows [13].
Let us consider a standard test problem

.
x = λx, (1)

where λ is a complex number. Applying any single-step numerical method to this problem
with a stepsize h yields a relation

xn+1 = R(hλ)xn. (2)

Once we denote hλ = z, the part of the complex plane where |R(z)|≤ 1 is a stability region.
One way to numerically evaluate the stability of semi-explicit and semi-implicit

methods is to use a technique based on the approach with test problems of dimension 2 [15],
which is somehow similar to the technique using the Dahlquist test problem [16] but allows
one to calculate stability regions of methods which does not exist for one-dimensional
problems. Let us consider a two-dimensional autonomous test problem with matrix A:

.
x = Ax, A =

(
a b
c d

)
. (3)

After applying an integration method, a two-dimensional difference equation can be
derived similarly to Equation (2):

xn+1 = R(ah, bh, ch, dh)xn (4)

Complex conjugate eigenvalues of the presented matrix A define the dynamics of the
solution of the chosen test problem and can be written as:

λ12 = σ± jω.
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Let us denote two free parameters, r ≥ 0 and k ≥ 0, which define the eccentricity and
asymmetry of the matrix A:

a = kd,
b = rc,

c = −
√

1
r
(
λ2

1 − (1 + k)dλ1 + kd2
)
,

d = 2σ
1+k .

(5)

Asymmetry coefficient k defines the shape of the stability region, maximizing it at
k = 1, which turns the matrix into the Jordan normal form, and minimizing it at k = 0
or k = ∞, which turns the matrix into the Frobenius normal form. When discussing the
two-dimensional problem, we should mention that, in this case, the stability region is the
area in the complex plane where the absolute values of the complex conjugate eigenvalues
of the matrix R from Equation (4) are not greater than 1. The parameter r has no impact on
the shape of the stability region and is set to unity.

2.2. Preference Regions

By analyzing the stability regions of any numerical integration scheme, either implicit,
explicit, or partially implicit, one can come to the simple conclusion that A-stable methods,
such as the implicit middle point, might be excessive for most of the regular nonlinear IVPs
when the accuracy requirements are relatively high. In this case, the vast majority of the
stability region does not contribute to the sufficient accuracy of the solution. While the
solution might prove to be stable, the high levels of local truncation errors will barely allow
for it to be used in any real application.

One can observe such a phenomenon by developing a mathematical model for testing
different values taken from the stability region and outside of it over the complex plane.
Then, the model needs to be compared with the reference one, providing the researcher
with an error graph from which one may judge the accuracy of the model. For example,
by analyzing the stability region of the explicit Euler method, one can see that simulation
results highly depend on the point in the complex plane where the next step of the method is
calculated (Figures 1 and 2). In this example, the linear system has a matrix with coefficients
(5) determined by the position of complex conjugate eigenvalues and the initial conditions
are (10; −2).
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Figure 2. Solution graphs obtained for the proposed test problem (3) in nine test points shown in
Figure 1. The blue line is x1,n obtained by the Euler method. The red line is a reference solution for
x1,n found using the ode78 solver in MATLAB [17].

Figure 2 illustrates the various behaviors of the solutions. Solutions in points (a) and
(c) are unstable, as predicted by the position of the points relative to the stability region.
The solution (b) is oscillatory since point (b) is on a boundary of the stability region. All
these solutions are obviously erroneous relative to the continuous prototype. Solutions
obtained in points (d), (e), (g), and (h), which lie within the stability region, show dynamics
that are also rather far from the real dynamics of the prototype system. Only the solutions
in cases (f) and (i) are somewhat close to the real dynamics of the continuous system with
respect to the truncation error. As expected, the error in (i) is lower than in (f) because (i) is
closer to the origin than (f). This example clearly shows the importance of a technique that
will be able to evaluate areas in the complex plane within the stability region where the
investigated method is better-suited to providing the most precise numerical solution.

2.3. The New Technique of Preferable Stability Regions Evaluation

As demonstrated in a previous section, while the obtained solution may be stable it
can simultaneously be inaccurate. One may perform a subsequent experiment to evaluate
the feasibility of using the numerical method to solve the problem at the current point of
the complex plane by comparing the obtained solution with an accurate solution using the
following formula:

err =
xn − xacc

n
xacc

n
, (6)

where xn represents the solution obtained with the given method and xacc
n represents an

accurate solution of a proposed system, which can unambiguously be found at the exact
moment of time h using the matrix exponential:

xacc
n = eAhxn−1.

Thus, by comparing the obtained coefficient err with any chosen tolerance value, one
can judge the applicability of the chosen method for solving the given IVP. From this, a
definition of preference region follows.
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Definition 1. The preference region of the numerical method is a region in the complex plane where
the solution of the test problem (1) or (3) is stable, i.e., |eig(R)| ≤ 1, and the relative error (6)
satisfies an inequality |err| ≤ 1.

While plotting the preference region is as simple as plotting the stability region, the
algorithm in the pseudocode for the one-dimensional test problem is given as Algorithm 1
for the reader’s convenience. The symbol
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denotes an imaginary unit to avoid confusing
a loop-counter.

Algorithm 1: Plotting preference region for the one-dimensional test problem

Input: bounds σmin, σmax, ωmin, ωmax, grid stepsizes ∆σ, ∆ω

Output: preference region image Rpre f
X, Y ← meshgrid(σmin : ∆σ : σmax, ωmin : ∆ω : ωmax)
nd← size(X)
Rpre f ← zeros(nd1, nd2)

for i ∈ 1..nd1
for j ∈ 1..nd2

σ← Xij
ω ← Yij

z← σ +
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ω

Rprec ← ez //this is a precise solution
Rstab ← R(z) //this is a stability function

Rpre f (i, j)← ‖Rprec−Rstab‖
‖Rprec‖ < 1

end
end

Algorithm 2 summarizes the same set of operations for two- and multi-dimensional
test problems.

Algorithm 2: Plotting preference region for the multi-dimensional test problem

Input: bounds σmin, σmax, ωmin, ωmax, grid stepsizes ∆σ, ∆ω, asymmetry coefficient k
Output: preference region image Rpre f
X, Y ← meshgrid(σmin : ∆σ : σmax, ωmin : ∆ω : ωmax)
nd← size(X)
Rpre f ← zeros(nd1, nd2)

for i ∈ 1..nd1
for j ∈ 1..nd2

σ← Xij
ω ← Yij
d← 2σ

1+k
λ← σ +
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 kd −
√

λ2
1 − (1 + k)dλ1 + kd2√

λ2
1 − (1 + k)dλ1 + kd2 d


Rprec ← eA //this is a precise solution
Rstab ← R(A) //this is a stability function

Rpre f (i, j)← ‖Rprec−Rstab‖
‖Rprec‖ < 1

end
end

The proposed technique can be used with a variety of different numerical integra-
tion methods, including composition schemes and the methods of the Runge–Kutta (RK)
family (Figure 3).
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One can see that the size of the stability regions of the Runge–Kutta methods cor-
respond well with the size of their preference regions. However, this example does not
illustrate the real motivation for introducing the preference regions. A more interesting
example is given in Figure 4, where the stability and preference regions of the implicit RK
methods are plotted.
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In Figure 4, RK1 denotes the implicit Euler method. RK2 is the implicit midpoint rule
and RK4 is the fourth-order Lobatto IIIC method. One can see that while all these methods
are A-stable, which means that the entire left half-plane belongs to the stability region, only
a minor part of this region is practically useful in terms of acceptable error. Moreover, the
shape of preference regions is highly irregular, resembling the order stars of numerical
methods [13]. Let us apply the preference region analysis to a recently reported class of
composition numerical methods.

2.4. Composition Schemes

In the foundational work of H. Yoshida [18], the general principles of constructing
high-order symplectic integrators by the composition of low-order basic methods were
presented. The proposed technique allows for one to achieve an approximation of higher
order by combining solutions obtained by the basic single-step method Φh in the follow-
ing way. First, one must choose numbers γ1, . . . , γs, so that they satisfy the following
consistency condition:

γ1 + γ2 + . . . + γs = 1.
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Then, one will be able to obtain a composition method with s stages:

Ψh = Φγsh ◦ · · · ◦Φγ2h ◦Φγ1h.

For three stages of composition, an example of such coefficients is:

γ1 = γ3 =

(
2− 2

1
p+1

)−1
,γ2 = −2

1
p+1

(
2− 2

1
p+1

)−1
,

where p is the accuracy order of the basic method Φh.
Various techniques for obtaining the coefficients γ1, . . . , γs were presented by different

authors, which yielded a great variety of numerical methods. In the field of composi-
tion schemes, the outstanding works by Kahan and Li [19] and more recent research by
F. Casas et al. [20] are of great interest. In these studies, the authors implemented effi-
cient schemes aiming to minimize large high-order error terms that appeared in classical
composition methods.

2.4.1. Composition Scheme of Kahan and Li

A proposition by Kahan and Li [19] directly followed the work of Yoshida, which
mainly aimed to suppress a large, high-order error term via minimization

max
1≤i≤s

|γi| and
s

∑
i=1
|γi|,

where s is the number of stages.
The composition coefficients proposed by Kahan and Li [19] are applicable to schemes

that use symmetric and self-adjoint basic methods. Some of these coefficients, which we
use in our research, are presented in Table 1, with identical notationl to the original article,
i.e., s3ord4 denotes a scheme with three stages, which delivers an approximation of the
fourth order.

Table 1. Coefficients for composition schemes of different orders and number of stages.

s1ord2

γ1 1

s3ord4

γ1 = γ3 1.3512071919596578
γ2 −1.7024143839193155

s5ord4

γ1 = γ2 = γ4 = γ5 0.414490771794375737142354063
γ3 −0.65796308717750294856941625

s7ord6

γ1 = γ7 0.78451361047755726382
γ2 = γ6 0.23557321335935813368
γ3 = γ5 −1.1776799841788710069

γ4 1.3151863206839112189

s15ord8

γ1 = γ9 0.39103020330868478817
γ2 = γ8 0.33403728961113601749
γ3 = γ7 −0.70622728118756134346
γ4 = γ6 0.08187754964805944576890

γ5 0.79856447723936218406



Mathematics 2022, 10, 4327 8 of 13

2.4.2. Approach by Casas and Escorihuela-Tomàs

In their recent work, F. Casas and A. Escorihuela-Tomàs proposed a new technique
for minimization of the high-order error terms [11]. The developed approach generally
aimed to solve nonlinear problems separable into three parts [20], but it also appeared to
be efficient for solving a more general class of IVPs when using appropriate basic methods
with low computational costs, e.g., semi-implicit and semi-explicit integrators.

Some of the coefficients found for fourth-order composition schemes, which are used
in this paper, are presented in Table 2 under the notation of XAs, where s is the number of
composition stages.

Table 2. Coefficients for composition schemes of fourth order with different number of stages.

XA4

γ1 = 0.358 γ3 = 0.35230499471528197958
γ2 = −0.47710242361717810834 γ4 = 0.26679742890189612876

XA5

γ1 = γ2 = γ3 = γ4 = 0.20724538589718786
γ5 = −0.3289815435887514

XA6

γ1 = 0.16 γ4 = −0.260672267225
γ2 = 0.15 γ5 = 0.147945412322
γ3 = 0.16 γ6 = 0.142726854903

XB4

γ1 = 0.1728230091083 γ3 = −0.574223836304
γ2 = 0.4307494176206 γ4 = 0.4706514095751

XB5

γ1 = 0.08967664078837 γ4 = −0.4942190871723
γ2 = 0.1603233592116 γ5 = 0.4478961696306
γ3 = 0.2963229175417

As stated by the authors of the original article [11], one can use the proposed coeffi-
cients with an arbitrary first-order method and its adjoint to compose numerical schemes
of higher-accuracy orders.

2.5. Basic Methods Used in Composition Schemes
2.5.1. Semi-Implicit CD Method

The semi-implicit integration CD method, which is a generalization of the Störmer–
Verlet method over the arbitrary separable IVP, was previously described in [12] and is
chosen as a basic method for the proposed composition schemes as it possesses high
computational efficiency [21]. Due to its semi-implicit calculation nature, it exists only for
ODE systems of order two and higher. Let us consider the following IVP:{ .

x = f (x, y, t)
.
y = g(x, y, t)

, (7)

with initial conditions x(t0) = x0, y(t0) = y0. A semi-implicit algorithm can be described
as a composition of two adjoint methods forming a symmetric scheme of the second
accuracy order:

φ(xn, yn, h, tn) :


xn+0.5 = xn +

h
2 f (xn, yn, tn)

yn+0.5 = yn +
h
2 g(xn+0.5, yn, tn)

yn+1 = yn+0.5 +
h
2 g(xn+0.5, yn+1, tn+1)

xn+1 = xn+0.5 +
h
2 f (xn+1, yn+1, tn+1)

,
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which can be rewritten as a semi-explicit scheme by changing the order of explicit and
implicit counterparts in the composition.

2.5.2. Implicit Midpoint Method

An implicit midpoint method is one of the most well-known symplectic integrators
and is often used in composition schemes. The solution to the IVP (7) requires two calls to
the right-side function (RHS) and can be described by the following formula:

φ̃(xn, yn, h, tn) :

xn+1 = xn + h f
(

xn+xn+1
2 , yn+yn+1

2 , tn+0.5

)
yn+1 = yn + hg

(
xn+xn+1

2 , yn+yn+1
2 , tn+0.5

) .

Implicit calculations are conducted by applying Newton’s method to every approxima-
tion of state variables, xn, yn in the case of IVP (7). This provides a better numerical stability
while solving Hamiltonian test problems but is significantly less efficient than explicit and
semi-implicit methods in terms of time and computational costs. We will use the implicit
midpoint method as one of the basic integrators in the investigated composition schemes.

3. Results

Stability regions and preference regions obtained for the investigated composition
schemes (Table 2), with semi-implicit CD and implicit midpoint methods chosen as a basic
method, are given in this section in Figures 5–9.
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The main observation, which can be made by analyzing the results shown in Figures 5–9,
is that, while the considered schemes may have significantly high stability, the region on
a complex plane, in which the solution can be considered reasonably accurate, is much
smaller. Semi-implicit schemes, while being less stable than their fully implicit counterparts,
demonstrate a reasonable tradeoff between stability and computation efforts since their
preference regions are not as small as their stability regions. In addition, semi-implicit schemes
do not require Newton iterations because the one-dimensional implicitness can be resolved
analytically or by using the simple iterations method.

One can see that stability and preference regions generation for implicit midpoint
schemes are of particular interest because they both bypass one special point on a complex
plane, while the results obtained for semi-implicit CD schemes do not represent such
behavior. In real applications, this fact can limit the applicability of the implicit midpoint
method as a basic integrator for composition schemes.

Typically, preference regions consist of multiple areas over the complex plane, which
have distinct empty spaces in between, where the solution is not accurate and therefore
cannot be used. The main area of interest starts from 0 on the real axis and spreads onto the
negative half-plane. Empirically, one can conclude that the wider this area is, the better
the overall performance of the proposed method will be in terms of both the accuracy and
stability of the solution.

Evaluating the results of the performed analysis, one may come to a general conclusion
that using implicit basic methods can be considered less efficient than it is usually claimed
to be if one takes into account only stability regions that occupy the entire left half-plane.
A region that is suitable for practical use in mathematical modeling is much smaller in
size than its counterpart in semi-implicit schemes. The analysis shows that semi-implicit
modifications of composition methods are expected to be efficient in terms of both stability
and precision due to their higher general stability and that the regions that are suitable for
obtaining correct solutions are large enough.

4. Conclusions and Discussion

The reported study is dedicated to preference regions, a novel tool for the analysis
of numerical integration methods’ performance and its application to newly developed
composition schemes based on semi-implicit methods. The proposed technique provides
a general performance analysis of an integration scheme based on its local error and
stability, allowing for one to choose the integration algorithm and stepsize in accordance
with the simulated problem. Six conventional Runge–Kutta type schemes and five various
novel composition schemes with implicit and semi-implicit basic methods were studied.
The novel investigated schemes were taken from a recently reported study on methods
of solving systems separable into three parts and applied to general-type initial value
problems. The experimental data for the reported schemes were obtained using the two-
dimensional test problem.

The obtained results show that conventional stability analysis of implicit schemes
overestimates regions that are of practical interest, while less popular semi-implicit schemes
can also provide reasonable stability due to the size and shape of the preference regions.
This overestimation of the practically acceptable region in the complex plane is inherent to
the stability region analysis itself and, therefore, might confuse the researchers, especially in
the case of A-stable implicit methods, since the entire left half-plane belonging to a stability
region makes an erroneous impression that each point in this half-plane can be involved
in the real computation. Using preference region analysis, this error is easily avoided.
However, this observation requires new, deeper insight into the better performance of
implicit schemes, which is observed in practice for stiff problems. As this topic has not
been at the cutting edge of computational mathematics for a long time, a full consensus on
the issue of stiffness and stability has not been reached to date.

Further studies will be dedicated to an extension of the proposed preference region
evaluation technique over a wider range of numerical methods and multistep integration
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schemes popular in the field of nonlinear dynamics. We also aim to develop more of the
theoretical background on the problem of stiffness and stability with newly obtained results.
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6. Roulet, J.; Choi, S.; Vaníček, J. Efficient geometric integrators for nonadiabatic quantum dynamics. II. The diabatic repre-sentation.

J. Chem. Phys. 2019, 150, 204113. [CrossRef] [PubMed]
7. Bréhier, C.E.; Goudenège, L. Weak convergence rates of splitting schemes for the stochastic Allen–Cahn equation. BIT Numer.

Math. 2020, 60, 543–582. [CrossRef]
8. Hansen, E.; Ostermann, A. High order splitting methods for analytic semigroups exist. BIT Numer. Math. 2009, 49, 527–542.

[CrossRef]
9. Wang, B.; Zhao, X. Error estimates of some splitting schemes for charged-particle dynamics under strong magnetic field. SIAM J.

Numer. Anal. 2021, 59, 2075–2105. [CrossRef]
10. Goth, F. Higher order auxiliary field quantum Monte Carlo methods. J. Phys. Conf. Ser. 2022, 2207, 012029. [CrossRef]
11. Casas, F.; Escorihuela-Tomàs, A. Composition methods for dynamical systems separable into three parts. Mathematics 2020, 8, 533.

[CrossRef]
12. Butusov, D.; Tutueva, A.; Fedoseev, P.; Terentev, A.; Karimov, A. Semi-Implicit Multistep Extrapolation ODE Solvers. Mathematics

2020, 8, 943. [CrossRef]
13. Wanner, G.; Hairer, E. Solving Ordinary Differential Equations II; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1996;

Volume 375.
14. Tutueva, A.; Butusov, D. Stability Analysis and Optimization of Semi-Explicit Predictor–Corrector Methods. Mathematics 2021,

9, 2463. [CrossRef]
15. Butusov, D.; Ostrovskii, V.Y.; Karimov, A.I.; Andreev, V.S. Semi-Explicit Composition Methods in Memcapacitor Circuit Simulation.

Int. J. Embed. Real Time Commun. Syst. 2019, 10, 37–52. [CrossRef]
16. Hairer, E.; Hochbruck, M.; Iserles, A.; Lubich, C. Geometric Numerical Integration. Oberwolfach Rep. 2006, 3, 805–882. [CrossRef]
17. Dormand, J.R. Numerical Methods for Differential Equations: A Computational Approach, 1st ed.; CRC Press: Boca Raton, FL, USA,

1996; pp. 82–84.
18. Yoshida, H. Construction of higher order symplectic integrators. Phys. Lett. A 1990, 150, 5–7. [CrossRef]
19. Kahan, W.; Li, R.C. Composition constants for raising the orders of unconventional schemes for ordinary differential equations.

Math. Comput. 1997, 66, 1089–1099. [CrossRef]
20. Skokos, C.; Gerlach, E.; Bodyfelt, J.; Papamikos, G.; Eggl, S. High order three part split symplectic integrators: Efficient techniques

for the long time simulation of the disordered discrete nonlinear Schrödinger equation. Phys. Lett. A 2014, 378, 1809–1815.
[CrossRef]

21. Butusov, D. Adaptive Stepsize Control for Extrapolation Semi-Implicit Multistep ODE Solvers. Mathematics 2021, 9, 950. [CrossRef]

http://doi.org/10.1007/s10898-019-00853-3
http://doi.org/10.1016/j.eswa.2019.113052
http://doi.org/10.1002/num.22730
http://doi.org/10.1007/s10910-021-01236-4
http://doi.org/10.1090/mcom/3715
http://doi.org/10.1063/1.5094046
http://www.ncbi.nlm.nih.gov/pubmed/31153180
http://doi.org/10.1007/s10543-019-00788-x
http://doi.org/10.1007/s10543-009-0236-x
http://doi.org/10.1137/20M1340101
http://doi.org/10.1088/1742-6596/2207/1/012029
http://doi.org/10.3390/math8040533
http://doi.org/10.3390/math8060943
http://doi.org/10.3390/math9192463
http://doi.org/10.4018/IJERTCS.2019040103
http://doi.org/10.4171/OWR/2006/14
http://doi.org/10.1016/0375-9601(90)90092-3
http://doi.org/10.1090/S0025-5718-97-00873-9
http://doi.org/10.1016/j.physleta.2014.04.050
http://doi.org/10.3390/math9090950

	Introduction 
	Materials and Methods 
	Stability Regions 
	Preference Regions 
	The New Technique of Preferable Stability Regions Evaluation 
	Composition Schemes 
	Composition Scheme of Kahan and Li 
	Approach by Casas and Escorihuela-Tomàs 

	Basic Methods Used in Composition Schemes 
	Semi-Implicit CD Method 
	Implicit Midpoint Method 


	Results 
	Conclusions and Discussion 
	References

