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Abstract

Understanding complex physical phenomena often involves dealing with partial differential equations (PDEs)
where different phenomena exhibit distinct timescales. Fast terms, associated with short characteristic times,
coexist with slower ones requiring relatively longer time steps for resolution. The challenge becomes more
manageable when, despite the varying characteristic times of fast and slow terms, the computational cost
associated with faster terms is significantly lower than that of slower terms. Additionally, slower terms can
also exhibit two distinct longer characteristic times, adding complexity to the system and resulting in a total
of three characteristic timescales. In this paper, an innovative split second-order IMEX (IMplicit-EXplicit)
temporal scheme is introduced to address this temporal complexity. It is used to solve the primitive equation
ocean model. Extremely short times are handled explicitly with small time steps, while longer timescales
are managed explicitly and semi-implicitly using larger time steps. The decision to solve a portion of the
slower terms semi-implicitly is due to the fact that it does not significantly increase the total computational
cost, allowing for greater flexibility in the time step without imposing a substantial burden on the overall
computational efficiency. This strategy enables efficient management of the various temporal scales present
in the equations, thereby optimizing computational resources. The proposed scheme is applied to solve 3D
hydrodynamics equations encompassing three time scale: fast terms representing wave phenomena, slow
terms describing horizontal aspects and stiff terms for vertical ones. Furthermore, the scheme is designed to
respect crucial physical properties, namely global and local conservation. The obtained results on different
test cases demonstrate the robustness and efficiency of the IMEX approach in simulating these complex
systems.

Keywords: split implicit-explicit Runge-Kutta, timestep methods, hydrodynamic equations, high order
temporal scheme, primitive equation ocean model

1. Introduction

Numerical simulation plays a pivotal role in unraveling complex physical phenomena. By solving dif-
ferential equations, these simulations facilitate the understanding of processes occurring from the ocean
to the atmosphere, encompassing terrestrial dynamics. Previous studies have tackled challenges involved
in formulating appropriate equations, selecting relevant parameters, determining characteristic values and
defining boundary conditions.

The choice of a temporal scheme becomes challenging when dealing with equations that exhibit multiple
timescales. These equations are categorized as stiff, signifying that at least one of their processes possesses a
notably high characteristic velocity in comparison to the studied physical phenomena. For instance, this is
prevalent in equations related to atmospheric dynamics or oceanic behaviors. Managing these equations often
involves temporal schemes with exceedingly small time steps for resolving all terms during computations,
but this approach incurs significant computational costs.
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However, for specific problems, the troublesome terms have remarkably lower computational costs. This
could be due to the fast terms being calculated across significantly fewer degrees of freedom than the slower
terms. For such problems, a split temporal method becomes advantageous, allowing the computationally
cheaper, fast terms to be computed numerous times compared to the computations of the computationally
expensive, slower terms. In specific cases, within the slower terms, equations may exhibit phenomena with
two distinct velocities. For instance, problems with exceptionally small aspect ratios exhibit this character-
istic, as seen in oceanic models, where the vertical dimensions are significantly smaller than the horizontal
ones. In these cases, the fast terms representing wave velocity are resolved in a two-dimensional grid, while
the other terms with smaller characteristic velocities are handled in 3D. In oceanic or atmospheric models,
the fast phenomena represent wave propagation. Due to the substantial aspect ratio, vertical phenomena
within the slower terms tend to exhibit smaller characteristic timescales than horizontal phenomena. For
instance, vertical diffusion, often arising from a turbulent closure model such as k− ϵ as described in (Rodi,
1987; Canuto et al., 2001), imposes more stringent constraints on the time step than horizontal diffusion.

To efficiently solve these equations, this paper introduces a second-order split implicit-explicit temporal
scheme. Although this temporal scheme uses two well-known Runge-Kutta schemes, the resulting splitting
is new. In addition, this scheme is novel in its application to ocean models on unstructured grids. The
choice of second order is crucial in reducing the numerical dissipation of the overall scheme. For instance,
in ocean applications, the numerical schemes used can introduce mixing rates of tracers and momentum
than can be orders of magnitude larger than physical mixing (Burchard and Rennau, 2008; Rennau and
Burchard, 2009; Hiester et al., 2014) . This is particularly true for the discretization of the horizontal
advection (Marchesiello et al., 2009; Griffies et al., 2000), but it can arise from the vertical advection and
diffusion as well (Shchepetkin A.F., 2005) or various filters introduced to improve numerical stability (Zhang
et al., 2016). This numerical dissipation can be reduced by using higher order schemes.

In a prior publication, a fully explicit second-order split scheme is introduced, drawing inspiration from
Wicker and Skamarock (2002); Wensch et al. (2009); Knoth and Wensch (2003). This schemes find ap-
plication in atmospheric models, specifically handling terms in an explicit manner. Since the equations
are predominantly influenced by advection terms, implicit treatment is not deemed necessary. Subsequent
works by Nilsen and Loseth (1993); Visbal and Gaitonde (2002); Robert and Kaper (1986) introduce diffusion
terms in splitting and treat them implicitly. However, the primary goal is not to create a final second-order
temporal scheme; rather, the focus lies in achieving a direct low-storage implicit solution tailored to handle
viscous terms. Essentially, the aim is to substantially minimize the computational effort associated with
simulating turbulent flows with the larger time step possible.

While theoretically usable, the scheme detailed in Ishimwe et al. (2023) presentes challenges when tran-
sitioning to real-world scenarios due to the constraints imposed by vertical terms on the 3D time steps.
Consequently, this paper introduces a semi-implicit facet to the stiff term, aiming to surmount the chal-
lenges encountered during realistic simulations and presents a comprehensive and practical scheme.

The temporal scheme is employed within the framework of 3D hydrodynamic equations and is imple-
mented within the Second-generation Louvain-la-Neuve Ice-ocean Model (SLIM, www.slim-ocean.be). This
software, developped in Louvain-la-Neuve through years as explained by (White et al., 2008; Blaise et al.,
2010; Comblen et al., 2010), resolves them on unstructured grids. While structured grids are known for their
great computational efficiency (Danilov et al., 2008; Danilov, 2013), unstructured meshes tend to be favored
within coastal domains. This preference arises from their superior ability to accurately tackle intricate
coastal topography and localized features (Deleersnijder and Lermusiaux, 2008; Pigott et al., 2013). The
3D mesh, composed of prisms, is obtained by extruding a 2D mesh of triangles. Typical approaches include
terrain-following sigma-levels Blumberg and Mellor (1987); Pan et al. (2021), z-levels Griffies et al. (2005)
and their generalization Song and Haidvogel (1994). Given the small aspect ratio of oceanic problems, the
number of horizontal elements exceeds the number of vertical elements. For spatial discretization, SLIM
employs the Discontinuous Galerkin method. This method discretizes the spatial fields using discontinuous
Galerkin basis functions. As a result, at the boundaries between elements, the solution is discontinuous.
The spatial discretization is shown in Appendix A (Ishimwe et al., 2023). This geometrical flexibility gives
many advantages. Practically, this enables efficient numerical resolution, as each triangle, or prism in 3D,
can solve its linear system without being blocked by other elements. This combines really well with the
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split temporal scheme, as the fast terms are computed in a 2D grid, while the slow and stiff terms are
computed in a 3D grid as explained by Kärnä et al. (2013). Even when deciding to resolve the vertical terms
semi-implicitly, it does not diminish the method’s effectiveness because the triangle-based systems become
column-based systems for prisms. Furthermore, as mentioned earlier, the number of prisms per column is
generally not excessive, ensuring these systems remain easily and efficiently solvable.

The structure of this article is as follows: it opens with an introduction to the hydrodynamic equations,
highlighting their characteristic timescales. The subsequent section elaborates on the temporal scheme,
detailing its construction, properties such as convergence order and the stability zone. Numerical results
from diverse test cases are presented to effectively validate the model. Finally, the article concludes by
summarizing the findings and implications of this study.

2. Governing physical equations

The temporal scheme outlined in this study is implemented in a coastal context, specifically targeting
the three-dimensional hydrostatic equations derived from the Navier-Stokes equations. The study focus on
three distinct timescale ranges: one short and two long timescales. Theses latter are due to the small aspect
ratio of the domain, which is a common characteristic of coastal areas. The short timescale is associated with
external gravity waves, while the two longer timescales are related to the horizontal and vertical dynamics.

2.1. Hydrodynamic equations

Given the Cartesian horizontal and vertical coordinates x = [x, y, z]T , the studied equations take the
following form

∂u

∂t
+∇h · (uu) +

∂(wu)

∂z
=∇h · (νh∇hu) +

∂

∂z

(
νv

∂u

∂z

)
− fez × u− g∇hη −

g

ρ0
q− g

ρ0
ρ′|η∇hη (1a)

∂H

∂t
=−∇h ·

∫ η

−b

udz (1b)

∂w

∂z
=−∇h · u (1c)

In the provided equation set, νh, νv and ∇h respectively denote horizontal and vertical viscosity, which
can be determined respectively by the Smagorinsky paramerisation (Smagorinsky, 1963; Blaise et al., 2007)
and the k−ϵ turbulence closure model (Rodi, 1987; Kärnä, 2020) and the horizontal gradient. The horizontal
velocity vector is denoted as u = (u,v), while w represents the vertical velocity. The variables U =

∫ η

−b
udz

denote the total horizontal transport, where η and b stand for the free surface elevation and the bathymetry
correspondingly. The column’s height is symbolized by H and f denotes the Coriolis parameter. Addition-
ally, q signifies the integral of the density deviation gradient, specifically defined as q =

∫ η

z
∇hρ

′dζ. The
density deviation relies on a state equation that depends on the water temperature or salinity (Jackett et al.,
2006). They are modeled by the following advection-diffusion equations

ρ′ = ρ′(T, S) (2)

∂T

∂t
+∇h · (uT ) +

∂(wT )

∂z
= ∇h · (κh∇hT ) +

∂

∂z

(
κv

∂T

∂z

)
(3)

∂S

∂t
+∇h · (uS) +

∂(wS)

∂z
= ∇h · (κh∇hS) +

∂

∂z

(
κv

∂S

∂z

)
(4)

κh and κv stand for respectively the horizontal and the vertical diffusivity.
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The density deviation is defined as ρ′ = ρ− ρ0, where ρ0 is the reference density.
Furthermore, SLIM tackles the equations within a three-dimensional domain Ω incorporating a free

surface, managed using an Arbitrary Lagrangian-Eulerian (ALE) approach (Formaggia and Nobile, 2004).
While the lateral boundary Γl and the bottom boundary Γb remain static, the surface boundary Γs dy-
namically moves over time, traversing the vertical coordinates between z = −b and z = η. Impermeability
conditions are imposed on both the top and bottom boundaries:

w + u ·∇hb = 0 x ∈ Γb (5a)

w − ∂H

∂t
− u ·∇h(H − b) = 0 x ∈ Γs (5b)

Also, a slip condition is implemented to accommodate bottom (Kärnä et al., 2013) and surface stresses,
τb and τs :

νv
∂u

∂z
=

τb
ρ0

x ∈ Γb (6a)

νv
∂u

∂z
=

τs
ρ0

x ∈ Γs (6b)

In the application of the temporal scheme to three-dimensional hydrodynamic equations, processes are
grouped into three categories based on their timescales. Defining ∆xy as the horizontal grid size and ∆z
as the vertical one enables to establish a value for the characteristic timescales. The following values are
simplications as the real characteristic timescales are more complex depending from example of the spatial
discritization. However, they are sufficient to understand the main idea of the method.

• External gravity waves, corresponding to the fastest phenomena, involve elevation gradient and
water height evolution treated in a 2D grid allowing to conserve computational resources while requiring
a smaller time step. Their characteristic timescale is defined as

∆t ∝ ∆xy

∥ū∥+√gH

• Vertical processes are represented by the 3D semi-implicit terms. Given the equations’ application
in shallow areas, using 3D meshes with thin vertical layers, these terms exhibit reduced temporal char-
acteristics, justifying their semi-implicit handling. These terms encompass the vertical advection, the
vertical diffusion and the friction parametered with a quadratic function, split into linear components
(vertical diffusion) and nonlinear components (vertical advection and friction). The quadratic bottom
drag is defined :

τb
ρ0

= Cd|ub|ub

where ub is the horizontal velocity of the bottom element taken at the middle point and Cd is the drag
coefficient. The characteristic timescale of these terms is

∆t ∝ max

(
∆z2

νv
,
∆z

w

)
• Horizontal processes are treated explicitly. These terms include horizontal advection, horizontal
diffusion, the wind effect and density-related terms. They also take into account the internal hydro-
static waves. They appear between two layers of water with different densities. They are not as fast
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as the external gravity waves. The characteristic timescale of these terms is defined as

∆t ∝ max

(
∆xy2

νh
,

∆xy

∥u∥+
√
gHρ′/ρ

)

Finally, the missing term, the Coriolis force, with ∆t ∝ 1
f , is treated semi-implicitly. This decision is

due to the necessity for a centered temporal scheme to ensure that the Coriolis force vector, perpendicular
to velocity, neither generates nor dissipates kinetic energy. The model dealing with semi-implicit terms is
centered, hence justifying the inclusion of the Coriolis term among these semi-implicit terms. This does not
significantly increase the computational cost as the Coriolis force is a linear source term.

2.2. Two equations turbulence closure model

The turbulence closure model known as the Generic Length Scale (GLS) by Umlauf and Burchard
(2003) solves a pair of equations governing the turbulent kinetic energy (TKE), denoted k, and the auxiliary
turbulent variable, represented by Ψ. These are advection-diffusion equations with source terms. Both k
and Ψ are positive fields that obey:

∂k

∂t
+∇h · (uk) +

∂(wk)

∂z
= ∇h · (νh∇hk) +

∂

∂z

(
νv
σk

∂k

∂z

)
+ P − ϵ+B

∂Ψ

∂t
+∇h · (uΨ) +

∂(wΨ)

∂z
= ∇h · (νh∇hΨ) +

∂

∂z

(
νv
σΨ

∂Ψ

∂z

)
+

Ψ

k
(c1P − c2ϵ+ c3B)

where σk and σΨ are the Schmidt numbers for k and Ψ respectively. c1, c2, c3 are constants determined by
the model.

Contrary to the Zero-equation parametrizations such as Pacanowski and Philander (Pacanowski and
Philander, 1981) or the K-profil Parametrization (Large et al., 1994; Roekel et al., 2018) that parametrize
the eddy viscosity as a function of the mean flow state, these equations take into account prognostic turbulent
variables. P is the production term of TKE and buoyancy while ϵ is the dissipation rate of TKE. B is a
production or destruction term depending on the stratification. P and B are defined as

P = νv

((
∂u

∂z

)2

+

(
∂v

∂z

)2
)

(7)

B = κv
g

ρ0

∂ρ

∂z
(8)

The term P consistently holds a semi-positive value, indicating that horizontal velocity shear generates
turbulence. P converts kinetic energy of the mean flow into turbulent kinetic energy. On the contrary,
the sign of B can fluctuate: under stable stratification, where ∂ρ

∂z < 0, or in simpler terms, denser wa-
ter is positioned below lighter water, B adopts a negative value, converting turbulent kinetic energy into
gravitational potential energy. Consequently, this stratification tends to inhibit turbulence. In the case of
unstable stratification, B becomes positive, transforming potential energy into turbulence. Burchard (2002)
emphasized that the numerical implementation of B and P should maintain energy conservation, ensuring
that the increase in TKE caused by P aligns with the corresponding loss of kinetic energy of the mean flow.
Additionally, the dissipation term, ϵ, is always positive and refers to the dissipation of TKE into heat mainly
at the smallest scale of motion.

Concerning Ψ, the source terms are dependent of P , B and ϵ. But they are scaled by Ψ/k and the
empirical constants c1, c2 and c3. The meaning and the unity of the variable Ψ are not straightforward.

For instance, p = −1, m = 1/2 and n = −1 gives the k − ω model (Wilcox, 1988, 2008). In this model,
Ψ represent the specific dissipation rate as it is proportional to ϵ/k. It is also known as the turbulence
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frequency ω as its units are in s−1. The source terms are multiplied by ϵ/k2 up to a coefficent.
When p = 0, m = 1 and n = 1, this is the k− kl model from Mellor and Yamada (1982). In this case, Ψ

is the product between the turbulent energy and the turbulent length scale. In this closure, the production
and destruction terms are scaled by the turbulent length scale.

Finally, in the popular k − ϵ model, where p = 3, m = 3/2 and n = −1, Ψ is the TKE dissipation rate.
This means that the source terms are multiplied by the ratio of the TKE dissipation rate and the TKE.

In numerous ocean models, the horizontal advection of k and Ψ is disregarded, assuming relatively long
transport timescales. In addition, the vertical advection is disregarded, considering dimensional analysis on
the continuity equation. The same applies to the horizontal diffusion.

The two equations become

∂k

∂t
=

∂

∂z

(
νv
σk

∂k

∂z

)
+ P +B − ϵ (9)

∂Ψ

∂t
=

∂

∂z

(
νv
σΨ

∂Ψ

∂z

)
+

Ψ

k
(c1P + c3B − C2ϵ) (10)

The TKE dissipation rate, ϵ, is computed using the following equation:

ϵ = c
3+p/n
0

k3/2+m/n

Ψ1/n
(11)

where c0, m, n, p are constants. The values of these constants are also given by the model.
Finally, the vertical eddy viscosity and diffusivity, νv and κv, are computed using the following equation:

νv =
cν

c
3+p/n
0

k1/2−m/nΨ1/n (12)

κv =
cκ

c
3+p/n
0

k1/2−m/nΨ1/n (13)

where cν and cκ are non-dimensional stability functions that depend on the vertical gradient of the water
velocity and density.

As there are no horizontal flux terms, there is no need for boundary conditions on the lateral boundaries.
Regarding the boundaries at the surface and bottom of the domain, they are determined by the wall
conditions. The boundaries flux for k are 0 while the Neumann conditions on Ψ are

νv
σΨ

∂Ψ

∂z
= −n νv

σΨ
cp0k

mκn

(
∆z

2
+ z0,s

)n−1

x ∈ Γs (14a)

νv
σΨ

∂Ψ

∂z
= n

νv
σΨ

cp0k
mκn

(
∆z

2
+ z0,b

)n−1

x ∈ Γb (14b)

where z0,s and z0,b are the roughness length scales at the surface and bottom respectively. ∆z is the vertical
grid size. As the gradients cannot be computated right at the surface and bottom because Ψ can change
rapidly. Therefore, the gradients are computed at the middle of the first and last vertical layers.

3. Temporal scheme

The aim of this section is to propose suitable time discretizations that efficiently resolve multiscale
behaviour of a stiff problem. Several methodologies exist for integrating systems of ordinary differential
equations, which encompass multistep approaches dealing with the system in fully explicit, fully implicit, or
split implicit–explicit manners. This study specifically explores the utilization of second-order split IMEX
integrators. These temporal integrators partition the hydrodynamic equation’s right-hand side into three
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components: an explicit fast yet less computationally intensive part, an explicit non-stiff part and a semi-
implicit stiff part with a smaller timescale than the previous one. To exemplify, let us consider the subsequent
ordinary differential equation:

dy

dt
= fxy(y) + f z(y) + F fast(y), t ∈ (0, T ) (15)

with the initial value y(0) = y0. The notation fxy(y) represents the slow horizontal processes integrated
explicitly, while f z(y) denotes the vertical terms treated semi-implicitly. F fast(y) symbolizes the 2D dynamics
characterized by a short timescale.

The semi-implicit term needs to be further developed as it may contain non-linear operators. Resolving
non-linear semi-implicit terms requires the use of non-linear solvers such as the ones based on the Newton-
Raphson method. However, employing such solvers can significantly increase computational time. To
address this issue, the semi-implicit terms are divided into linear and non-linear components. The non-
linear portion is addressed as a product between an explicit coefficient and an implicit one, while the linear
part is treated completly semi-implicitly. This approach allows for handling semi-implicit terms without a
substantial increase in computational time. The previous equation becomes :

dy

dt
= fxy(y) + f z0(y) + f z1(y) y + F fast(y), t ∈ (0, T ) (16)

where f z0(y) and f z1(y) y are the linear and non-linear components of the semi-implicit term respectively.
The fundamental idea behind the method presented in this paper is to employ a split-time scheme

composed of Runge-Kutta methods. These Runge-Kutta methods use two different time steps: ∆t for the
3D evolving terms and ∆T = ∆t

M for the fast terms, where M represents the largest integer close to the ratio
of characteristic speeds. As the primary aim of this paper is to developed a second-order global scheme, the
selection of these Runge-Kutta methods cannot be arbitrary.

3.1. Choice of the Runge-Kutta schemes

The choice of the temporal discretization methods involves several constraints. Depending on the equa-
tions, they can vary.

3.1.1. Hydrodynamic equations

For the hydrodynamic equations, the discontinuous Galerkin finite element method, when dealing with
an advection problem, has eigenvalues along the imaginary axis. Due to diffusion terms, these eigenvalues are
slightly shifted towards the left. In other words, they are not purely imaginary but remain very close to the
axis. Therefore, when employing a temporal method of order one, an extremely small time step is required.
Hence, the choice of a temporal scheme of order two is made. In aiming for a second-order scheme over the
final time step, each term within the ordinary differential equation must be treated using, at minimum, a
second-order method. In other words, it is imperative to identify an order two explicit Runge-Kutta method
for the explicit terms along with a semi-implicit second-order Runge-Kutta for the linear semi-implicit stiff
term. Moreover, a Runge-Kutta method capable of integrating a term comprising a product of functions,
one handled explicitly and the other semi-implicitly, is necessary. One first easy direct choice is to use the
same explicit RK for the fast term as the one used for the explicit slow terms.

By doing this choice, this gives the following split IMEX Runge-Kutta method for the 3D terms:
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yn+i = yn + α00∆tfxy(yn)

+ β00∆tf z0(yn+i)

+ γ00∆f z1(yn) yn+i (17)

yn+1 = yn + α10∆tfxy(yn) + α11∆tfxy(yn+i)

+ β10∆tf z0(yn+i) + β11∆tf z0(yn+1)

+ γ10∆f z1(yn) yn+i + γ11∆f z1(yn) yn+1

+ γ12∆f z1(yn+i) yn+i + γ13∆f z1(yn+i) yn+1 (18)

This constitutes the expression of the complete temporal scheme without constraints with its partial
stage length arbitrary. Essentially, it forms a system with 12 unknowns: one coefficient representing the
temporal position achieved at the end of the first sub-time step and eleven coefficients multiplying the slopes,
or in other words, the derivatives in the form of αmn, βmn and γmn. The αmn coefficients correspond to the
explicit slow terms, while the βmn coefficients are related to the semi-implicit stiff terms. Finally, the γmn

coefficients are associated with the explicit-implicit cross terms. The indices m and n represent the stage
number and the term number respectively. The first index m varies from 0 to 1, while the second index n
varies from 0 to 1 for the first stage and from 0 to 3 for the second stage.

Additionally, in this model, we aim to enforce the final scheme to be low storage, implying the use of
only a limited number of temporal values at each stage of the method. This constraint is crucial as it
significantly simplifies the method’s implementation, particularly because the equations involve Arbitrary
Lagrangian-Eulerian formulations. This means that a reduced number of terms need to account for mesh
movements. In essence, at each stage, a maximum of three temporal values are present: the value at the
beginning of the temporal scheme, the value at the end of the current stage and the value used in the slope
to move the variables. For the first stage, it does not change anything. However, for the second stage, this
implies that the derivatives can not use simultaniously values at tn and tn+i. Consequently, this gives two
choices. The first is to keep the value at tn and the value at tn+1 in the right-hand side. This gives

α11 = β10 = γ10 = γ12 = γ13 = 0

In this configuration, the second stage becomes

yn+1 = yn + α10∆tfxy(yn)

+ β11∆tf z0(yn+1)

+ γ11∆tf z1(yn) yn+1

One can see that this scheme is not second-order accurate by construction. Indeed, the value computed at
the first stage is not used in the second stage. The right choice is to keep the value at tn+i and at tn+1 in
the right-hand side. This gives

α10 = γ10 = γ11 = 0

The second time loop becomes
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yn+1 = yn + α11∆tfxy(yn+i)

+ β10∆tf z0(yn+i) + β11∆tf z0(yn+1)

+ γ12∆f z1(yn+i) yn+i

+ γ13∆f z1(yn+i) yn+1

Finally, the last constraint is to ensure that the scheme is second-order accurate. To achieve this, the Taylor
series expansion of yn+1 must match the result of the temporal scheme up to order 2. The only way to do
so is the take following split IMEX Runge-Kutta method for the slow and stiff terms:

yn+ 1
2
= yn +

1

2
∆tfxy(yn)

+
1

2
∆tf z0(yn+ 1

2
)

+
1

2
∆f z1(yn) yn+ 1

2

yn+1 = yn +∆tfxy(yn+ 1
2
)

+ ∆tf z0(yn+ 1
2
)

+ ∆f z1(yn+ 1
2
) yn+ 1

2
(19)

The demonstration of the order of this scheme is done Section 3.3. Concerning the fast terms, they are
computed with the same explicit Runge-Kutta method as the slow explicit terms. This gives

yn+ 1
2
= yn +

1

2
∆TF fast(yn)

yn+1 = yn +∆TF fast(yn+ 1
2
) (20)

3.1.2. Two equations turbulence closure model

As for the turbulence closure equations, a second-order temporal scheme is also desirable to keep the
global scheme of order 2. The aim is to use vertical viscosity and diffusivity value that are calculated at
time n+ 1

2 in the diffusion terms of the hydrodynamic equations. To satisfy both constraints, the simplest
choice is to employ the same temporal scheme as that described in the preceding section.

However, this is not sufficient. An additional requirement for these equations is that the scheme must
be positive. This means that if a simulation starts with positive field values, they must remain positive
throughout all the simulation regardless of the hydrodynamics.

Positive production terms pose no issues. The diffusion term in these equations also doesn’t raise any
concerns. The stability of the Runge-Kutta as well as the Finite-Volume methods guaranties the positivity
of the variables under the diffusion. The only problematic terms is the destruction terms. The aim is
to avoid situations where, within a time step, more is destroyed than what is produced and received by
diffusion. This would result in a negative value for k or Ψ, which is not physically possible. Moreover, this
can lead to negative viscosity or diffusivity coefficients. To avoid this, an appropriate approach involves
using Patankar techniques (Patankar, 1980) on the destruction terms. As shown by Burchard et al. (2003),
Patankar methods are employed to ensure the positivity of turbulent variables. Isgin and Ranocha (2023)
demonstrated the way to implement these techniques in a temporal scheme of order two. For the sake of
brevity, the details of the demonstration of the order are not given here again.

The diffusion term and the positive production terms follow the temporal scheme presented before. The
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temporal scheme for destruction terms is the following:

yn+ 1
2
= yn +

∆T

2
D(yn)

yn+ 1
2

yn

yn+1 = yn +∆TD(yn+ 1
2
)
yn+1 yn(
yn+ 1

2

)2 (21)

where D(y) is the negative destruction term.

3.2. Split IMEX Runge-Kutta method

In order to obtain the final scheme, one needs to combine the explicit and implicit Runge-Kutta methods
for the 3D terms with the explicit Runge-Kutta method for the fast 2D terms. Coupling the fast terms with
the slow explicit terms has already be done in Ishimwe et al. (2023). In the context of this model, coupling
between stiff and fast terms proves to be notably intricate.

For the first sub iteration, the implicit aspect of this scheme anticipates computing the value of the
variable yn+ 1

2
for each iteration within the temporal loop of the fast scheme. However, this contradicts the

core purpose of splitting. The aim is to compute the 3D terms a fixed number of times independent of the
number of fast time steps. This requires taking inspiration from predictor-corrector methods to handle the
connection between the implicit elements.

The description of the first sub-time step of the 3D component follows. Initially, before entering the
temporal loop of the fast terms, the contribution of the slow adn stiff terms must be calculated. During
the evaluation of the slow explicit terms, a prediction of the implicit vertical terms is also computed. This
prediction estimates the value of the implicit slope without considering the fast terms. Using this slope
alongside the contribution from the explicit slow derivative advances the fast terms with a smaller time step.
Following multiple Runge-Kutta iterations, the contributions of all fast slopes can be computed. By using
these fast slopes along with the explicit slow slopes, the unknown variable’s value can be calculated, this
time incorporating the correct value for the implicit slope. Consequently, this yields the value of y at the
midpoint of the time step.

Regarding the second sub-time step, upon close examination of the Runge-Kutta equations described in
the preceding section, it is noticeable that the semi-implicit functions are no longer computed using the future
value of y but rather utilizing the midpoint value. This implies that the second time step is entirely explicit.
Consequently, the coupling between the slow, the stiff and the fast terms becomes more straightforward
and is directly inspired by Ishimwe et al. (2023). This implies that all 3D terms are computed before the
temporal loops of the fast terms and then the entirety advances during the fast Runge-Kutta iterations.

The complete scheme is presented as follows:

10



First sub-time step

Second sub-time step
0 ∆T ∆t/2

0 ∆T ∆t

Figure 1: Split IMEX scheme composed of two RK2 and one IRK2. In the first sub-time step, the green arrows represents
fxy(yn), the first and second red arrows are fz0(y∗) + fz1(yn) y∗ and fz0(yn+ 1

2
) + fz1(yn) yn+ 1

2
respectively. The blue arrows

represent the computation of each f fast(y). In the second sub-time step, the green arrows represents fxy(yn+ 1
2
) while the red

arrow is fz0(yn+ 1
2
) + fz1(yn+ 1

2
) yn+ 1

2
.

First sub-time step

y∗ = yn +
1

2
∆t
(
fxy(yn) + f z0(y∗) + f z1(yn) y∗

)
F fast = 0

for j = 0, . . . ,
M

2
− 1

y
n+

j+1/2
M

= yn+ j
M

+
1

2
∆T

(
F fast(yn+ j+1

M
) + fxy(yn) + f z0(y∗) + f z1(yn) y∗

)
yn+ j+1

M
= yn+ j

M
+∆T

(
F fast(y

n+
j+1/2

M
) + fxy(y∗) + f z0(y∗) + f z1(y∗) y∗

)
F fast = F fast + F fast(y

n+
j+1/2

M
)

yn+ 1
2
= yn +

1

2
∆t
(
fxy(yn) + f z0(yn+ 1

2
) + f z1(yn) yn+ 1

2
+ F fast

)
Second sub-time step

F fast = 0

for j = 0, . . . ,M − 1

y
n+

j+1/2
M

= yn+ j
M

+
1

2
∆T

(
F fast(yn+ j+1

M
) + fxy(yn) + f z0(yn+ 1

2
) + f z1(yn) yn+ 1

2

)
yn+ j+1

M
= yn+ j

M
+∆T

(
F fast(y

n+
j+1/2

M
) + fxy(yn+ 1

2
) + f z0(yn+ 1

2
) + f z1(yn+ 1

2
) yn+ 1

2

)
F fast = F fast + F fast(y

n+
j+1/2

M
)

yn+1 = yn +∆t
(
fxy(yn+ 1

2
) + f z0(yn+ 1

2
) + f z1(yn+ 1

2
) yn+ 1

2
+ F fast

)
The whole process is summarised in the Figure 1 and the Algorithm 1. While this temporal method uses

two established RK methods, the resultant splitting mechanism is novel and unique.
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Algorithm 1: split IMEX scheme of order 2

Data: Model state variable yn, m = M/2
1 First sub-time step
2 fxy ← fxy(yn)
3 fz1 ← f z1(yn)

4 y∗ ← yn + ∆t
2 (fxy+f z0(y∗) + fz1 y∗)

5 fz0 ← f z0(y∗)
6 y ← yn
7 F fast ← 0
8 for j = 1, . . . ,M/2 do
9 f fast ← f fast(y)

10 f fast ← f fast(y + 1
2∆T (f fast + fxy + fz0 + fz1 y∗))

11 y ← y +∆T (f fast + fxy + fz0 + fz1 y∗)

12 F fast ← F fast +∆T f fast

13 yn+ 1
2
← yn + ∆t

2 (fxy + f z0(yn+ 1
2
) + fz1 yn+ 1

2
) + F fast

14

15 Second sub-time step
16 fxy ← fxy(yn+ 1

2
)

17 fz0 ← f z0(yn+ 1
2
)

18 fz1 ← f z1(yn+ 1
2
)

19 F fast ← 0
20 for j = 1, . . . ,M do
21 f fast ← f fast(y)

22 f fast ← f fast(y + 1
2∆T (f fast + fxy + fz0 + fz1 yn+ 1

2
))

23 y ← y +∆T (f fast + fxy + fz0 + fz1 yn+ 1
2
)

24 F fast ← F fast +∆T f fast

25 yn+1 ← yn +∆t
(
fxy + fz0 + fz1 yn+ 1

2

)
+ F fast
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3.3. Order of precision

The order of the scheme is obtained by comparing the Taylor series expansion of the scheme with the
Taylor series expansion of the solution of the ODE. The order of the scheme is the highest order of the same
terms between them. The expression of the Taylor series yn+1 is given by

yn+1 =yn +∆ty
′

n +
∆t2

2
y

′′

n +O(∆t3)

=yn +∆t
(
fxy
n + fz0

n + fz1
n yn + Fn

)
+

∆t2

2

((
fxy
n + fz0

n + fz1
n yn + Fn

)′ (
fxy
n + fz0

n + fz1
n yn + Fn

))
+O(∆t3) (22)

with fxy
n = fxy(yn), f

z0
n = f z0(yn), f

z1
n = f z1(yn) and Fn = F fast(yn).

A conventional Runge-Kutta order analysis involves calculating each iteration of the slopes and adding
them to derive the final expression for yn+1. However, in a split temporal scheme, showcasing the outcome
of each 2D sub-step is not practical due to the multitude of terms involved. Therefore, for clarity, only the
assessments of y at the 3D sub-steps, encompassing yn+ 1

2
and yn+1, are computed instead. However, rest

assured that the comprehensive details of the small time-step 2D loops have been provided in the article
Ishimwe et al. (2023). The result of a whole fast Runge-Kutta iteration has also been expressed. For a given
kslow and M, the result of the fast Runge-Kutta iteration is

yM =yn +M∆T
(
Fn + kslow

)
+

M2∆T 2

2

(
Fn + kslow

)
F

′

n +O(M3∆T 3)

=yn +∆t
(
Fn + kslow

)
+

∆t2

2

(
Fn + kslow

)
F

′

n +O(∆t3)

This result is denoted RK2(kslow,M). To determine the order of accuracy of the global method, the
split IMEX RK2 method is unrolled. The two sub-steps are computed separately because the first sub-step
is implicit, while the second sub-step is explicit. Moreover, the prediction of the implicit terms is analysed
separately from the correction. In the first sub steps, the predicted 3D slope is denoted k∗,slow1 and the
corrected 3D slope is denoted kslow1 . The former ones are computed without considering the fast terms while
the latter ones are computed with the fast terms. The predicted slope is given by

k∗,slow1 =fxy
n + f∗,z0

n + fz1
n y∗n

=fxy
n + fz0

n + fz1
n yn

+
∆t

2

(
fxy
n + fz0

n + fz1
n yn

)
f i′

n

+
∆t

2
fz1
n

(
fxy
n + fz0

n + fz1
n yn

)
+O(∆t2)

Following Algorithm 1, the value of RK2(k∗,slow1 ,M2 ) can be obtained. Consequently, the sum of the fast
slopes can be computed. This sum is denoted F fast

1 and is given by

F fast
1 =

∆t

2
Fn +

1

2

(
∆t

2

)2

FnF
′

n +O(∆t3)

13



The value of yn+ 1
2
can now be expressed as

yn+ 1
2
=yn +

∆t

2

(
fxy
n + fz0

n + fz1
n yn + Fn

)
+

∆t2

8

(
fxy
n + fz0

n + fz1
n yn + Fn

)
F

′

n

+
∆t2

4

(
fxy
n + fz0

n + fz1
n yn + Fn

)
f i′

n

+
∆t2

4
fz1
n

(
fxy
n + fz0

n + fz1
n yn + Fn

)
+O(∆t3) (23)

The second sub step computes explicitely the slow, the stiff and the fast terms. The slope denoted kslow2

is

kslow2 =fxy(yn+ 1
2
) + f z0(yn+ 1

2
) + f z1(yn+ 1

2
) yn+ 1

2

=fxy
n + fz0

n + fz1
n yn

+
∆t

2

(
fxy
n + fz0

n + fz1
n yn + Fn

) (
fxy
n + fz0

n + fz1
n yn

)′
+O(∆t2)

The final value of yn+1 is given by RK2(kslow2 ,M).

yn+1 =yn +∆t
(
fxy
n + fz0

n + fz1
n yn + Fn

)
+

∆t2

2

(
fxy
n + fz0

n + fz1
n yn + Fn

) (
fxy
n + fz0

n + fz1
n yn + Fn

)′
+O(∆t3) (24)

Comparing the Taylor series expansion of yn+1 (Equation 24) with the Taylor series expansion of the
solution of the ODE (Equation 22), one can see that the order of the scheme is 2.

As stated before, the Patankar modified scheme is also of order 2. This is mentionned by Isgin and
Ranocha (2023). The demonstration is done in Kopecz and Meister (2018).

3.4. Stability region

The stability region of a numerical scheme is the set of complex numbers z such that the numerical
scheme applied to the linear ODE is stable.

3.4.1. Stability of the IMEX Runge-Kutta method

In the case of the split IMEX RK2 scheme, there are three different characteristic speeds. Therefore,
this configuration should be taken into account. The linear ODE becomes

∂y

∂t
= λxyy + λzy + Λy

with respectively λxy, λz and Λ the complex coefficient of the linear function of the horizontal explicit terms,
the vertical semi-implicit terms and the fast terms.

The amplification factor of the scheme is defined as the ratio between the value of y at the end of the
time step and the value at the beginning of the time step. The result of the fast Runge-Kutta iterations,
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denoted RK2(kslow,M) , is

yM = ynA
M + kslow

(
∆T + Λ

∆T 2

2

)
1−AM

1−A

with A = 1 + Λ∆T + Λ2 ∆T 2

2 and Λ ̸= 0, ∆T ̸= 0.
Once again, the analysis of the complete temporal scheme is divided into two due to the specific con-

figuration of this IMEX scheme. Indeed, the implicit aspect of the first sub-time step, coupled with its
predictor-corrector nature, complicates the analysis. The value resulting from the prediction offers a insight
into the scheme’s treatment concerning the 3D terms and impacts the overall stability of the scheme.

The predicted value is

y∗ = yn
1 + ∆t

2 λxy

1− ∆t
2 λz

The corresponding slope is

k∗,slow1 = λxyyn + λzy
∗

= yn

(
λxy + λz

1 + ∆t
2 λxy

1− ∆t
2 λz

)

The predicted value is then used to compute the fast Runge-Kutta iterations. The result of the fast
iterations gives

y∗n+ 1
2
=RK2(k∗,slow1 ,

M

2
)

=ynA
M
2

+ yn

(
λxy + λz

1 + ∆t
2 λxy

1− ∆t
2 λz

)(
∆T + Λ

∆T 2

2

)
1−A

M
2

1−A

As Algorithm 1 shows, this value is only a prediction to obtained the fast slopes. They are combined
with the slow explicit slope to obtain the final value using the correction of the implicit term. This gives
the following expression

yn+ 1
2
= ynA

M
2 + λxyyn

(
∆T + Λ

∆T 2

2

)
1−A

M
2

1−A
+

∆t

2
λzyn+ 1

2

= yn

(
1

1− λz
∆t
2

)(
λxy

(
∆T + Λ

∆T 2

2

)
1−A

M
2

1−A
+A

M
2

)

Using this value, the slope of the second sub-time step, kslow2 , can be computed.
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Figure 2: Stability region with only one function with M = 1. The abscissa is the Real part while the ordinates is the Imaginary
part of respectively λz∆t and λxy∆t. The bold lines are the origins.

kslow2 = λxyyn+ 1
2
+ λzyn+ 1

2

= yn (λxy + λz)

(
1

1− λz
∆t
2

)(
λxy

(
∆T + Λ

∆T 2

2

)
1−A

M
2

1−A
+A

M
2

)

Consequently, the value of yn+1 can be expressed as

yn+1 =RK2(kslow2 ,M)

=ynA
M

+ yn

(
λxy + λz

1− λz
∆t
2

)(
λxy

(
∆T + Λ

∆T 2

2

)
1−A

M
2

1−A
+A

M
2

)
(
∆T + Λ

∆T 2

2

)
1−AM

1−A

Finally, the amplification factor of the scheme is given by

yn+1

yn
=AM +

(
λxy + λz

1− λz
∆t
2

)(
λxy

(
∆T + Λ

∆T 2

2

)
1−A

M
2

1−A
+A

M
2

)
(
∆T + Λ

∆T 2

2

)
1−AM

1−A

The stability region of the scheme is a function of four parameters: λxy, λz, Λ and M , where the first
three are complex and the last is a positive integer. Representing the global stability region proves to be
highly intricate, given its 7D nature. To simplify the illustration of the function, let us examine the scenario
where either λxy, λz or Λ equals zero and M equals 1. The fast term and the explicit slow term using
the same temporal scheme, it is shown once. The stability regions depicted in Figure 2 align with those
of the conventional RK2 methods and the Crank-Nicolson. Altering the value of M impacts both graphs:
regarding the RK2 for the slow process, the stability region decreases while preserving its original shape;
conversely, the semi-implicit process, the region stays unconditionally stable for all the negative values.
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3.4.2. Stability of the Patankar Runge-Kutta method

In this section, an analyse of the second-order temporal scheme that incorporates the Patankar method
is done for the destruction terms of the turbulence closure equations. This scheme is specifically designed
to ensure the positivity of the solution of an equation containing a destruction term. To study its stability
zone, the focus is on an ODE where the right-hand side comprises only a destruction term. As a reminder,
D(y) is negatively signed and may be a function of y. This results in the following ODE:

∂y

∂t
= D(y)

The first step of the Patankar method moves the solution to t = t+ ∆t
2 . This gives

yn+ 1
2
= yn +

∆t

2
D(yn)

yn+ 1
2

yn

=
y2n

yn − ∆t
2 D(yn)

The final step of the Patankar gives

yn+1 = yn +∆tD(yn+ 1
2
)
yn+1yn
yn+ 1

2

=
y5n

y4n −∆tD
(
yn+ 1

2

)
yn
(
yn − ∆t

2 D(yn)
)2

This is the solution of the ODE for a generic destruction term. To study the stability of the scheme, the
following case is considered

D(y) = λpy

with λp a complex number and the real part of λp negative.
The amplification factor of the scheme is given by

yn+1

yn
=

y4n

y4n −∆tλpyn+ 1
2

(
yn − ∆t

2 λpyn
)2

=
1

1−∆tλp +
∆t2

2 λ2
p

The stability region is shown in Figure 3. The scheme is unconditionally stable for all the negative values
of Re(λp). This is consistent with the fact that the Patankar method is designed to ensure the positivity of
the solution of an equation containing a destruction term. By definition, the latter is always negative. The
figure also demonstrates that the stability region of the second-order Patankar scheme is the inverse of the
stability region of a classical second-order Runge-Kutta scheme, with a sign change. This means that the
region where the amplification factor is less than zero corresponds to the stability region of the Runge-Kutta
scheme with a negative sign, whereas it is greater than zero.

3.5. Application to the hydrodynamics equations

The split IMEX RK2 method is applied to the hydrodynamics equations presented in Section 2.1. Re-
garding spatial discretization, the first-order discontinuous Galerkin finite element method is employed. A
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Figure 3: Stability region of the Patankar method. The abscissa is the Real part while the ordinates is the Imaginary part of
respectively λp∆t. The bold lines are the origins.

comprehensive description of this method was previously detailed in Ishimwe et al. (2023). As the same
methodology is used here, it is not be reiterated in this paper.

The temporal method is implemented on these discretized equations. Nonetheless, the finite element
method incorporates mass matrices. At time n, Mn represents the global mass matrix. Consequently, in
order to employ the split IMEX temporal schemes for our specific problem, it is crucial to consider the
evolution of the mass matrix throughout the algorithm.

To accommodate the vertical mesh displacement, an Arbitrary Lagrangian-Eulerian scheme is introduced.
As the three-dimensional mesh tracks the free surface movement, solely the vertical coordinates experience
temporal changes (e.g., (Clare et al., 2022; Pan et al., 2019)).

While not explicitly demonstrated in this article, it is emphasized that the proposed IMEX scheme still
adheres to the properties outlined in the previous work. These include tracer consistency, conservation of
water volume and conservation of tracer volume.

A complete iteration of the three-dimensional hydrostatic equations is shown in Algorithm 2.

4. Results

The 3D model is assessed by a set of numerical benchmarks. The correct size of the vortices produced
by instabilities in a rotating baroclinic benchmark demonstrates the small amount of numerical dispersion
introduced by the discrete model. The second-order accuracy of the scheme is demonstrated by the conver-
gence of the error. Then, the ability of the model to reproduce the dynamics of the overflow mixing and
entrainment is also demonstrated.

4.1. Baroclinic eddies

The baroclinic eddies test case, initially introduced in Ilıcak et al. (2012), serves as a pivotal benchmark
to assess the model capabilities of generating and accurately representing these eddies while minimizing
numerical dissipation through the temporal scheme. It has been previously employed in prior studies such
as Petersen et al. (2015). However, it is indispensable to include it in this research as it provides an effective
means to test the second-order accuracy and performance of our model in this specific context.

This simulation, representing the Antarctic Circumpolar Current, replicates an unstable sinusoidal front
dividing warm and cold water masses, resulting in the development of vortices under the influence of hori-
zontal viscosity. Implemented within a three-dimensional box domain, spanning 500 km in length, 160 km
in width and 1000 m in depth, the model incorporates impermeable boundaries along the meridional axis (y)
and periodic boundaries along the zonal axis (x). Key parameters encompass a constant Coriolis parameter
set at -1.2 × 10−4 s−1, quadratic bottom drag coefficient of 0.01 and a density function formulated from
temperature variations.
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Algorithm 2: split IMEX iteration for the hydrodynamic equations, m = M/2

Data: Model state variable u, z
1 U, H ←∑

z
h
2u,

∑
z

h
2

2 u0, h0 ← u, h
3 U0, H0 ← U, H
4

5 First sub-time step
6 fxy ← fxy

3d (u, z)
7 f z1 ← f z1

3d(u, z)

8 u∗ ←M−1
3d

(
M0

3du0 +
∆t
2

(
fxy + f z0

3d(u
∗, z) + f z13du

∗))
9 f z0 ← f z0

3d(u
∗, z)

10 Fxy ←∑
z f

xy

11 Fz0 ←∑
z f

z0

12 Fz1U←∑
z f

z1u∗

13 U, H ← U0, H0

14 Ffast ← 0
15 for j=1,...,m do
16 FU, FH ← F2d(U, H)

17 FU, FH ← F2d(U+ ∆T
2 M−1

2d (FU + Fxy + Fz0 + Fz1U), H + ∆T
2 M−1

2d FH)

18 U← U+∆TM−1
2d (FU + Fxy + Fz0 + Fz1U)

19 H ← H +∆TM−1
2d FH

20 Ffast ← Ffast +∆TFU

21 Update the z coordinates based on H

22 un+ 1
2
←M−1

3d

(
M0

3du0 +
∆t
2

(
fxy + f z0

3d(un+ 1
2
, z) + f z1 un+ 1

2

)
+ 1

2
h
HFfast

)
23

24 Second sub-time step
25 fxy ← fxy

3d (un+ 1
2
, z)

26 f z0 ← f z0
3d(un+ 1

2
, z)

27 f z1 ← f z1
3d(un+ 1

2
, z)

28 Fxy ←∑
z f

xy

29 Fz0 ←∑
z f

z0

30 Fz1U←∑
z f

z1un+ 1
2

31 U, H ← U0, H0

32 Ffast ← 0
33 for j=1,...,2m do
34 FU, FH ← F2d(U, H)

35 FU, FH ← F2d(U+ ∆T
2 M−1

2d (FU + Fxy + Fz0 + Fz1U), H + ∆T
2 M−1

2d FH)

36 U← U+∆TM−1
2d (FU + Fxy + Fz0 + Fz1U)

37 H ← H +∆TM−1
2d FH

38 Ffast ← Ffast +∆TFU

39 Update the z coordinates based on H

40 un+1 ←M−1
3d

(
M0

3du0 +∆t
(
fxy + f z0 + f z1 un+ 1

2

)
+ 1

2
h
HFfast

)
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Figure 4: Sea surface temperature field [◦C] of the baroclinic eddies test case for 200 days with the split IMEX Runge-Kutta.
The horizontal viscosity is 20 m2/s.

Its expression is given by

ρ(x, y, z) = 1000− 0.2(T (x, y, z)− 5)

where T is the temperature in ◦C. The initial temperature distribution is given by Ilıcak et al. (2012).
This simulation employs a 4 km horizontal grid resolution coupled with a horizontal viscosity of 20

m2/s. In Figure 4, The simulation showcases the initial temperature field, with warmer northern and colder
southern surface temperatures separated by a sinusoidal transition band. The evolution of sea surface
temperature over time further underscores the model’s proficiency in capturing and reproducing mesoscale
features, particularly evident when reducing viscosity while considering rotational influences.

Furthermore, the mixing during this test case is quantified by computing the Resting Potential Energy
(RPE) Ilıcak et al. (2012); Petersen et al. (2015). This metric measures the portion of potential energy lost
due to the mixing of waters with different densities. It is defined from a sorted density field ρ∗:

RPE =

∫
gρ∗z dX

The density field ρ∗ is obtained by sorting the prisms in increasing order of density and distributing
them from the top to the bottom of the domain, with the densest prisms at the bottom. For the eddies test
case, the prisms are sorted and distributed over a vertical range from 0 to -1000 m. Each prism retains its
volume and the new horizontal area of the prisms is the horizontal surface of the domain. Consequently,
the new average height of the prisms is obtained by dividing their volume by this area.

RPE represents the potential energy that can no longer be converted back into kinetic energy. Since the
initial value of RPE in a simulation depends on the domain and initial conditions, it is not relevant to the
mixing. Therefore, the RPE values are normalized to time zero:

Relative RPE =
RPE(t)−RPE(0)

RPE(0)

Figure 5 shows the evolution of the relative RPE during the simulation for νh = 20 m2/s and νh = 200
m2/s over 320 days. The curves are in good agreement with Petersen et al. (2015); Kärnä et al. (2018).
They increase monotonically in the same manner. Increasing the horizontal viscosity results in lower relative
RPE values. However, compared to them, for the same νh, the proposed model produces higher values.
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Figure 5: Relative RPE of the baroclinic eddies test case for 320 days with the split IMEX Runge-Kutta.

This suggests that the model mixes waters of different densities more effectively. Due to the low numerical
diffusion of our model, the relative RPE value at 320 days with νh = 200 m2/s matches more or less the
ones obtained by Kärnä et al. (2018) with νh = 20 m2/s and Petersen et al. (2015) with νh = 1 m2/s.

Additionally, a convergence analysis of the temporal scheme is done in Figure 6. The error is computed
with the L2 norm as follows

E = ∥f − fref∥L2
=

√∫
Ω

(f − fref )2dΩ

with f the variable of interest and fref the reference solution. The simulation is running for 2000 s with
the following set of ∆t : [200, 100, 50, 25, 1.25] s and M=138. The solution obtained with the smallest
time resolution is used as a reference. The order of accuracy is obtained by computing the slope of the error
versus the time step. The slope is 2.0 which confirms the second-order accuracy of the scheme.

Finally, let us consider the eddies test case with a traditional non-split second-order Runge-Kutta scheme.
In other words, the entire set of equations is solved as one system using the same time step. For stability,
running this test case with a non-split scheme requires using the time step size appropriate for the 2D
terms for all terms. This time step is 138 times smaller than the time step for the 3D terms (M=138).
Additionally, in this simulation, evaluating the 3D terms is 700 times more computationally expensive than
evaluating the 2D terms. Therefore, the duration of a complete iteration in a non-split scheme is primarily
dictated by the time required for the 3D terms. Taking into account the time for the 2D iterations as well
as communications, executing the split temporal scheme would take M/2 less time than the second-order
Runge-Kutta scheme for the entire system for the eddies test case. In practice, the split temporal scheme
takes about 1050 seconds to reach 200 days. For the classic non-split RK scheme, during this time, the
simulation only progresses to about 2.7 days. The split scheme is 73.5 times faster.

4.2. Dynamics of Overflow Mixing and Entrainment

The following test case is known as the Dynamics of Overflow Mixing and Entrainment, or DOME, test
case (Ezer and Mellor (2004); Legg et al. (2006); Wang et al. (2008); Burchard and Rennau (2008); Reckinger
et al. (2015)). This test aims to evaluate the method’s performance in generating swirling patterns. The
fluid flow is primarily influenced by gravity and the Coriolis effect. It serves as a simplified representation of
the Denmark Strait overflow. In a stratified basin, dense water is introduced through a channel. Through
a passive tracer, the movement of the water can be tracked.
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Figure 6: Error convergence of the baroclinic eddies test case with the split IMEX Runge-Kutta. The expected slope of two is
shown for reference.

The domain is a rectangular box measuring 1100 km in length and 600 km in width. The bathymetry is
constant at 3600 m between x = 0 and x = 300 km. Then, it transitions to a slope, decreasing from 3600 m
to 600 m between x = 300 km and x = 600 km. Finally, a 100 × 200 km channel is located at the northern
part of the domain. Concerning boundary conditions, the eastern, southern and western boundaries are
open with an elevation of 0 m. At the northern part of the channel, it is also open but additionally, along
with a zero elevation, an incoming velocity with a maximum value of 0.75 ms−1 is applied, whose equation
will be described later. The rest of the boundaries are closed. Figure 8 illustrates the domain.

The 3D grid is created from a horizontal grid illustrated in Figure 7 with a characteristic size of 5 km
and contains 20 vertical layers, resulting in a horizontal mesh Reynolds number of 200.

Regarding temperature, initially, it varies between 10 and 20 degrees Celsius, with 10 degrees at the
bottom of the basin and 20 degrees at the surface. The incoming water has a temperature mostly of 10
degrees. This equation is also described later. For the passive tracer, its concentration is 0 within the
domain and 1 at the entrance of the channel, ensuring it represents an image of the velocity field. The
Coriolis parameter is taken as a constant 1 × 10−4 s−1. The quadratic bottom drag coefficient is 2e−3. The
horizontal viscosity and diffusivity are 18.75 m2s−1 and 10 m2s−1 respectively. The vertical viscosity and
diffusivity are 0.1875 m2s−1 and 0 m2s−1 respectively.

The state equation of the density and the temperature field are given by

ρ(z) = ρ0 − 0.2(T (z) + 10)

T (z) =
z

360
+ 20

with ρ0 the reference density and z the vertical coordinate.
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Figure 7: Horizontal mesh of the DOME test case. The characteristic size at the entry is 5 km then becomes 50 km which
produces 7234 triangles.

uin

1100 km

3600 m

600 km

200 km

600 m

300 km

Figure 8: Geometry of the DOME test case. The blue color represents the vertical gradient in density field. The arrow
represents the incoming flow. The canal is 100 km wide and 200 km long with a depth of 600 m.
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Figure 9: Boundary conditions of the DOME test case
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For xw, the distance from the wall at x = 800 km, the incoming velocity is given by

uin(xw, z) = −u0 exp

(
−xwf

u0

)
(1− F (z∗))

with u0 the maximum incoming velocity, f the Coriolis parameter. F (z∗) is the following function

F (z∗) =


1 z∗ ≤ 1

5

3z∗

z∗+1 − 1
6 < z∗ ≤ 1

5

0 − 1
6 ≤ z∗

with

z∗ =
z − h0 exp

(
−xwf

u0

)
− he

h0 exp
(
−xwf

u0

)
where h0 is the depth of the incoming flow set at 300 m and he the depth of the channel set at 600 m.

The incoming fluid temperature is given by

Tin(z) =
10

∆b0
min (−∆b0 (1− F (z), 0)) + 20

with ∆b0 the maximum buoyancy difference between the incoming fluid and the ambient fluid.
Finally, the maximum velocity, u0, is set by the following equation

u0 =
√
h0∆b0

The simulation is run for 40 days with a time step of 60 s and a factor M of 30. The results can be seen
in Figure 10. This is the evolution of the passive tracer in last layer. As the current flows into the basin, it
derives westward, forming a coastal plume spanning about 150 km in width. This plume separates from the
side boundary, continuing its westward journey along the bottom slope. Upon encountering the stratified
ocean, this dense water mass becomes unstable, leading to the formation of swirling eddies and internal
waves. The most robust eddies occur within the initial 300 km after the inlet (x = 500–800 km). Beyond
this range, the plume becomes more mixed and less turbulent. The plume remains relatively shallow, with
the majority of the passive tracer concentrated within 200 meters of the bottom. In terms of its extent,
movement and eddy patterns, the results are in good agreement with the results of Wang et al. (2008).

Furthermore, the eastward transport within the plume in the along-slope direction is used to quantify
the mixing Reckinger et al. (2015). The transport is computed by integrating the velocity field in the y and
z directions. The temporal-averaged transport is computed from all time steps. The integral only looks at
the y − z cross ection where the passif tracer is higher than 0.01. This gives the following equation for the
eastward transport:

Uyz =

∫
A

u(x, y, z) dy dz (25)

where A is the area where the passive tracer is higher than 0.01. Figure 11 shows the temporal-averaged
eastward transport for x between 0 and 800 km. The transport is negative as the plume is moving westward.
The highest negative value is at x = 400 km. At x = 800 km, the value is close to −1× 107 m3/s. The Uyz

values tend to not change a lot until x = 100 km. After that, the values reaches 0 at x = 0 km.
Concerning the performances, running this test case with a second-order non-split scheme results in a

simulation that is approximately 16 times slower. This aligns logically with the value of M .
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Figure 10: Evolution of the passive tracer concentration in the bottom layer for the DOME test case. The maximum value of
uin is 0.75 ms−1. The horizontal viscosity is 18.75 m2s−1. We have successive snapshots of the passive tracer concentration
at 10, 20, 30, 40 days.
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Figure 11: Temporal-averaged eastward transport of the DOME test case for 40 days with the split IMEX Runge-Kutta.

5. Conclusion

This study introduces an innovative split Implicit-Explicit temporal scheme of order 2 specifically de-
signed to tackle the complexities ODE equations characterized by three distinct timescales. The main goal of
this approach is to limit numerical dissipation due to temporal discretization. This temporal scheme is tai-
lored for equations with extremely stiff terms that are computationally inexpensive. Its semi-implicit aspect
specifically targets equations with a high aspect ratio, where the vertical characteristic length is much smaller
than the horizontal one. These equations tend to have a more restrictive vertical Courant-Friedrichs-Lewy
constraint. For instance, this is applicable to atmospheric or oceanic problems.

This IMEX scheme has undergone extensive theoretical analysis to verify its second-order convergence
and assess its stability across diverse scenarios, demonstrating its reliability and robustness in computational
simulations.

The application of the IMEX scheme extends to solving intricate 3D hydrodynamic equations, subjecting
it to test cases such as Baroclinic Eddies and DOME simulations. These tests serve as empirical evidence
of the scheme’s exceptional accuracy and computational efficiency in mimicking the complex fluid dynamics
observed in oceanic phenomena.

The IMEX scheme, a noteworthy addition to oceanic modeling, stands as a groundbreaking tool capable
of accurately capturing ocean behaviors across multiple timescales. Its adeptness in handling intricate
dynamics while ensuring computational efficiency signifies a significant progress forward in the realm of
oceanic simulations
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Appendix A. Spatial discretization

To achieve spatial discretization, the continuous equations are multiplied by shape functions. For the
2D equations, the shape function ϕi(x, y) is used, while for the 3D equations, ϕi(x, y, z) is applied. The 2D
equations are discretized using discontinuous bilinear functions, whereas the 3D equations are discretized
with discontinuous functions that combine bilinear horizontal functions with linear vertical functions. These
equations are then integrated by parts, resulting in volume terms and flux terms.
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The following notations are used:

〈
•
〉

=

∫
Ω

•dV〈〈
•
〉〉

∂Γh

=

∫
∂Γh

•dS〈〈
•
〉〉

∂Γv

=

∫
∂Γv

•dS

Ω represents the domain while ∂Γ represents the interfaces. In 2D, Ω represents the horizontal triangles and
the interfaces are the edges. In 3D, Ω represents the prisms. ∂Γh and ∂Γv correspond to the horizontal and
vertical interfaces.

The hydrodynamic equation includes both 3D and 2D terms. The 2D terms, which represent the fast
processes, are separated, creating two distinct function spaces: one for 2D and another for 3D. In the integrals
at the interfaces, an average value is applied to the terms involving horizontal velocities. {·} represents the
mean operator :

{u · nh} =
uright · nh + uleft · nh

2

{w} = wright + wleft

2

where uright, wright and uleft, wleft are the velocities on the right and left sides of the interface, respectively.
In the vertical interfaces integrals, an upwind term is used, uup. The discretization of the hydrodynamic
equation is as follows:

〈
ϕi

∂u

∂t

〉
= f3d(u) +

1

H
f2d(Hu) (26)

with

f2d(Hu) =

〈
g
H2

2
∇h · ϕi

〉
−
〈〈

g

(
H2

left +H2
right

4

)
ϕi · n

〉〉
+

〈
ϕig(1 +

ρ′|η
ρ0

)H∇hb

〉
+

〈
g

ρ0

H2

2
∇h (ρ

′|η)ϕi

〉
f3d(u) =

〈
uu ·∇hϕi

〉
−
〈〈

ϕiu
up {u · nh}

〉〉
Γh∪Γv

+

〈
wu

∂ϕi

∂z

〉
−
〈〈

ϕi {w}uupnz

〉〉
Γh

−
〈
ϕif× u

〉
−
〈
ϕiq

〉
+Diffusion

The diffusive terms have been omitted for the sake of clarity.
Unlike the horizontal velocities mentioned earlier, H is a 2D variable, so 2D function spaces are used.

To the interface integrals, stabilization terms are introduced using the Lax-Friedrichs approximate solver.
For i = 1, . . . , n, this results in:

〈
ϕi

∂H

∂t

〉
=

〈
U ·∇hϕi

〉
−
〈〈

ϕiU
∗ · nh

〉〉
(27)
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with

U∗ =
(Uleft +Uright) · nh

2
− c

(ηleft − ηright)

2

c = max

(√
gHleft +

∣∣∣∣∣∣∣∣Un,left

Hleft

∣∣∣∣∣∣∣∣ ,√gHright +

∣∣∣∣∣∣∣∣Un,right

Hright

∣∣∣∣∣∣∣∣)
Finally, the vertical velocity equation becomes

−
〈
∂ϕi

∂z
w

〉
+

〈〈
ϕi {w}nz

〉〉
Γh

=

〈
u ·∇hϕi

〉
−
〈〈

ϕi {u · nh}
〉〉

Γh∪Γv

(28)

The spatial discretization of the temperature, salinity, or any scalar field equation is derived in a similar
manner.
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Kärnä, T., 2020. Discontinuous galerkin discretization for two-equation turbulence closure model. Ocean Modelling 150. URL:
https://doi.org/10.1016/j.ocemod.2020.101619.

Large, W.G., McWilliams, J.C., Doney, S.C., 1994. Oceanic vertical mixing: A review and a model with a nonlocal boundary
layer parameterization. Reviews of Geophysics 32, 363–403. URL: https://doi.org/10.1029/94RG01872.

Legg, S., Hallberg, R.W., Girton, J.B., 2006. Comparison of entrainment in overflows simulated by z-coordinate, isopycnal and
non-hydrostatic models. Ocean Modelling 11, 69–97. URL: https://doi.org/10.1016/j.ocemod.2004.11.006.

Marchesiello, P., Debreu, L., Couvelard, X., 2009. Spurious diapycnal mixing associated with advection in terrain-following
coordinate models: The problem and a solution. Ocean Modelling 26, 156–169. URL: https://doi.org/10.1016/j.ocemod.
2008.09.004.

Mellor, G.L., Yamada, T., 1982. Development of a turbulence closure model for geophysical fluid problems. Reviews of
Geophysics 20, 851–875. doi:https://doi.org/10.1029/RG020i004p00851.

Nilsen, J.E.O., Loseth, O., 1993. A time-splitting method for the numerical simulation of the navier-stokes equations. Journal
of Computational Physics 109, 1–32.

Pacanowski, R.C., Philander, S.G.H., 1981. Parameterization of vertical mixing in numerical models of tropical oceans. Journal
of Physical Oceanography 11, 1443 – 1451. URL: https://doi.org/10.1175/1520-0485(1981)011<1443:POVMIN>2.0.CO;2.

Pan, W., Kramer, S.C., Piggott, M.D., 2019. Multi-layer non-hydrostatic free surface modelling using the discontinuous galerkin
method. International Journal on Geomathematics 134, 68–83. URL: https://doi.org/10.1016/j.ocemod.2019.01.003.

Pan, W., Kramer, S.C., Piggott, M.D., 2021. A sigma-coordinate non-hydrostatic discontinuous finite element coastal ocean
model. Ocean Modelling 157, 1463–5003. URL: https://doi.org/10.1016/j.ocemod.2020.101732.

Patankar, S., 1980. Numerical Heat Transfer and Fluid Flow. McGraw-Hill. URL: https://doi.org/10.1201/9781482234213.
Petersen, M., Jacobsen, D., Ringler, T., Hecht, M., Maltrud, M., 2015. Evaluation of the arbitrary Langrangian-Eulerian

vertical coordinate method in the MPAS-ocean model. Ocean Modelling 86, 93–113. URL: https://doi.org/10.1016/j.
ocemod.2014.12.004.

Pigott, M.D., Pain, C.C., Gorman, G.J., Marshall, D.P., Killworth, P.D., 2013. nstructured adaptive meshes for ocean modeling.
American Geophysical Union 177, 383–108. URL: https://doi.org/10.1029/177GM22.

Reckinger, S., Petersen, M., Reckinger, S., 2015. A study of overflow simulations using mpas-ocean: Vertical grids, resolution,
and viscosity. Ocean Modelling 96, 291–313. URL: https://doi.org/10.1016/j.ocemod.2015.09.006.

Rennau, H., Burchard, H., 2009. Quantitative analysis of numerically induced mixing in a coastal model application. Ocean
modelling 59, 671–687. URL: https://doi.org/10.1007/s10236-009-0201-x.

Robert, A.M., Kaper, H.G., 1986. Multiple time scale phenomena and numerical methods. Journal of computational physics
63, 241–256.

Rodi, W., 1987. Examples of calculation methods for flow and mixing in stratified fluids. Journal of Geophysical Research 92,
5305–5328. URL: https://doi.org/10.1029/JC092iC05p05305.

Roekel, L.V., Adcroft, A.J., Danabasoglu, G., Griffies, S.M., Kauffman, B., Large, W., Levy, M., Reichl, B.G., Ringler, T.,
Schmidt, M., 2018. The kpp boundary layer scheme for the ocean: Revisiting its formulation and benchmarking one-
dimensional simulations relative to les. Journal of Advances in Modeling Earth Systems 10, 2647–2685. URL: https:
//doi.org/10.1029/2018MS001336.

Shchepetkin A.F., M.J., 2005. The regional oceanic modeling system (ROMS) a split-explicit, free-surface, topography-
following-coordinate oceanic model. Ocean Modelling 9, 347–404. URL: https://doi.org/10.1016/j.ocemod.2004.08.002.

Smagorinsky, J., 1963. General circulation experiments with the primitive equations: I. the basic experiment. Monthly Weather
Review 91, 99–164. URL: https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.

Song, Y., Haidvogel, D., 1994. A semi-implicit ocean circulation model using a generalized topography-following coordinate
system. Journal of Computational Physics 115, 228–244. URL: https://doi.org/10.1006/jcph.1994.1189.

Umlauf, L., Burchard, H., 2003. A generic length-scale equation for geophysical turbulence models. Journal of Marine Systems
61, 235–265. URL: https://doi.org/10.1357/002224003322005087.

Visbal, M.R., Gaitonde, D.V., 2002. A study of numerical dissipation in time-splitting methods for navier–stokes equations.
Journal of Computational Physics 177, 1–29.

29

https://doi.org/10.1016/j.ocemod.2011.10.003
https://doi.org/10.48550/arXiv.2312.01796
http://arxiv.org/abs/2312.01796
https://doi.org/10.1016/j.ocemod.2023.102273
https://doi.org/10.1175/JTECH1946.1
https://doi.org/10.5194/gmd-11-4359-2018
https://doi.org/10.1016/j.ocemod.2012.09.009
https://doi.org/10.1016/j.apnum.2017.09.004
https://doi.org/10.1016/j.ocemod.2020.101619
https://doi.org/10.1029/94RG01872
https://doi.org/10.1016/j.ocemod.2004.11.006
https://doi.org/10.1016/j.ocemod.2008.09.004
https://doi.org/10.1016/j.ocemod.2008.09.004
http://dx.doi.org/https://doi.org/10.1029/RG020i004p00851
https://doi.org/10.1175/1520-0485(1981)011<1443:POVMIN>2.0.CO;2
https://doi.org/10.1016/j.ocemod.2019.01.003
https://doi.org/10.1016/j.ocemod.2020.101732
https://doi.org/10.1201/9781482234213
https://doi.org/10.1016/j.ocemod.2014.12.004
https://doi.org/10.1016/j.ocemod.2014.12.004
https://doi.org/10.1029/177GM22
https://doi.org/10.1016/j.ocemod.2015.09.006
https://doi.org/10.1007/s10236-009-0201-x
https://doi.org/10.1029/JC092iC05p05305
https://doi.org/10.1029/2018MS001336
https://doi.org/10.1029/2018MS001336
https://doi.org/10.1016/j.ocemod.2004.08.002
https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
https://doi.org/10.1006/jcph.1994.1189
https://doi.org/10.1357/002224003322005087
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