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Abstract

Extensive research by demographers and economists has shown that longevity dif-

fers across socioeconomic status (SES), with low-educated or low-income people living,

on average, shorter lives than their better-endowed and wealthier peers. Therefore, a

pension system with a unique retirement age is a priori problematic. The usual policy

recommendation to address this problem is to differentiate the retirement age by SES.

This paper explores the relative merits of partial de-annuitization of public pensions

as a way of addressing the (imperfectly assessed) inequality of longevity.
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1 Introduction

The length of life of individuals (longevity hereafter) is correlated with socio-demographic

characteristics: on average women outlive men, and low-income individuals live, on aver-

age, significantly shorter lives than their better-endowed and wealthier peers (Chetty et al.,

2016; Olshansky et al., 2012). Therefore, a pension system with a unique retirement age (or

uniform contribution or replacement rates) is a priori problematic. Unaccounted longevity

differences in contributory pension systems amount to taxing short-lived people and subsi-

dising their long-lived peers (Ayuso et al., 2016), potentially distorting labour supply. Also,

the social gradient in life expectancy reduces the progressivity of public pensions in those

countries (e.g. the US) where the replacement rate is a negative function of earned in-

come (Bosworth et al., 2016; Bommier et al., 2011). Some would even argue that longevity

difference makes public pensions regressive (Piketty and Goldhammer, 2015).

We show in this paper that unaccounted longevity differences violate the most basic def-

inition of equity under both a Bismarckian (i.e. fully contributory) or a Beveridgian pension

system.1 One of the usual policy recommendations to address these problems is to differenti-

ate the retirement age by socio-economic status (SES hereafter) (Ayuso et al., 2016; Leroux

et al., 2015; Vandenberghe, 2021). Related proposals recommend differentiating contribu-

tions or replacement rates (Bismarck) or the amount of the instalment (Beveridge) based

on expected longevity differences. We explain later in the paper that these are functionally

equivalent to retirement age differentiation. That is because, at its core, the problem of

pension differentiation is an imperfect information problem. What is at stake is the diffi-

culty/impossibility to fully individualise treatment (i.e. generate an almost infinite number

of pension regimes) using a pension parameter (or a series of parameters) whose variation is

intrinsically more limited than the realised longevity it is supposed to match. The degree of

differentiation of pensions that can be achieved via pension parameters corresponds to what

statisticians call the between-SES expected longevity differences. It leaves aside the (poten-

tially very important) within-SES longevity heterogeneity. Given this imperfect information

conundrum, we argue in this paper there might be another, possibly more effective, option

to improve lifetime pension equity. We call it partial de-annuitization of public pensions.

1It is common to distinguish Bismarckian and Beveridgean pension regimes. Bismarckian ones are con-
tributory and, in that sense, work-related. Benefits are paid prorata the duration and level of contributions.
This is a basic feature of the first fully-fledged public pension scheme introduced by German Chancellor
Bismarck in 1889. By contrast, Beveridgean pensions (in reference to the British economist W. Beveridge
who presided over the design the British system) are non-contributory and distribute basic universal bene-
fits and so provide a (generally small minimal) pension to all, in particular those who do not qualify for a
contributory pension (e.g. because they never worked...).
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Annuitization is a common (implicit) feature of most, if not all, public pension systems

organised on a pay-as-you-go basis (PAYG).2 But in principle, if we leave aside liquidity and

transition issues,3 nothing prevents imagining a public PAYG pension scheme where part

of the sums earmarked for someone are paid upfront (i.e. at the beginning of the retirement

spell) as a lump sum.4 In the universe of fully funded pension systems, including public

or publicly sponsored ones, that option is available, and sometimes explicitly related to the

perspective of a short life. Examples that we are aware of comprise

• the Netherlands. From 2023 onward, the Dutch Government will allow lump sum

payments equal to a maximum of 10% of the accumulated capital when reaching the

retirement date, under occupational pension plans (Dillingh and Zumbuehl, 2021).

• the US, State of New York where the public sector employees can upon retirement

fill a form to receive a “Partial Lump Sum Payment” corresponding to 5 to (max)

25% of the accumulated capital, with “a reduced lifetime monthly benefit based on the

remainder”(New York State Government, 2022).

• the UK, you may be able to take all the money in your occupational pension as a tax-

free lump sum, if (. . . ) you’re expected to live less than a year because of serious illness,

you’re under 75, and you do not have more than the lifetime allowance of £1,073,100
in pension savings (UK Government, 2022).

• Canada, British Columbia, with the Public Service Pension Plan you may receive a

lump-sum payment in lieu of a monthly pension if you have an illness or disability that

has shortened your life expectancy (British Columbia Government, 2022).

In what follows, partial de-annuitization will not be an option but considered as automatic

and universal (i.e. applicable to all pensioners). But the key intuition will remain the same

as in the above UK or Canadian examples: if longevity varies and is a source of inequality,

paying part of the accrued pension rights when (all) prospective pensioners are still alive is a

way to minimize pension-related lifetime inequalities. The idea echoes the notion of reverse

retirement introduced by Ponthiere (2020) who considers a model where individuals start

their life in retirement (and thus “all” receive their pension) before moving to work. What

2A system in which pensions are explicitly financed by contributions levied on current workers.
3We will comment briefly on transition issues in Section 5: Context and Policy Feasibility.
4Until 2016 in the UK, the (small) contributory segment of the PAYG public pension system (the

Additional State Pension) offered a one-off lump-sum payment option.
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follows should be seen as a milder, but more realistic, version of that thought-provoking

idea. Ours is more related to the notion of front-loaded annuities or benefits in pension

economics (Brown, 2002; Palmer, 2000).5

Our realism also stems from the fact that we are not so much interested in the absolute

level of lifetime equity gains that can be achieved via de-annuitization. It is almost tauto-

logical that full de-annuitization is very effective in dealing with longevity differences. But

also that it would annihilate pensions’ capacity to cover the longevity risk.6 Our perspec-

tive in this paper is that of the relative performance of de-annuitization vs retirement age

differentiation (and by analogy, vs differentiation policies targeting either the contributory

phase or the payout phase of pensions (Sanchez-Romero et al., 2020)). The key question of

this paper is how much de-annuitization is needed to match the equity gains delivered by

retirement age differentiation?

Of course, for obvious budgetary reasons, introducing de-annuitization (and the upfront

payment of a lump sum to all) implies a reduction of the value of the pension annuity.

Answering the question of how much de-annuitization is needed is thus also a way to quantify

the propensity of partial de-annuitization to come at the expense of one of the key objectives

of annuitization i.e. insuring individuals against the risk of longevity. That risk – and the

underlying shortsightedness of individuals – is regularly mentioned in the literature as a

justification for the State to impose a minimal degree of annuitization of the pension capital

(Barr and Diamond, 2006).

The results presented in this paper show that the reduction of the monthly instalment

needed to match the equity gains achieved via extensive retirement age differentiation (up to

200 different ages) is quite small. As far as we know such a result is a novelty and constitutes

the key contribution of this paper to the economic literature on pensions and annuities.

Using US data assembled by Chetty et al. (2016), we estimate it to be about 4%, and the

corresponding payment of an upfront lump sum corresponds to a bit less than a full year of

benefits. The modest reduction of the annuity suggests a limited risk of significantly eroding

pensions’ monthly payment adequacy7 and their capacity to insure the risk of longevity.

Also, partial de-annuitization is administratively less costly to implement than retirement

age differentiation. It does not require an upstream statistical analysis of the determinants

5In Sweden, for instance, the individual replacement rate from the contributory public pension is higher
at the beginning of the retirement spell.

6The risk that individuals outlive their money, dying in poverty or burdening relatives.
7Their ability to support a basic acceptable standard of living.
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of longevity. And it does not force civil servants to systematically verify pensioners’ SES

category (which, given the stakes for the retirees, might be prone to misreporting). We also

anticipate fewer legal challenges. De-annuitization amounts to treating everyone equally. By

definition, this is not the case of retirement age differentiation. Just consider the idea of

differentiating the age of retirement by gender to account for the well-documented gender

longevity gap ?8 Would that be considered as legally acceptable? For instance, a look at

the jurisprudence of the European Court of Justice suggests that the answer is simply no.

Note that throughout this paper, we will consider that retirement age(s) or the degree

of de-annuitization are decided paternalistically by the State. Such a perspective partially

reflects the European context underpinning this paper, where retirement is still largely driven

by State-edicted rules. This said, we also consider the political economy of the proposal,

i.e. that of the number of people who could support it.

From a normative point of view, we will consider throughout the paper that all realised

longevity differences matter. This means that we subscribe to ex-post egalitarianism when

it comes to dealing with longevity inequalities (Fleurbaey et al., 2016).

The rest of the paper is organized as follows. Section 2 exposes a simple framework to

assess the gains from retirement age differentiation. Section 3 does the same thing for the

idea of de-annuitization and exposes how the two approaches are logically related. Section

4 exposes the longevity data we use. Section 5 presents the key numerical results of the

paper. Section 6 examines the political economy of partial de-annuitization considering the

number of winners vs losers. Section 7 concludes with a discussion of the policy context and

feasibility of partial de-annuitization.

2 A simple framework to assess the equity gains of

retirement age differentiation

We consider a world where longevity varies significantly across individuals forming a cohort

(li, i = 1 . . . N) and in a way that is related with observable SES category j, with j = 1 . . . k

and nj the number of individuals forming the category j. Logically, we have that
∑k

j=1 nj =

N . The full distribution of longevity is unknown to the planner/pension minister. Her

knowledge is limited to the correlation between SES and longevity. Equivalently, the

8Even after conditioning on the SES status.
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planner can only differentiate treatment (retirement age) based on the j = 1 . . . k SES group

to which individuals belong.

Throughout the paper, we consider the two canonical versions of pay-as-you-go (PAYG)

public pensions: the fully contributory Bismarckian version where benefits are indexed on

contributions, and the Beveridgian one where every individual receives the same pension.

2.1 Bismarckian contributory pension scheme

The problem of policymakers under such a regime is to equalise the actuarial fairness ratio

(afr) of lifetime pensions benefits to lifetime pension contributions.9 Abstracting from

education length differences, career breaks, wage growth, demographic changes or discount

and indexation rates, and considering that retirement age is uniform, that actuarial fairness

ratio writes,

afri,j(ra) = Si,j(ra)
(li,j − ra) δ wi,j

ra η wi,j

= Si,j(ra)
(li,j − ra)

ra
θ

where θ ≡ δ

η

(1)

Centrally defined reference retirement age is ra and lifetime benefits are equal to the

time spent in retirement times the annuity δwi,j where δ is the replacement rate and wi,j is

the individual level of earnings. Note that people can die before reaching retirement age.

So we have the dummy variable Si,j(ra) = 0 if li,j ≤ ra and Si,j(ra) = 1 otherwise. By

definition of a Bismarckian system, lifetime contribution corresponds to the duration of the

career (here, the retirement age) that multiplies the annual contributions at a rate η. We

define θ ≡ δ
η
as the (uniform) rate of replacement for each euro of contribution.10

An alternative way of expressing reference retirement age is ra ≡ αl where l is the

unique reference longevity and 0 ≤ α ≤ 1 is the share of life the reference person is supposed

to spend working. Reference retirement age and reference longevity are thus isomorphic

formulations in our setting.

9Here actuarial fairness is considered in its simplistic setting, as no actual discounting rate or other rates
are considered.

10In reality, with PAYG, θ is also driven by the evolution of the relative size of the generations of (old)
pensioners vs (younger) contributors, and by the wage/productivity gains that have occurred between the
contributory and the payout years (Aaron, 1966).
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afri,j(ra) = Si,j(ra)
(li,j − αl)

αl
θ (2)

The equalisation of lifetime ratios across individuals (∀i, j : afri,j = afr) can be achieved

via the full individualisation of the retirement age, or, equivalently, via the use of each

individual’s longevity li,j when defining the retirement age.11 For any value of α, if the

retirement age is fully individualised (i.e. rai,j ≡ αli,j, ∀i, j), we verify

afr =
(1− α)

α
θ (3)

Note that, by definition, if the retirement age is fully individualized, and if α < 1,12 Si,j()

is always equal to 1. In other words, nobody dies before reaching his fully individualised

retirement age.

Using a uniform reference retirement age (i.e. ra ≡ αl) introduces a gap between the

fair ratio and the actual one

gapi,j(ra) ≡ afr − afri,j(ra) = θ
[1− α

α
− Si,j(ra)

li,j − ra

ra

]
(4)

or equivalently when the reference retirement age is differentiated by SES category (i.e.

raj ≡ αlj), the (presumably smaller) gap is

gapi,j(raj) ≡ afr − afri,j(raj) = θ
[1− α

α
− Si,j(raj)

li,j − raj

raj

]
(5)

A graphical representation of what happens under uniform vs differentiated retirement

age appears in Figure 1. The lower part of the graph represents the distribution of realised

longevity, while the upper part depicts the (lifetime) actuarial fairness ratio (afrij). The

first-best situation amounts to ensuring that every person gets the same ratio corresponding

to the horizontal dashed line. The achieved degree of actuarial fairness corresponds to the

solid and doted rising lines. Under uniform retirement age (solid rising line), only those

whose longevity coincides with reference longevity (l) get the first best. All the others get

11The other one, that we will not discuss systematically is to differentiate θ by SES and make it inversely
proportional to expected longevity.

12Some part of life goes to retirement.
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less or more than what lifetime equality commands. Those who reach that retirement age

but die before the reference longevity l get less than what they should. And those whose

longevity exceeds l get too much. Under differentiated retirement age (2 different retirement

ages are depicted in Figure 1 and correspond to the dotted rising lines), the number of

people who get exactly what equity commands (i.e. those whose longevity corresponds to

the intersection between the dashed and dotted lines) rises. Also, the integral of the distances

between the dotted lines and the dashed horizontal line becomes lower, reflecting a reduction

of the inequity gaps in eq(3). However, situations synonymous with afri,j “undershooting”

or “overshooting” still abound.

Note that Figure 1 also reveals what would happen if, instead of differentiating the age

or retirement, policy markers were to differentiate by SES either the contribution rate η or

the replacement rate δ. That would amount to differentiating θ ≡ δ/η, thus the slope of the

solid line, while keeping the retirement age unchanged (i.e. uniform). Instead of relying on

raj to (try) to reflect realised longevity differences (i.e. any value on the horizontal axis),

the planner would use θj. More specifically, while here we explore what happens when raj

becomes a positive function of expected longevity, in an alternative (but fairly equivalent

approach) one could examine what happens were θj to become a negative function of

expected longevity. And echoing the point we raised in the introduction, it is likely that the

outcome of that type of differentiation would not fundamentally change. That is because, at

its core, the problem of pension differentiation is an imperfect information problem. How

to fully individualise (and thus generate an almost infinite number of pension regimes), using

only a limited number of values for the pension parameters (ra, θ, δ, η) mirroring the equally

limited number of expected longevities (one for each SES j = 1 . . . k) the policymaker knows?

And combining several parameters of differentiation (i.e. simultaneously differentiating ra

and θ for instance) would not bring much change either, because the information used to

implement that “hybrid” approach of differentiation would still boil down to exploiting a

mere correlation between SES category k and realised longevity.
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Figure 1: Bismarckian pension under uniform vs diff. ret age

Following Baurin (2021), the overall reduction in the propensity of retirement policy to

deviate from the fully individualised first best can be expressed as a pension inequity index

IBismarck ∈ [0, 1] where the numerator aggregates the (absolute) values of the individual

equity gaps under retirement age differentiation by SES j = 1 . . . k, and the denominator does

the same when there is no differentiation.13 14 Note that the index being a ratio, constant

θ cancels out. In the numerical simulations underpinning the results of Section 4.2 the

differentiated reference retirement ages/longevities correspond to averages by SES category j.

IBismarck ∈ [0, 1] =

∑k
j=1

∑nj

i=1 θ |1−α
α

− Si,j(raj)
li,j−raj

raj
|∑k

j=1

∑nj

i=1 θ |1−α
α

− Si,j(ra)
li,j−ra

ra
|

with ra ≡ αl ; raj ≡ αlj

(6)

13To be precise, our index deviates from that of Baurin (2021) in the sense that its building blocks are
monetised. Gaps are expressed in monetary terms and not just in terms of years.

14Also, in the context of Bismarckian pensions, the index reads as an inefficiency index that quantifies
the propensity to deviate from the actuarially fair first-best, synonymous with no labour supply or savings
distortion.
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Note finally that retirement age differentiation can generate budgetary savings (thus a

surplus) in comparison with uniform retirement. This is because the overall (or average)

time spent in retirement may go down. What is more, with a Bismarckian regime, the

money not spent on those who live longer is likely to outweigh the cost of financing early

retirement to the benefit of the short-lived individuals. In what follows, we will assume

that the planner absorbs the net budgetary surplus generated by the move from uniform

to differentiated retirement age. An alternative is to enforce cohortal budget equivalence,

i.e. to use the surplus to increase the replacement rate θ in the numerator of our (in)equity

index eq.(6). We explore that alternative in detail in Appendix 6.2. However, the key result

is that the equity gains achievable via retirement age differentiation are likely to be lower.

This is because the time component of the equity gaps [eq.(5)] — that inevitably still exists

under retirement age differentiation — is priced at a higher rate.15 Say differently, in the

equity index,16 the time component of the gaps in the numerator is now multiplied by a

higher θ than in the denominator.17 Thus the equity gains achieved in terms of years spent

in retirement is eroded by the (remaining) year gaps weighing more in monetary terms.

2.2 Beveridgian pension scheme

By definition, a Beveridgian pension system would rather aim at equalising lifetime pension

benefits (Bi,j).

Bi,j(ra) ≡ b Si,j(ra)(li,j − ra) (7)

In the above expression, b is the standard uniform annual/monthly pension (which is

independent of earning wi,j and contributions) that multiplies the time spent in retirement.

Again, people can die before reaching retirement age. So we have the dummy variable

Si,j(ra) = 0 if li,j ≤ ra and Si,j(ra) = 1 otherwise. The equalisation of lifetime benefits

(∀i, j : Bi,j = B) can only be achieved via full-individualisation of retirement age, or the

corresponding reference longevity (raij ≡ li,j − κ), where κ is the reference number of years

spent in retirement.

15In eq.(5), the equity gap θ
[
1−α
α − Si,j(ra)

li,j−ra
ra

]
consists of a price θ that multiplies a year- or time

equity gap
[
1−α
α − Si,j(ra)

li,j−ra
ra

]
.

16eq.(6).
17We no longer have that the θ’s cancel out.
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B ≡ b(li,j − rai,j) = b (li,j − li,j + κ) = b κ (8)

Note again that Si,j() = 1 if there is perfect individualisation and if κ > 0. We logically

assume κ is the time spent in retirement by the person whose longevity is equal to the

reference longevity (l) under a uniform retirement policy (κ = l− ra = (1− α)l).18

Key is that the use of a uniform retirement age/longevity reference (ra) leads to lifetime

benefits gaps

gapi,j(ra) ≡ B −Bi,j(ra) = b
[
κ− Si,j(ra)(li,j − ra)

]
(9)

or equivalently when the reference retirement age is differentiated by SES category (raj),

the (presumably smaller) gap is

gapi,j(raj) ≡ B −Bi,j(raj) = b
[
κ− Si,j(raj)(li,j − raj)

]
(10)

Again, we can produce a graphical representation of what is at stake under uniform vs

differentiated retirement. It is to be found in Appendix 6.1. In more analytical terms, the re-

duction in the overall propensity of retirement policy to deviate from the fully individualised

first best can be expressed as the following index, where the constants b cancel out

IBeveridge ∈ [0, 1] =

∑k
j=1

∑nj

i=1 b |κ− Si,j(raj) (li,j − raj)|∑k
j=1

∑nj

i=1 b |κ− Si,j(ra) (li,j − ra)|

with ra ≡ l− κ = αl

raj ≡ lj − κ

(11)

Note again that, so far, we have assumed that the planner absorbs any net surplus/deficit

generated by the move from uniform to differentiated retirement. The alternative policy

would be to raise(reduce) b prorata in the numerator of the (in)equity index eq.(11), and en-

force cohortal budget equivalence. Under a Beverigian regime, retirement age differentiation

is likely to generate a surplus(deficit) if the overall time spent in retirement goes down(up).

Not absorbing that surplus(deficit) means that policymakers raise(reduce) b. This again

18Thus the equalising retirement age can also be written as rai,j = li,j − l+ ra.
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means that year equity gaps — that still exist under retirement age differentiation — are

“priced” differently. Thus, the equity gains achieved in terms of years spent in retirement

are eroded(amplified) by the (remaining) year gaps weighted differently. This translates into

different equity gains than those reported in result Section 4.2. We analyse this cohortal-

budget-equivalence alternative in detail in Appendix 6.2. Results, in short, suggest that

under a Beveridgian regime retirement age differentiation could generate a (small) surplus,

allowing for a (slightly) higher b.19 Thus, again, our main results in Section 4.2 (derived

without imposing cohort budgetary equivalence) should be seen as an upper bound of the

achievable equity gains.

To sum up, minimising both the Bismarckian and Beveridgian inequity indices [equ. (6),(11)]

depends on the social planner being able to match the full distribution of longevity across

individuals li,j i.e., the different values of the horizontal axis forming the longevity distri-

bution on the lower part of Figures 1,7. If she can only go for tagging (Akerlof, 1978) i.e.

use j = 1 . . . k < N proxies lj that are simply correlated to realised longevity li,j to differ-

entiate treatment, and if unaccounted longevity differences are important and matter, then

both policies should translate into values of our indices that are relatively close to 1. In

Section 4.2, we will show simulation results illustrating this, using US data on longevity

heterogeneity.

3 De-annuitization

We now consider Bismarckian and Beveridgian pension schemes with some de-annuitization:

i.e. with an upfront lump-sum payment LS.20 With the Bismarckian pension, the actuarially

fair ratio becomes

afri,j =
LSi,j + Si,j(ra)(li,j − ra) δ′ wi,j

ra η wi,j

= µ+ Si,j(ra)
(li,j − ra)

ra
θ′ (12)

with the (logically lower) annuity corresponding here to a lower replacement rate i.e.

δ′ < δ, θ′ ≡ δ′

η
< θ, and µ ≡ LSi,j

ra η wi,j
, ∀ i, j. Note that the lump sum paid varies for each

19It is likely this result is purely driven by the US data used to do the simulation. In principle, under a
Beveridgian regime, the only factor playing a role is the relative importance of the groups spending more(less)
time in retirement.

20We leave aside complications stemming from those who did not survive until prime age i.e. the moment
from which longevity heterogeneity is considered conceptually or empirically (i.e. 40 hereafter).
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individual, but it is strictly proportional to lifetime contributions, guaranteeing that each

individual achieves some positive uniform (up-front) ratio.21 And it is that uniform µ that

contributes to reducing equity gaps in eq.(14) below. In Appendix 6.3 we show that the

value of µ that is compatible with the budget-equivalence constraint (i.e. same sums spent

on a cohort with and without de-annuitization) is

µ = (θ − θ′)

∑k
j=1

∑nj

i=1 Si,j(ra)(lij − ra) wi,j

Nraw
(13)

where the term that post-multiplies (θ − θ′) is the ratio of the (wage-weighted) number

of years spent in retirement to the (wage-weighted) number of years spent contributing. As

to the denominator remember that N is the size of the cohort of pensioners considered and

w the average wage earned by the members of that cohort. Note finally that µ > 0 if θ′ < θ.

The interesting point is what happens with the inequity gap indices when θ is reduced to

θ′. The building blocks of the Bismarckian version of that index consist (to the numerator)

of the gaps between the actuarially fair and the one achieved via the policy envisaged. With

de-annuitization (assuming a unique retirement age), the gaps become

gapi,j(ra, µ, θ
′) =

[
(µ+ θ′

1− α

α
)− (µ+ θ′Si,j(ra)

li,j − ra

ra
)
]

= θ′
[1− α

α
− Si,j(ra)

li,j − ra

ra

] (14)

The index capturing the gains achieved via de-annuitization (the reference policy being

one with no de-annuitization and uniform retirement age) now writes:

IBismarck ∈ [0, 1] =
θ′
∑k

j=1

∑nj

i=1|1−α
α

− Si,j(ra)
li,j−ra

ra
|

θ
∑k

j=1

∑nj

i=1|1−α
α

− Si,j(ra)
li,j−ra

ra
|

=
θ′

θ

with ra ≡ αl

(15)

Crucial is that the gain achieved via de-annuitization is strictly proportional to the re-

21Note that, unlike lifetime benefits, lifetime contributions (ra η wi,j) are potentially fully known by
policy makers or their pension administration. So there is no problem fully individualising LS to achieve
uniformity across individuals in terms of guaranteed ratio µ.
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duction of the annuity ( θ
′

θ
< 1).22 And an interesting numerical exercise, based on actual

longevity data, is to compute the gains that can be achieved via retirement age differentia-

tion. This will provide a certain value of the index IBismark < 1, from which we can infer the

corresponding value of θ′

θ
(and thus also of µ) ensuring the same fairness improvement. Thus,

quantifying the gains that can be achieved via retirement age differentiation – as we do in

Section 4.2 – amounts to computing the degree de-annuitization that will provide exactly

the same pension fairness gains.

A similar equivalence can be established between retirement age differentiation and par-

tial de-annuitization of Beveridgian pensions. This time, the lump sum LS paid upfront is

the same for every individual (hence the absence of subscripts i, j) and writes:

Bi,j ≡ LS + b′ Si,j(ra)(li,j − ra) = LS + b′ Si,j(ra)(li,j − l + κ) (16)

with a logically lower annuity b′ < b. In appendix 6.3 we show that the value of LS

that is compatible with the budget-equivalence constraint (i.e. same sums spent on a given

cohort with and without de-annuitization) is

LS = (b− b′)

∑k
j=1

∑nj

i=1 Si,j(ra)(lij − ra)

N
(17)

where the term that post-multiplies (b− b′) is just the average number of years spent in

retirement. Note that LS > 0 if b′ < b.

The key point is again to consider what happens with the indices exposed above when

b is reduced to b′. The building blocks of the Beveridgian version of that index consist (to

the numerator) of the gaps between the fair annuity and the one actually achieved via the

policy envisaged. With de-annuitization (assuming again a unique retirement age), the gaps

become

gapi,j(ra, LS, b
′) = (LS + b′κ)− (LS + b′ Si,j(ra)(li,j − ra))

= b′
[
κ− Si,j(ra)(li,j − ra)

] (18)

22Strictly speaking, the (reduced) annuity is δ′wi,j . But δ′ is directly related to θ′ as θ′ = δ′

η . Thus, the

new annuity becomes θ′ηwi,j .

13



Hence, the index capturing the gains achieved via de-annuitization (the reference policy

still being one with no de-annuitization and uniform retirement age) writes

IBeveridge ∈ [0, 1] =
b′

∑k
j=1

∑nj

i=1|κ− Si,j(ra) (li,j − raj)|
b
∑k

j=1

∑nj

i=1|κ− Si,j(ra) (li,j − ra)|

=
b′

b

with ra ≡ αl

(19)

So, paralleling the result for Bismarckian pensions in eq.(15), we see that the gains

achieved here via de-annuitization are strictly proportional to the reduction of the annuity

( b
′

b
< 1).

4 Data & Results

4.1 Data construction

The data used to analyse partial de-annuitization vs retirement age differentiation are from

the US. They consist of a simulation of the full distribution of longevity across a cohort

of N individuals with different socio-demographic backgrounds (li,j; i = 1 . . . nj; j = 1 . . . k)

who have survived until prime age. At its core, the simulation rests on the (unavailable to

us) mortality rates assembled by Chetty et al. (2016).

The underlying microdata comprises a sample of 1.4 billion observations from anonymised

tax records, covering the years 1999 to 2014. Mortality data start at age 40 and are avail-

able either by gender, US state of residence and income quartile; or by gender and income

percentile. We retain the gender × income version of the Chetty data. More precisely, we

use the (publicly available) parameters of Gompertz functions they provide for each gender

× income cell j, alongside the number of people in the US population belonging to these

cells (nj, j = i . . . k).23 The parameters of the Gompertz function capture the expected

23A Gompertz function is sigmoid which describes growth (here mortality) as being slowest at the start
and end of a given period (respectively age 40 and age 120 with the Chetty data). The right-hand or future
value asymptote of the function is approached much more gradually by the curve than the left-hand or
lower valued asymptote. This is in contrast to the simple logistic function in which both asymptotes are
approached by the curve symmetrically. The Gompertz is a special case of the generalised logistic function
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differences of mortality between categories j. Whereas the predicted values delivered by

each Gompertz function j provides the “within” category distribution of mortality rates for

each (potential) age of death.24 These mortality rates by age can then be multiplied by the

number of individuals forming each cell j to know the number of individuals whose longevity

is equal to 40, 41, . . . , 120.

In Figure 2 we display the Gompertz-generated distribution of longevity for men belong-

ing to the lowest income percentile of the US male population vs the equivalent distribution

for women forming the highest income percentile of the female population. Expected/average

longevity (corresponding to the dashed vertical lines) vary between the two groups: the ex-

pected longevity gap is larger than 16 years (88.7 v.s. 71.9 years). Still, the solid curves

capturing the full distribution of realised longevities within each group, reveal that quite

many women forming the upper-income percentile die before the average age of 88.7 (and

would deserve to retire early), while some low-income men live beyond that age (and to not

deserve to early retire).25

that has proved adequate to describe human mortality as an (accelerating) function of age.
24The latter is known by demographers as a life table (Chiang, 1984).
25Remember that reference retirement ages are defined as raj ≡ α lj with α < 1 the share of life spent

working.
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Figure 2: USA- [M]ale lowest income percentile and [F]emale highest percentile; ex-
pected/average longevity difference between the two groups vs full distribution of realised
longevities within these groups. Source: Chetty et al. (2016), based on mortality data be-
yond the age of 40.

4.2 Numerical simulation results

We start by assuming that our reference longevity (i.e. l) underpinning the uniform retire-

ment policy is the average longevity in the Chetty data. Without loss of generality, and for

the sake of clarity, the value of the share of life spent in employment α is chosen so that the

corresponding uniform retirement age is equal to 65. Hereafter, the results for the retirement

age policy are centred on that age of 65 (ra = 65).

Given the Chetty data documenting longevity differences only past the age of 40, the min-

imum retirement age under retirement age differentiation is 40. And with de-annuitization,

the lump-sum payment is also assumed to intervene at 40. By definition, it consists of paying
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a lump-sum to all whose longevity is considered, and that is only feasible before the first

individual dies, thus here at 40.26 Also, given the data used, the two policies examined here

(equally) ignore the problem of the very short-lived, i.e. those who don’t survive up to the

age of 40. Note that the hypothetical use of a data set documenting longevity only from

the age of 50 or 55 would simply inflate the number of individuals who are de facto not

compensated, but without affecting our key analytical results markedly. Remember that our

prime interest is to assess de-annuitization needed to match whatever can be achieved via

retirement age differentiation, and by that we also mean the extent to which that policy

ignores some short-lived. Remember also that the major factor driving our results is the

(in)ability of the planner to match the full distribution of longevity using a few proxies.

Whether it is the post-40, 50 or 55 distribution does not matter much.

Our results consist of the simulated values of the gains generated by retirement age

differentiation in terms of inequity gap indexes exposed in eq.(15) and eq.(19), one for the

Biskmarckian system and one for the Beveridgean one. In both cases we estimate numerically

the gains achieved by resorting to 200 different reference retirement ages/longevities (i.e

j = 1 . . . 200, corresponding to 2 genders × 100 income percentiles). The differentiated

retirement ages we use are visible in Figures 3, 4. They correspond to each of our SES

category j’s average longevity (multiplied by α with Bismarck, or minus κ with Beveridge).

The key result is the one about the equity gains achieved via differentiation. It is reported

on top of Table 1. We see values of .963 and .964 for (respectively) the Biskmarckian and

Beveridgian schemes. These are our best estimates of how much inequity indices can be

brought down via retirement age differentiation. Remember that these indices are equal to

θ′/θ; b′/b as stated in eq.(15),(19). Thus 1 − .963 or 1 − .964 tell us about the % reduction

of pension instalment27 required to generate an equivalent gain in terms of pension fairness.

We see it is relatively limited: less than 4 % points of reduction of θ (Bismarck) or of the

basic pension b (Beveridge) would be enough to generate the same equity gains as extensive

retirement age differentiation across 200 gender× income categories; with retirement ages

ranging from 56.5 to 69.7 (Bismarckian) or 54.2 to 71 (Beveridge) displayed in the lower part

of Table 1. Also, one can get an idea of what the above results imply for the importance

of the lump-sum paid upfront. Assuming that the (by 4%) reduced pension instalments

are paid from the age of 65 to retirees with a 20-year life expectancy, following eq. (17), in

a Beveridgian system, the lump-sum would represent approximately .004 × 20 × 12 = 9.6

26The results that follow can be considered as fully representative of what would happen if the lump-sum
is paid at reference retirement age (65) only if mortality between 40 and 65 is negligible.

27Remember that for Bismark we have that the pension instalment is strictly proportional to θ as it is
equal to θ′ηwi,j .
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month-equivalents of the current pension instalment. The calculus is less straightforward for

the Bismarckian system but the results are similar.
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Figure 3: Bismarckian differentiated pension ages
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Figure 4: Beveridgian differentiated pension ages
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Table 1: Numeric results: values of the Equity Gap Indexa achieved via retirement age
differentiation and the degree of de-annuitization needed to match these gains [without
cohortal budget equivalenceb]

Pension regime
Bismark Beveridge
F M F M

Equity Gap Indexa 0.963c 0.964d

Inc. perc.
1 61.407 56.507 60.428 54.192
10 63.881 59.656 63.576 58.200
20 64.812 60.688 64.760 59.513
30 65.535 61.795 65.681 60.922
40 66.022 63.010 66.301 62.467
50 66.491 63.785 66.898 63.455
60 66.948 64.456 67.479 64.307
70 67.381 65.090 68.029 65.114
80 67.931 65.784 68.730 65.997
90 68.620 66.807 69.607 67.300
100 69.697 68.345 70.976 69.256
Ref. ret. age 65 65 65 65

a: The simulated values of equity gap indexes exposed in eq.(15) and eq.(19). The propensity of these
indices to be below 1 tells us simultaneously about i) the equity gains that can be achieved via
retirement age differentiation and ii) the degree of de-annuitization required to generate an

equivalent gain in terms of pension fairness. We report here the gains achieved by resorting to
200 different reference retirement ages/longevities (i.e j = 1 . . . 200, corresponding to 2 genders × 100
income percentiles). The differentiated retirement ages we use are those visible in Figures 3, 4. In the lower
part of this table, we report only a sample of them.
b: Meaning that we assume that the planner “absorbs” the net budgetary surplus(deficit) generated by the
move from uniform to differentiated retirement age. Thus the move does not translates into a higher(lower)
value of θ and b to guarantee that the same total budget is spent on the cohort of pensioners.
c: IBismarck ∈ [0, 1] as defined by eq.(15)
d: IBeveridge ∈ [0, 1] as defined by eq.(19)

4.3 Winners, losers

In this section, we explore the question of the support/opposition that partial de-annuitization

might encounter. Our approach is quite simple. We consider that the support for de-

annuitization depends on the share of short-lived individuals who get a higher lifetime ac-

tuarial fairness ratio (or benefits with a Beveridgian system). In Figure 5, it corresponds to
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all the individuals whose longevity is inferior to l∗.

Algebraically and numerically, one can show that the “indifferent” pensioner is not in-

fluenced by the degree of de-annuitization. The point of indifference in Figure 5 and the

corresponding longevity l∗ are fixed. Whatever the intensity of de-annuitization, there is

always the same share of pensioners who gain from de-annuitization vs uniform retirement

age. Proof of this is in Appendix 6.4.28

Figure 5: Partial de-annuitisation: winners vs losers

This said, it is important to stress that the value l∗ varies with the reference retirement

age (ra). In Figure 6 we report simulation results on the share of (relatively short-lived)

pensioners who would gain from de-annuitization. It is clearly a rising function of the

reference retirement age. In policy terms this means that the support for de-annuitization

is likely to rise the more policy-markers increase the (unique) retirement age.

28The same cannot be said about how much, in monetary terms, is gained and lost because of vari-
ous degrees of de-annuitization. More de-annuitization means more monetary gains(losses) for those who
gain(lose). The headcount approach and the monetary one are not equivalent.
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Figure 6: Partial de-annuitisation: share of winners and ref. retirement age

5 Context and Policy Feasibility

In the US context, and among economists who work on private/funded pensions, the dom-

inant view is that people are “under-annuitized” for their privately provided and funded

pension. By that, our colleagues mean they are underinsured against the risk of outliving

their pension capital (Yaari, 1965; Diamond and Mirrlees, 1985; Diamond and Sheshinski,

1995, Brown, 2007). And one challenge is to understand the so-called annuity puzzle

i.e. the fact that annuities are rarely purchased (voluntarily) despite the longevity insur-

ance they provide. One of the problems seems to be that people are too pessimistic about

their longevity (Benartzi et al., 2021; O’Dea and Sturrock, 2020). A lot of recent effort

has been made to understand the public’s rejection of full-annuitization (Vidal-Meliá and

Lejárraga-Garćıa, 2006; Brown et al., 2021; Clark et al., 2019) and its preference for partial

de-annuitization (Beshears et al., 2014; Dillingh and Zumbuehl, 2021). These authors, for
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instance, find that allowing individuals to annuitize a fraction of their wealth increases their

support for annuitization relative to a situation where annuitization is an “all or nothing”

decision.

The take-home message of this paper is also that pensions should be partially de-annuitized,

even PAYG public ones. But the underlying context is quite different. In Europe and for

public pensions organised on a PAYG basis, full and mandatory annuitization is the (unques-

tioned) rule. Also our key argument in favour of partial de-annutization is not so much that

the public prefers it, but that it is a simple and effective way of addressing the problem of

the short-lived individuals. In contrast with the US/private and funded pension debate our

starting point is not the risk of poverty at (very) old age but the risk of inequality inherent

to full annuitization when the length of life varies a lot across individuals; what a burgeoning

literature calls the risk of early death (Fleurbaey et al., 2016; Leroux and Ponthiere, 2018;

Ponthiere, 2020; Fleurbaey et al., 2022).

The latter problem, and also evidence of a resurgent gap in life expectancy (Chetty et al.,

2016; Auerbach et al., 2017), are getting more and more attention among pension economists

(Bommier et al., 2011; Gustman and Steinmeier, 2001; Haan et al., 2019), but the focus is

only on differentiation of treatment based on expected longevity differences across socio-

demographic groups (Ayuso et al., 2016; Holzmann et al., 2017; Vandenberghe, 2021) or

occupations (Vermeer et al., 2016). The parameters of differentiation investigated in that

literature comprise the retirement age, and also the replacement rate or the contribution

rate during the pension build-up phase (Biskmarckian pensions), or simply the amount of

the basic pension (Beveridgian pensions).

What we show in this paper is that partial de-annuitization of PAYG pensions would be

as effective at addressing the inequalities and inefficiencies generated by longevity differences.

And as far as we know this result is a novelty in the literature on pensions. If all (or most)

longevity differences matter from a normative point of view,29 for both the Bismarckian and

Beverigdian versions of public PAGY pensions, we show that a modest de-annuitization –

4 % point reduction of the monthly pension and the corresponding payment of an upfront

lump sum – would be enough to match the equality gains recorded via extensive retirement

differentiaion.

Finally, the partial de-annuitization we propose here appears feasible from both a techni-

cal/financial and political point of view. First, being limited in magnitude, it is unlikely to

29Because they are unrelated to risky lifestyles.
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generate insurmountable liquidity and transition difficulties. We show that the lump sums

that would be paid correspond (on average) to less than one year of annuity payments (less

than 12 monthly instalments). These sums could be borrowed from the market and financed

by savings corresponding to the stream of reduced monthly instalments. Also, we do not

a priori detect “cohabitation” problems: older generations could stick to full annuitization,

while the next ones would get partial de-annuitization. Second, partial de-annuitization as

we model it in this paper is unlikely to significantly compromise the longevity insurance role

of public pensions; the very one that pushes our US colleagues to recommend more annuiti-

zation, and corresponds to the historical role of pensions that the general public probably

still support to a large extent. Third, administratively, it is much less costly and easier

to implement than retirement age differentiation.30 It does not require upstream analysis

of the determinants of longevity or the verification of pensioner’s category as would, by

definition, be the case with retirement age differentiation.31 Fourth, unlike retirement age

differentiation, de-annuitization is not prone to legal challenges. It amounts to treating ev-

eryone equally. By definition, this is not the case of differentiation. Would differentiating

retirement age by gender be legal? Probably not in the US and in Europe. The European

Court of justice bans any form of difference in treatment between women and men as to

the legal age of retirement. Finally, it is also exempt from the risk of misreporting or moral

hazard. De-annuitization amounts to paying a lump sum at a certain age to everyone. As

shown repeatedly in public economics, these types of payments are exempt from the risk of

misreporting or disincentive to perform (here earn a lower wage conducive to a lower income

percentile to get classified as a short-lived person entitled to early retirement).
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6 Appendix

6.1 Graphical representation of Beveridge pensions

The first-best situation amounts to ensuring that every person receives the horizontal dashed

line in terms of (lifetime) benefits (bκ) where κ is the number of years spent in retirement by

the reference pensioner with longevity l. Actual/realised lifetime benefits correspond to the

solid/doted rising lines. People who die before retirement age receive no benefits. Beyond

that point, lifetime benefits rise at a rate b.32 Under uniform retirement age (solid rising

line), only individuals whose longevity coincides with reference l get the first best. Under

differentiated retirement age (doted rising lines, only 2 different retirement ages are depicted

in Figure 7), the number of people who get on the green line a priori rises. But note again

that situations synonymous with “undershooting” or “overshooting” are still very frequent.

Figure 7: Beveridgian pension under uniform vs diff. ret age

32Here again we get a sense of what would happen if, instead of differentiating the age or retirement,
policy markers were to differentiate pension instalment b by SES. That would amount to differentiating the
slope of the red curve to increase the chance of crossing the green line.
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6.2 Cohortal budget equivalence under retirement age differenti-

ation

Retirement age differentiation can generate budgetary savings in comparison with uniform

retirement. This is because the overall (or average) time spent in retirement may go down.

What is more, with a Bismarckian regime, the money not spent on those who live longer

is likely to outweigh the cost of financing early retirement to the benefit of the short-lived

individuals. If these budgetary savings are used to increase b (Beveridge) or θ (Bismarck)

and so achieve cohortal budget equivalence, then the equity gaps [eq.(5)] — that inevitably

still exist under retirement age differentiation — will be “priced” at a higher rate. Say

differently, in our (in)equity index, the time component of the gaps will be multiplied by

a higher “price” b (Beveridge) or θ (Bismarck). Thus, the equity gains achieved in terms

of years spent in retirement will be eroded by the (remaining) year gaps weighing more in

monetary terms.

The algebra below identifies b (Beveridge) or θ (Bismarck) ensuring cohortal budget

equivalence and discusses their determinants. But the key take-home result is visible in

Table 2. The second line of the table reports the equity gains achieved by retirement age

differentiation when cohortal budget equivalence is imposed. We see that, in particular for

Bismarckian pensions, equity gains are lower and potentially negative, suggesting that the

negative effect of higher “prices” applicable to persistent gaps dominates the gains achieved

by reducing the (time) magnitude of these gaps.
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Table 2: Numeric results: values of the Equity Gap Indexa achieved via retirement age
differentiation [without and with cohortal budget equivalence]

Pension regime
Bismark Beveridge
F M F M

Equity Gap Indexa,b 0.963c 0.964d

without cohortal budget equivalence

Equity Gap Indexa 1.015c 0.969d

with cohortal budget equivalence

Inc. perc.
1 61.407 56.507 60.428 54.192
10 63.881 59.656 63.576 58.200
20 64.812 60.688 64.760 59.513
30 65.535 61.795 65.681 60.922
40 66.022 63.010 66.301 62.467
50 66.491 63.785 66.898 63.455
60 66.948 64.456 67.479 64.307
70 67.381 65.090 68.029 65.114
80 67.931 65.784 68.730 65.997
90 68.620 66.807 69.607 67.300
100 69.697 68.345 70.976 69.256
Ref. ret. age 65 65 65 65

a: The simulated values of equity gap indexes exposed in eq.(15) and eq.(19). The propensity of these
indices to be below 1 tells us about the equity gains that can be achieved via retirement age differentiation.
We report here the gains achieved by resorting to 200 different reference retirement ages/longevities (i.e
j = 1 . . . 200, corresponding to 2 genders × 100 income percentiles). The differentiated retirement ages we
use are those visible in Figures 3, 4. In the lower part of this table we report only a sample of them.
b: Meaning that we assume that the planner does not “absorb” the net budgetary surplus(deficit)
generated by the move from uniform to differentiated retirement age, and thus translates these into
higher(lower) value of θ and b to guarantee that the same total budget is spent on pensions.
c: IBismarck ∈ [0, 1] as defined by eq.(15)
d: IBeveridge ∈ [0, 1] as defined by eq.(19)

Now we turn the algebra. To ensure strict budgetary equivalence, the Beveridgian planner

should use an annuity brad such that
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brad
k∑

j=1

nj∑
i=1

Si,j(raj)(lij − raj) = b

k∑
j=1

nj∑
i=1

Si,j(ra)(li,j − ra)

brad

b
=

∑k
j=1

∑nj

i=1 Si,j(ra)(li,j − ra)∑k
j=1

∑nj

i=1 Si,j(raj)(li,j − raj)

(20)

The budget-balancing brad is thus inversely proportional to the change (possibly reduc-

tion) of aggregate time spent in retirement due to introducing different retirement ages.

The Bismarkian planner’s equivalent problem is a bit more complex. She needs the ratio

of benefits to contribution to be equivalent to what it is under uniform retirement. Formally

we need

BEN rad

CONT rad
/
BEN

CONT
= 1

where

BEN rad ≡ δrad
k∑

j=1

nj∑
i=1

Si,j(raj)(li,j − raj) wi,j

BEN ≡ δ
k∑

j=1

nj∑
i=1

Si,j(ra)(li,j − ra) wi,j

CONT rad ≡ ηrad
k∑

j=1

nj∑
i=1

[
Si,j(raj)raj + (1− Si,j(raj)) li,j

]
wi,j

CONT ≡ η
k∑

j=1

nj∑
i=1

[
Si,j(ra)ra+ (1− Si,j(ra)) li,j

]
wi,j

(21)
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or equivalently

θrad

θ
=

WY IR(ra)

WY IR(raj)

WY IE(raj)

WY IE(ra)

where

θrad =
δrad

ηrad
; θ =

δ

η

WY IR(raj) ≡
k∑

j=1

nj∑
i=1

Si,j(raj)(li,j − raj) wi,j

WY IR(ra) ≡
k∑

j=1

nj∑
i=1

Si,j(ra)(li,j − ra) wi,j

WY IE(raj) ≡
k∑

j=1

nj∑
i=1

[
Si,j(raj)raj + (1− Si,j(raj))li,j

]
wi,j

WY IE(ra) ≡
k∑

j=1

nj∑
i=1

[
Si,j(ra)ra+ (1− Si,j(ra))li,j

]
wi,j

(22)

So θrad should be inversely proportional to the change of the (wage-weighted)33 years

spent in retirement (WY IR(raj)) and proportional to the change in the (wage-weighted)

years spent in employment (WY IE(raj)). If retirement age differentiation leads to fewer

wage-weigted years spent in retirement34 (fraction 1 to the rhs of equ. (22) is > 1) and

simultaneously more (wage-weighted) years spent working (fraction 2 >1) than the planner

can finance θrad > θ. This means that each years-in-retirement gap in equ.(6) are “priced”

at a higher rate, contributing to the erosion of the equity gains generated by retirement age

differentiation.

6.3 Cohortal budget equivalence under de-annuitization

Here, we identify the conditions for de-annuitization to generate, for a cohort, overall benefits

matching what is spent under uniform retirement age.

33In our simulations, we have assumed (average) by SES pension-relevant wages with a gradient of 1
(lowest income percentile) to 4 (highest income percentile), and a .2 gender wage gap.

34The overall number of years that in principle should not change much (as some individuals spend
more time and others less time in retirement). By contrast, the wage-weighted version should fall as the
people who spent less time earn less and those who spend more time
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We start with partial de-annuitization of Bismarckian pensions, where a uniform fraction

(µ ≡ LSi,j

ra η wi,j
) of lifetime contributions (i.e. the “guaranteed” part of the ratio) is handed

over to every retiree. For a cohort, budget equivalence is achieved if the lump-sum payment

LSi,j and the reduced annuity, calculated with a lower replacement rate δ′, verify

k∑
j=1

nj∑
i=1

LSi,j +
k∑

j=1

nj∑
i=1

Si,j(ra)(lij − ra) δ′wi,j =
k∑

j=1

nj∑
i=1

Si,j(ra)(lij − ra) δwi

k∑
j=1

nj∑
i=1

µ ra ηwi,j +
k∑

j=1

nj∑
i=1

Si,j(ra)(lij − ra) δ′wi,j =
k∑

j=1

nj∑
i=1

Si,j(ra)(lij − ra) δwi,j

µ ra ηNw = (δ − δ′)
k∑

j=1

nj∑
i=1

Si,j(ra)(lij − ra) wi,j

µ = (θ − θ′)

∑k
j=1

∑nj

i=1 Si,j(ra)(lij − ra) wi,j

Nraw

µ = (θ − θ′)
WY IR(ra)

WY IE(ra)
(23)

To move from line 2 to line 3, we regroup expressions with δ to the right-hand side.

Considering that µ, ra, η are constant, we are left with µraη
∑k

j=1

∑nj

i=1 wi,j or equivalently

µ ra η Nw where N is the size of the cohort and w its average wage. On line 5 we have

that WY IR(ra) is the overall (wage-weighted) number of years spent in retirement and

WY IR(ra) is the overall (wage-weighted) number of years spent in employment.35

In a Beveridgian scheme, the uniform lump-sum payment LS and the reduced annuity b′

must verify

35In our simulations, we have assumed (average) by SES (pension-relevant) wages with a gradient of 1
(lowest income percentile) to 4 (highest income percentile), and a .2 gender wage gap.
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k∑
j=1

nj∑
i=1

LS +
k∑

j=1

nj∑
i=1

Si,j(ra)(lij − ra) b′ =
k∑

j=1

nj∑
i=1

Si,j(ra)(lij − ra) b

LS N = (b− b′)
k∑

j=1

nj∑
i=1

Si,j(ra)(lij − ra)

LS = (b− b′)

∑k
j=1

∑nj

i=1 Si,j(ra)(lij − ra)

N

LS = (b− b′) AY IR(ra)

(24)

where AY IR(ra) is the average number of years spent in retirement

6.4 De-annuitization and the indifferent pensioner

Here we characterize algebraically the indifferent retiree (Figure 5). This is the person

who is (or should be) indifferent36 between what he gets under partial de-annuitization and

under uniform retirement. With a Bismarckian system, that person has longevity l∗ such

that

θ(l∗ − ra)

ra
= µ+ θ′

(l∗ − ra)

ra

with, given the budget equivalence condition

µ = (θ − θ′)

∑k
j=1

∑nj

i=1 Si,j(ra)(lij − ra) wi,j

Nraw

(25)

After some simple algebraic transformations we get

l∗ =
µ ra

(θ − θ′)
+ ra

with from the budget equivalence condition

µ ra

(θ − θ′)
=

∑k
j=1

∑nj

i=1 Si,j(ra)(lij − ra) wi,j

Nw
= constant|ra

(26)

36Assuming perfect foresightedness.
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In other words, l∗ is independent of de-annuitization parameters µ and θ′ < θ. So the

intensity of de-annuitization has no impact on the longevity identifying the indifferent retiree.

Note, however, that l∗ is a function of (uniform) retirement age (ra).

Similarly, with Beveridgian pension system, the indifferent pensioner has longevity l∗

that verifies

b(l∗ − ra) = LS + b′(l∗ − ra)

with, given the budget equivalence condition

LS = (b− b′)

∑k
j=1

∑nj

i=1 Si,j(ra)(lij − ra)

N

(27)

After some simple algebraic transformations we get

l∗ =
LS

(b− b′)
+ ra

with, given the budget equivalence condition

LS

(b− b′)
=

∑k
j=1

∑nj

i=1 Si,j(ra)(lij − ra)

N
= constant|ra

(28)

where, again, l∗ turns out to be independent of de-annuitization parameters LF and

b′ < b. So the intensity of de-annuitization has no impact on the longevity identifying the

indifferent retiree. But note again that l∗ is a function of (uniform) retirement age (ra).
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