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Abstract

Imagine an impoverished territory that becomes eligible for a generous place-based

transfer programme (the treatment). Difference-in-differences analysis (DiD) shows

that the level of the income per head handicap has risen. But DiD assumes that the

(presumably common) trend and treatment effects are additive, whereas standard

economic theory would rather assume they are multiplicative. In this paper, we

first show that shifting to a multiplicative version of the DiD estimator significantly

alters the initial conclusion. Beyond, a placebo analysis reveals the violation of

the (multiplicative) common trend assumption: the growth rate characterising the

treated region was historically smaller. Hence the need for a method that allows for

(multiplicative) trend differences between treated vs. control entities before treatment,

and estimates the treatment as a (multiplicative) trend difference-in-differences. The

one we implement here is called Controlled Interrupted Time Series Analysis (CITS)

by epidemiologists. We illustrate the relevance and strength of CITS, when combined

with an exponential/multiplicative specification, by studying the medium-term impact

of an EU-funded place-based policy called “Objective 1” on taxable income per capita

in the Belgian Province of Hainaut, using 1997-2013 times series.
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1 Introduction

This paper deals with how to properly evaluate the impact of place-based policies (Neumark

and Simpson, 2015) such as European Union Structural Funds targetting underperforming

areas. It discusses the use of quasi-experimental methods (based on the before-and-after

and treated vs control paradigm) when theory suggests trend and treatment are more

adequately modelled as multiplicative (thus non-linear) and the available evidence points to

no common multiplicative/log-additive trends. The paper capitalizes and extends on Puhani

(2012) regarding the relevance of non-linear/multiplicative DiD, and on Vandenberghe

(2018), Vandenberghe (2019) and Mora and Reggio (2019) for the way to cope with a lack

of common trend. At its core lies a methodological proposal on the virtues of modelling

trends (and thus treatment) multiplicatively in combination with Controlled Interrupted

Time Series Analysis (CITS) to account for the lack of a common trend.

But, before turning to its full exposition of these methods, here are a few words

about the type of place-based policy we use to illustrate our methodological point: the

EU-funded Objective 1 convergence policy that was applied to the province of Hainaut

in Belgium between 1993 and 2006. Objective 1-Hainaut is an example of a European

Union (EU)-funded place-based transfer policy aimed at helping European regions reduce

their socioeconomic/income handicap. The policies have a relatively old history. The

underpinning idea was present in the preamble to the Treaty of Rome in 1957 and was

further emphasised in the 1980s with the entry of Greece, Portugal and Spain. In 1987, with

the Single European Act, the EU received explicit competence for undertaking a regional

policy to ensure convergence. Over the decades, a growing political concern for the so-called

”regional problem” has meant that a considerable – and increasing – amount of resources

has been spent in an attempt to mitigate regional income disparities. Since the mid-1980s,

the importance of EU development/convergence policies has not ceased to increase. In

budgetary terms, the policies have grown from representing a mere 10% of the EU budget

and 0.09% of the EU-15 GDP in 1980, to more than one-third of the budget and around

0.37% of the EU GDP as an average of the period 1998-2001 (Rodriguez-Pose, 2004). The

policies have become, after the Common Agricultural Policy (CAP), the second-largest

policy area in the EU. Also, every recent step towards greater economic integration at

the EU level has been accompanied by measures aimed at supporting financially the

lagging countries or regions. For instance, the decision in the Maastricht reform to create

the Single European Currency was tied in with establishing the Cohesion Fund to alle-

viate the burdens that the transition to EMU would impose on the less developed territories.
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After the reform, more than two-thirds of all Structural Fund expenditure has been

concentrated in the so-called Objective 1 regions. These are territories whose GDP per

capita, measured in purchasing power standards (pps), is less than 75% of EU average. In

the 1990s, the list comprised 64 NUT2 regions (Tondl, 2007), one of them being Hainaut

in Wallonia/Belgium (Figure 1). The Belgian province benefited from Objective 1 money

between 1994 and 1999. And from 2000 to 2006 it also benefited from the “phasing out”

programme.

Yet, despite their rising macroeconomic importance, questions are being raised about

the capacity of place-based policies, European regional/convergence like Objective 1 in

particular, to achieve greater economic and social cohesion and to reduce income gaps.

These questions are fundamentally based on rather mixed evidence about convergence

following implementation (Magrini, 1999, Neumark and Simpson, 2015). In that context, it

is a bit surprising that there are relatively few ex-post economic evaluation studies of the

monetary benefits of Objective 1 or similar interventions. More precisely, there are very

few papers answering questions such as “what would be the level of income per head in

Province/Territory X had it not benefited from Objective 1 money ?”. Along the same

line, and in contrast with what economists and econometricians have done to evaluate

other types of policy interventions (higher minimum wages, employment subsidies, active

labour market or social policies. . . ), relatively little work has been done to evaluate the

effectiveness of place-based policies using the resources of quasi-experimental treatment

effect analysis to analyse before and after microdata.

In a sense, this paper aims to fill that void. This said, at its core, lies a methodological

discussion of what can be achieved when the linear/additive Difference-in-Differences

paradigm (DiD) fails. DiD is a simple technique commonly used in microeconometrics

(Angrist and Krueger, 1999). It attempts to mimic an experimental research design using

observational study data, by studying the differential effect of a treatment on outcome level

(Y ) of a“treatment group” v.s. a “control group” in a (quasi) natural experiment, using a

linear (thus additive) model. DiD quantifies the effect of a treatment (e.g. Objective 1)

on the level of Y (e.g. real income per capita) by comparing the change over time of Y

characterising the treatment (e.g. Hainaut) vs the control group (e.g. rest of Belgium).

The resulting difference-in-differences (DiD) is driven by a time trend difference between

the treated and the control group during the period that follows the treatment. Conditional

of the two groups being characterised by the same/common time trend in the absence of

treatment, the latter trend difference (and more precisely its impact on the outcome level)

is considered a good candidate to identify and quantify the treatment effect.
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The point raised by Puhani (2012) and Ciani and Fisher (2019) is that the latter trend

is modelled additively, often without adequate scrutiny and preliminary discussion about

the relevance of such a choice. For instance, economic theory would often recommend

modelling the impact of time on income Y multiplicatively (i.e. as a common growth rate).

In the same vein, many economists, particularly when it comes to place-based policies,

would consider that the proper indication of a treatment effect is statistical evidence that

it has translated into a multiplicative time trend difference between the treated and the

control (i.e. an improvement of the income growth rate). More importantly, as will become

clear after, modelling things additively while the true common trend is multiplicative leads

to treatment effect estimates that are downward biased. We show hereafter that this bias

can be avoided by resorting to an exponential – thus multiplicative – specification of the

usual DiD model. The treatment effect can be retrieved by regressing (using OLS) lnY on

the usual time, treatment and timeXtreatment variables. Alternatively, and preferably for

reasons exposed by Mora and Reggio (2019), the exponential DiD model can be estimated

using Poisson ML methods.

Another recurrent critique of DiD is that it relies too much on the common trend

assumption in the absence of treatment/intervention. The critique applies to linear DiD

where the time trend is modelled additively. But it also applies to the multiplicative

version of DID. Hence the necessity of methods that allow for diverging pre-existing trends

(seeVandenberghe, 2018, Vandenberghe (2019) and Mora and Reggio, 2019). The point we

make here is that one of these methods is commonly used by epidemiologists. It is called

Controlled Interrupted Time Series Analysis (CITS) and represents a straightforward ex-

tension of the canonical DiD. When many periods of observation before and after treatment

are available, the assumption of a common trend before treatment can be verified/assessed.

Moreover, the treatment effect delivered by CITS accounts for the trend difference before

treatment as it consists of a trend (thus growth rate) difference-in-differences. In that sense,

CITS can be considered as a more powerful design than DiD (Habib et al., 2021).

The rest of this paper is organised as follows. Section 2 exposes the difference between

linear vs multiplicative DiD; and CITS as a way to cope with the absence of common trend

in the absence of treatment. Section 3 presents the data used. Section 4 shows and discusses

the key results. Section 5 concludes.
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2 Method

2.1 Multiplicative vs additive common time trend

A representation of the canonical additive DiD is

Yi,tsi = α∗
1 + α∗

2TREATi + β∗
1 tsi+ β∗

2 tsi× TREATi + ϵ∗i (1)

with tsi = à the moment just before treatment/intervention and tsi > 0 the time that

has elapsed since the start of the intervention, TREAT is a dummy variable denoting the

treatment assignment (treatment or control) and β∗
2 is the estimated treatment effect (TE).

The common trend assumption underpinning (1) is Y k
tsi = Y k

tsi−1 + β∗
1 tsi where k designates

the treated vs control status.

But consider – following what economic theory would posit about the evolution of

per capita income over time – that in it rather Y k
tsis = Y k

tsi−1(1 + β1 tsi). In other words,

entities grow at (common) rate β1 without treatment. In that case, in the absence of

any treatment, after 1 period, DiD estimated by β∗
2 in (1) will be equal to β1∇tsi−1 with

∇tsi−1 ≡ Y TREAT
tsi−1 − Y CONTROL

tsi−1 the initial level-difference between the two groups. After n

period, the estimated DiD inflates to βn
1∇tsi−1. The point is that a standard additive/linear

DiD modelling (eq.1) ignores the fact that for the treated entity – which starts from a

lower position – the increase over time will automatically be smaller in absolute value

(Ciani and Fisher, 2019). Therefore, it would underestimate the share of the change

that has to be attributed to the treatment. More generally, the bias induced by the use

of a linear/additive DiD model to estimate the treatment effect of a process where the

common trend is multiplicative will be larger the larger i) the initial/pre-treatment differ-

ence between the groups and the ii) the larger the time over which the treatment is evaluated.

Differently, and more judiciously in the context of place-based policies, one might retain

and estimate an exponential specification, where the common trend is multiplicative and

where the effectiveness of the treatment/intervention is captured by the propensity of the

treated group to (positively) deviate from that multiplicative common trend.

Yi,tsi = exp(α1 + α2TREATi + β1 tsi+ β2 t× TREATi)ηi (2)

An easy way to estimate such a multiplicative model is to log-linearize it and resort to

OLS. But Silva and Tenreyro (2006) and Mora and Reggio (2019), argue that the exponential
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DiD model should rather be estimated using Poisson pseudo-maximum-likelihood estimator1

The main reason is that the log-transformed error term/residual is generally not independent

of the regressors Xi, also causing heteroscedasticity.2 Also, Puhani (2012) cautions about

the fact that the estimated β2 does not estimate the treatment effect in terms of levels of

Y but in terms of growth rate DiD. To retrieve the treatment effect (TE) in levels after t

periods, one must compute

TEt ≡ exp(α̂1 + α̂2 + (β̂1 + β̂2) t)− exp(α̂1 + β̂1 t) (3)

2.2 The absence of common (multiplicative) time trend and the

way to cope with it

Another recurrent critique of DiD is its reliance on the common trend assumption. If

data contains several pretreatment periods, it is possible to conduct a so-called “placebo”

analysis. This consists of estimating the equivalent of eq.1 using only pre-treatment periods

and checking that the equivalent of β∗
2 is not statistically significantly different from zero.

Note that the same placebo strategy can be used with the multiplicative version of the

DID model (eq.2). The real question is how to cope with situations where placebo results

are not supportive of the common (additive or multiplicative) trend. In what follows,

we argue that a good strategy is to resort to what epidemiologists call the Controlled

Interrupted Time Series Analysis (CITS) (Linden, 2015). This method allows for the

common trend assumption to be verified, and, moreover, delivers a treatment effect esti-

mator that is adjusted for differences in trend between two groups (Lopez Bernal et al., 2018).

CITS amounts to writing the right-hand part of eq.1 or the linear index part of eq.2 as

µ1 + µ2TREATi +

λ1 t+ λ2 t× TREATi +

γ1 tsi+ γ2 tsi× TREATi

(4)

where t is the data time index, covering periods before and after treatment/intervention,

tsi = max{0, t − t} the (positive) elapsed time that since treatment/intervention started

in t. The two first blocks/lines in eq.4 describe trends before intervention periods, while

the third block/line characterizes what happens post-intervention. The coefficients µ1, λ1, γ1

1Available in Stata via the [poisson] command.
2The easiest way to show this is to consider an exponential econometric model of the type Yi = exp(X ′β)+

ϵi where ϵ is well-behaved. Remembering that ln(a+ b) = ln(a(1 + b/a)), taking the log on both sides leads
to ln(Yi) = X ′β + ln(1 + ϵi/exp(X

′β), thus, to a transformed residual function of the level of X.
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represent the control group, and the coefficients µ2, λ2, γ2 represent deviations/differences

from the control group, characterising the treatment group. More specifically

• µ2 represents the difference in the level (intercept) of the outcome variable between

treatment and controls before the intervention, at the moment observation starts in

the data (t = 0);

• λ2 captures the difference in the slope (trend) of the outcome variable between treat-

ment and controls pre-intervention;

• and γ2 is the difference between treatment and control groups in the slope (trend) of the

outcome variable after initiation of the intervention compared with the pre-intervention

difference.

The CITS treatment effect on the level of Y in the additive case is equal to

γ̂2 tsi (5)

whereas in multiplicative case it is equal to

exp(µ̂1 + µ̂2 + (λ̂1 + λ̂2) t+ (γ̂1 + γ̂2) tsi) −

exp(µ̂1 + µ̂2 + (λ̂1 + λ̂2) t+ γ̂1 tsi)
(6)

It is worth stressing that λ̂2 delivered by CITS informs on a common trend’s

(non)existence before intervention/treatment.3 What is more, γ̂2 must be interpreted as a

trend difference-in-differences. The first trend difference [(λ̂1 + λ̂2 + γ̂1 + γ̂2) − (λ̂1 + λ̂1) =

λ̂2 + γ̂2] is the one that has emerged after the intervention and would be captured by a

traditional DiD.4. The second trend difference [(λ̂1 + λ̂2) − (λ̂1) = λ̂2] is the one that

pre-existed and would be captured by a placebo DiD.

Leaving aside the complications resulting from asymmetric durations before and after

the intervention, the main point is that γ̂2 ≈ traditional DiD - placebo DiD. This implies

that when CITS estimate the treatment effect as γ̂2 ∗ tsi, it attributes to the treatment any

change in the initial (additive or multiplicative) trend difference characterizing the treated

group before the intervention, as captured by a placebo DiD or, in this case, λ̂2.

Consider the scenario where the latter is negative (λ̂2 < 0 indicating a lower additive or

multiplicative trend in the treated entity before the intervention). In such cases, γ̂2 produces

3That coefficient can be related to DiD that has emerged before the intervention, i.e. λ̂2 t.
4β∗

2 in eq.1.
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a treatment effect larger than the traditional DiD. To illustrate further, envision a situation

where the traditional DiD yields a value of zero, interpreted as an absence of treatment effect,

i.e., λ̂2 + γ̂2 = 0. Simultaneously, the CITS estimates γ̂2 equals 0 − λ̂2 > 0, leading to the

conclusion that the treatment has been successful. This is because it credits the treatment

with the elimination of a pre-existing (additive or multiplicative) trend handicap.

3 Data

The data used in this paper consists of average taxable net income data (all earnings –

professional and other deductible expenses) per head, provided by Statistics Belgium. These

averages are available for each of Belgium’s 589 municipalities (Figure 1) from 1977 to 2013;

with many years before 1994 which is the year Objective 1 treatment started being effective

(Figure 2); and also after 1999 (end of the first phase of Objective 1) or 2006 (end of the

phasing-out period). Readily available information about the number of inhabitants at the

municipal level was used as a weighting factor to capture trends that are representative at a

more aggregated level; e.g.; the entirety of Hainaut (our treated entity) (Figure 1) or the rest

of Belgium (our control). The advantage of this outcome variable is that it is reliable: time

series on taxable income at the municipal level are amongst the oldest of Belgium’s statistical

apparatus. Also, taxable income is in essence an aggregate outcome variable; very close to

what GDP per head captures. Using it as our main outcome variable means that we consider

that the benefits of Objective 1 (whatever the precise project/programme or policy that it

has financed) should ultimately show up in the sums of money earned by people residing

in Hainaut (and on which they are taxed). Although some may argue in favour of other

measures of outcomes (employment. . . .) we tend to favour this one because it corresponds

relatively well to the goal assigned by EU decision-makers to Objective 1; but also because it

is likely to capture the (monetary) spillovers of the programme (e.g. beyond net job creation

or higher wages due to higher productivity (i.e. the direct benefits), an improved capacity

to attract wealthier residents. . . ).
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Control

Treated

Figure 1: Objective1- Treated (Hainaut) and control (Rest of Belgium) municipalities
Source: Statbel (2016).

Figure 2 displays the evolution of the level of income per head (in 2013 euros) for the

treated vs control territories used in this paper. It confirms the persistent and visually

rising income-level handicap of Hainaut (dashed blue line) compared to the other Belgian

provinces. Vertical bars help identify the calendar of implementation of Objective 1 with the

initial 1994-1999 phase, followed by the so-called“phasing out” from 2000 to 2006. Figure 2

gives a first (purely descriptive and implicitly additive) indication of what happened before,

during and after Objective 1.
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Figure 2: Objective1- Level differences in 2013 euros
Statbel (2016). Calculated using municipal-level (per head) taxable income data (in 2013 euros),

weighted by population sizes

4 Results

The key econometric results of the paper are displayed in Table 1. The first two columns

report the results when the time trend is modelled as additive, while the last two columns

replicate them for the exponential model, where it is multiplicative and amounts to a

growth rate. Columns 1 and 3 report the result of a traditional DID analysis carried out

over the 1993-2013 period (1993 being the only year before treatment used), and where the

coefficient of the time variable interacted with the treatment dummy captures the effect of

the treatment assuming common trend in the absence of treatment. Columns 2 and 4 report

the results of the more robust CITS analysis, with in particular the coefficient of the time

elapsed since intervention interacted with the treatment dummy tsi× TREAT delivering a

treatment effect estimate as a trend difference-in-differences.

At the bottom of Table 1, we present the treatment effects estimates (in 2013 euros)

derived from the econometric results reported above. The canonical additive DiD analysis

(Col. 1) estimates the treatment effect to be -356 euros by the year 2013. However,

replicating this analysis using the multiplicative exponential model—estimated (using the
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Poisson pseudo-maximum-likelihood estimator in Stata) reveals a contrasting result of +344

euros. This stark difference highlights the significant impact of adopting a multiplicative vs

additive specification: modelling things additively when the common trend is more likely to

be multiplicative leads to downward-biased DiD estimates.

Another noteworthy result is the difference between CITS compared to DiD. In Column

2, we present the outcomes delivered by a CITS using the entire before and after time series

(1977-1993, 1994-2013). Pay special attention to the t × TREAT coefficient. It suggests

that the assumption of an (additive) common trend is not valid. At the bottom of the table,

we report the level equivalent of this (additive) trend handicap for 16 years — i.e. the

time elapsed between 1993 and 2013 — as -1075 euros. Moreover, as explained earlier, the

coefficient tsi × TREAT accounts for trend differences before Objective 1, leading to the

conclusion that the policy has had a (small) positive impact on income per head of +17 euros.

However, these results rely on the (presumably inadequate) additive trend assumption.

Our preferred model is presented in column 4, where we combine the multiplicative trend

assumption with CITS. Firstly, the t × TREAT coefficient confirms the violation of the

(multiplicative) common trend assumption before the inception of Objective 1. In other

words, it indicates that the treated entity (Hainaut) was growing at a slower rate than the

rest of Belgium before it began benefiting from Objective 1. At the bottom of the table, we

report the level equivalent of this (multiplicative) trend handicap for 16 years as -704 euros.

Note that this value is logically less than the additive handicap, as additive modelling biases

DiD estimates downwards. Finally, and more importantly, the tsi × TREAT coefficient is

positive and statistically significant. This suggests that Objective 1 has been effective in

the sense that it has (more than) eliminated a pre-existing multiplicative trend (i.e., growth

rate) handicap affecting Hainaut. We estimate the level equivalent of this improvement to

be +885 euros.
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Table 1: Econometric results: sensitivity of treatment effect estimation to the use of additive
vs multiplicative trend, and traditional DiD vs Controlled Interrupted Time Series Analysis
(CITS)

Additive trend Multiplicative trenda

Traditional DiD CITS Traditional DiD CITS
cons 13272.4∗∗∗ 9331.4∗∗∗ 9.5018∗∗∗ 9.1483∗∗∗

(0.283) (0.293) (0.000) (0.000)
t 235.79∗∗∗ 218.20∗∗∗ 0.01509∗∗∗ 0.02007∗∗∗

(0.027) (0.026) (0.000) (0.000)
TREAT -1974.3∗∗∗ -852.92∗∗∗ -0.1599∗∗∗ -0.09884∗∗∗

(0.573) (0.804) (0.000) (0.000)
t X TREAT -17.823∗∗∗ -53.763∗∗∗ 0.001105∗∗∗ -0.002848∗∗∗

(0.055) (0.072) (0.000) (0.000)
tsi 50.142∗∗∗ -0.002693∗∗∗

(0.041) (0.000)
tsi X TREAT 17.135∗∗∗ 0.002869∗∗∗

(0.115) (0.000)
Nobs 12,366 21,832 12,366 21,832
Treatment -356.467 342.700 344.691 885.796
pvalue (0.0000) (0.0000) (0.0000) (0.0000)
Placebo DiDb -1075.253 -704.150
pvalue (0.0000) (0.0000)

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001 Source: Statbel (2016), our calculus
Coefficient Standard errors in parentheses
Estimates obtained using Statistics Belgium municipal-level (per head) taxable income (2013 euros) data,
weighted by population sizes
a: Estimated using the Poisson pseudo-maximum-likelihood estimator in Stata.
b: Computed using CITS estimates of trend/slope differences during 16 pre-interventions years.

5 Conclusion

Evaluating the response of income per head in impoverished territories to place-based pro-

grammes aimed at fostering income convergence poses challenges. In this paper, we contend

that resorting to the canonical Difference-in-Differences analysis (DiD) is inappropriate due

to two assumptions unlikely to be met in this context. Firstly, DiD assumes additive time

trends, whereas standard economic theory would posit multiplicative trends. Secondly,

the common trend assumption is typically unverified. Thus, there is a need for a method

allowing for trend differences between treated and control entities before treatment, and

estimating the treatment as a multiplicative trend difference-in-differences.

The method we implement here, in combination with an exponential (thus multi-
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plicative) model, is referred to as Controlled Interrupted Time Series Analysis (CITS) by

epidemiologists. We illustrate its relevance using time series data on the evolution of taxable

income per head between 1977 and 2013 for Hainaut vs. the rest of Belgium. While the

canonical (additive) DiD yields a treatment effect estimate of -356 euros for the 1993-2013

period, our preferred exponential CITS method concludes with a +885 euros gain. Two

factors contribute to this reversal. The first is that, in the presence of a common growth

rate (i.e., multiplicative trend), the canonical additive DiD confounds the treatment effect

and the mechanical rise of initial level differences. Second, unlike DiD, CITS credits the

treatment/intervention for the benefits corresponding to the reduction of a pre-existing

trend handicap.
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